numam-dpdk/drivers/bus/fslmc/portal/dpaa2_hw_pvt.h

372 lines
12 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright (c) 2016 Freescale Semiconductor, Inc. All rights reserved.
* Copyright (c) 2016 NXP. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Freescale Semiconductor, Inc nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _DPAA2_HW_PVT_H_
#define _DPAA2_HW_PVT_H_
#include <rte_eventdev.h>
#include <mc/fsl_mc_sys.h>
#include <fsl_qbman_portal.h>
#ifndef false
#define false 0
#endif
#ifndef true
#define true 1
#endif
#define lower_32_bits(x) ((uint32_t)(x))
#define upper_32_bits(x) ((uint32_t)(((x) >> 16) >> 16))
#define SVR_LS1080A 0x87030000
#define SVR_LS2080A 0x87010000
#define SVR_LS2088A 0x87090000
#ifndef ETH_VLAN_HLEN
#define ETH_VLAN_HLEN 4 /** < Vlan Header Length */
#endif
#define MAX_TX_RING_SLOTS 8
/** <Maximum number of slots available in TX ring*/
#define DPAA2_DQRR_RING_SIZE 16
/** <Maximum number of slots available in RX ring*/
#define MC_PORTAL_INDEX 0
#define NUM_DPIO_REGIONS 2
#define NUM_DQS_PER_QUEUE 2
/* Maximum release/acquire from QBMAN */
#define DPAA2_MBUF_MAX_ACQ_REL 7
#define MAX_BPID 256
#define DPAA2_MBUF_HW_ANNOTATION 64
#define DPAA2_FD_PTA_SIZE 0
#if (DPAA2_MBUF_HW_ANNOTATION + DPAA2_FD_PTA_SIZE) > RTE_PKTMBUF_HEADROOM
#error "Annotation requirement is more than RTE_PKTMBUF_HEADROOM"
#endif
/* we will re-use the HEADROOM for annotation in RX */
#define DPAA2_HW_BUF_RESERVE 0
#define DPAA2_PACKET_LAYOUT_ALIGN 64 /*changing from 256 */
#define DPAA2_DPCI_MAX_QUEUES 2
struct dpaa2_dpio_dev {
TAILQ_ENTRY(dpaa2_dpio_dev) next;
/**< Pointer to Next device instance */
uint16_t index; /**< Index of a instance in the list */
rte_atomic16_t ref_count;
/**< How many thread contexts are sharing this.*/
struct fsl_mc_io *dpio; /** handle to DPIO portal object */
uint16_t token;
struct qbman_swp *sw_portal; /** SW portal object */
const struct qbman_result *dqrr[4];
/**< DQRR Entry for this SW portal */
void *mc_portal; /**< MC Portal for configuring this device */
uintptr_t qbman_portal_ce_paddr;
/**< Physical address of Cache Enabled Area */
uintptr_t ce_size; /**< Size of the CE region */
uintptr_t qbman_portal_ci_paddr;
/**< Physical address of Cache Inhibit Area */
uintptr_t ci_size; /**< Size of the CI region */
int32_t vfio_fd; /**< File descriptor received via VFIO */
int32_t hw_id; /**< An unique ID of this DPIO device instance */
uint64_t dqrr_held;
uint8_t dqrr_size;
};
struct dpaa2_dpbp_dev {
TAILQ_ENTRY(dpaa2_dpbp_dev) next;
/**< Pointer to Next device instance */
struct fsl_mc_io dpbp; /** handle to DPBP portal object */
uint16_t token;
rte_atomic16_t in_use;
uint32_t dpbp_id; /*HW ID for DPBP object */
};
struct queue_storage_info_t {
struct qbman_result *dq_storage[NUM_DQS_PER_QUEUE];
struct qbman_result *active_dqs;
int active_dpio_id;
int toggle;
};
typedef void (dpaa2_queue_cb_dqrr_t)(struct qbman_swp *swp,
const struct qbman_fd *fd,
const struct qbman_result *dq,
struct rte_event *ev);
struct dpaa2_queue {
struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
void *dev;
int32_t eventfd; /*!< Event Fd of this queue */
uint32_t fqid; /*!< Unique ID of this queue */
uint8_t tc_index; /*!< traffic class identifier */
uint16_t flow_id; /*!< To be used by DPAA2 frmework */
uint64_t rx_pkts;
uint64_t tx_pkts;
uint64_t err_pkts;
union {
struct queue_storage_info_t *q_storage;
struct qbman_result *cscn;
};
dpaa2_queue_cb_dqrr_t *cb;
};
struct swp_active_dqs {
struct qbman_result *global_active_dqs;
uint64_t reserved[7];
};
#define NUM_MAX_SWP 64
extern struct swp_active_dqs rte_global_active_dqs_list[NUM_MAX_SWP];
struct dpaa2_dpci_dev {
TAILQ_ENTRY(dpaa2_dpci_dev) next;
/**< Pointer to Next device instance */
struct fsl_mc_io dpci; /** handle to DPCI portal object */
uint16_t token;
rte_atomic16_t in_use;
uint32_t dpci_id; /*HW ID for DPCI object */
struct dpaa2_queue queue[DPAA2_DPCI_MAX_QUEUES];
};
/*! Global MCP list */
extern void *(*rte_mcp_ptr_list);
/* Refer to Table 7-3 in SEC BG */
struct qbman_fle {
uint32_t addr_lo;
uint32_t addr_hi;
uint32_t length;
/* FMT must be 00, MSB is final bit */
uint32_t fin_bpid_offset;
uint32_t frc;
uint32_t reserved[3]; /* Not used currently */
};
struct qbman_sge {
uint32_t addr_lo;
uint32_t addr_hi;
uint32_t length;
uint32_t fin_bpid_offset;
};
/* There are three types of frames: Single, Scatter Gather and Frame Lists */
enum qbman_fd_format {
qbman_fd_single = 0,
qbman_fd_list,
qbman_fd_sg
};
/*Macros to define operations on FD*/
#define DPAA2_SET_FD_ADDR(fd, addr) do { \
fd->simple.addr_lo = lower_32_bits((uint64_t)(addr)); \
fd->simple.addr_hi = upper_32_bits((uint64_t)(addr)); \
} while (0)
#define DPAA2_SET_FD_LEN(fd, length) (fd)->simple.len = length
#define DPAA2_SET_FD_BPID(fd, bpid) ((fd)->simple.bpid_offset |= bpid)
#define DPAA2_SET_FD_IVP(fd) ((fd->simple.bpid_offset |= 0x00004000))
#define DPAA2_SET_FD_OFFSET(fd, offset) \
((fd->simple.bpid_offset |= (uint32_t)(offset) << 16))
#define DPAA2_SET_FD_INTERNAL_JD(fd, len) fd->simple.frc = (0x80000000 | (len))
#define DPAA2_SET_FD_FRC(fd, frc) fd->simple.frc = frc
#define DPAA2_RESET_FD_CTRL(fd) (fd)->simple.ctrl = 0
#define DPAA2_SET_FD_ASAL(fd, asal) ((fd)->simple.ctrl |= (asal << 16))
#define DPAA2_SET_FD_FLC(fd, addr) do { \
fd->simple.flc_lo = lower_32_bits((uint64_t)(addr)); \
fd->simple.flc_hi = upper_32_bits((uint64_t)(addr)); \
} while (0)
#define DPAA2_SET_FLE_INTERNAL_JD(fle, len) (fle->frc = (0x80000000 | (len)))
#define DPAA2_GET_FLE_ADDR(fle) \
(uint64_t)((((uint64_t)(fle->addr_hi)) << 32) + fle->addr_lo)
#define DPAA2_SET_FLE_ADDR(fle, addr) do { \
fle->addr_lo = lower_32_bits((uint64_t)addr); \
fle->addr_hi = upper_32_bits((uint64_t)addr); \
} while (0)
#define DPAA2_GET_FLE_CTXT(fle) \
(uint64_t)((((uint64_t)((fle)->reserved[1])) << 32) + \
(fle)->reserved[0])
#define DPAA2_FLE_SAVE_CTXT(fle, addr) do { \
fle->reserved[0] = lower_32_bits((uint64_t)addr); \
fle->reserved[1] = upper_32_bits((uint64_t)addr); \
} while (0)
#define DPAA2_SET_FLE_OFFSET(fle, offset) \
((fle)->fin_bpid_offset |= (uint32_t)(offset) << 16)
#define DPAA2_SET_FLE_BPID(fle, bpid) ((fle)->fin_bpid_offset |= (uint64_t)bpid)
#define DPAA2_GET_FLE_BPID(fle) ((fle)->fin_bpid_offset & 0x000000ff)
#define DPAA2_SET_FLE_FIN(fle) (fle->fin_bpid_offset |= (uint64_t)1 << 31)
#define DPAA2_SET_FLE_IVP(fle) (((fle)->fin_bpid_offset |= 0x00004000))
#define DPAA2_SET_FD_COMPOUND_FMT(fd) \
(fd->simple.bpid_offset |= (uint32_t)1 << 28)
#define DPAA2_GET_FD_ADDR(fd) \
((uint64_t)((((uint64_t)((fd)->simple.addr_hi)) << 32) + (fd)->simple.addr_lo))
#define DPAA2_GET_FD_LEN(fd) ((fd)->simple.len)
#define DPAA2_GET_FD_BPID(fd) (((fd)->simple.bpid_offset & 0x00003FFF))
#define DPAA2_GET_FD_IVP(fd) ((fd->simple.bpid_offset & 0x00004000) >> 14)
#define DPAA2_GET_FD_OFFSET(fd) (((fd)->simple.bpid_offset & 0x0FFF0000) >> 16)
#define DPAA2_GET_FLE_OFFSET(fle) (((fle)->fin_bpid_offset & 0x0FFF0000) >> 16)
#define DPAA2_SET_FLE_SG_EXT(fle) (fle->fin_bpid_offset |= (uint64_t)1 << 29)
#define DPAA2_IS_SET_FLE_SG_EXT(fle) \
((fle->fin_bpid_offset & ((uint64_t)1 << 29)) ? 1 : 0)
#define DPAA2_INLINE_MBUF_FROM_BUF(buf, meta_data_size) \
((struct rte_mbuf *)((uint64_t)(buf) - (meta_data_size)))
#define DPAA2_ASAL_VAL (DPAA2_MBUF_HW_ANNOTATION / 64)
#define DPAA2_FD_SET_FORMAT(fd, format) do { \
(fd)->simple.bpid_offset &= 0xCFFFFFFF; \
(fd)->simple.bpid_offset |= (uint32_t)format << 28; \
} while (0)
#define DPAA2_FD_GET_FORMAT(fd) (((fd)->simple.bpid_offset >> 28) & 0x3)
#define DPAA2_SG_SET_FINAL(sg, fin) do { \
(sg)->fin_bpid_offset &= 0x7FFFFFFF; \
(sg)->fin_bpid_offset |= (uint32_t)fin << 31; \
} while (0)
#define DPAA2_SG_IS_FINAL(sg) (!!((sg)->fin_bpid_offset >> 31))
/* Only Enqueue Error responses will be
* pushed on FQID_ERR of Enqueue FQ
*/
#define DPAA2_EQ_RESP_ERR_FQ 0
/* All Enqueue responses will be pushed on address
* set with qbman_eq_desc_set_response
*/
#define DPAA2_EQ_RESP_ALWAYS 1
#ifdef RTE_LIBRTE_DPAA2_USE_PHYS_IOVA
static void *dpaa2_mem_ptov(phys_addr_t paddr) __attribute__((unused));
/* todo - this is costly, need to write a fast coversion routine */
static void *dpaa2_mem_ptov(phys_addr_t paddr)
{
const struct rte_memseg *memseg = rte_eal_get_physmem_layout();
int i;
for (i = 0; i < RTE_MAX_MEMSEG && memseg[i].addr_64 != 0; i++) {
if (paddr >= memseg[i].phys_addr &&
(char *)paddr < (char *)memseg[i].phys_addr + memseg[i].len)
return (void *)(memseg[i].addr_64
+ (paddr - memseg[i].phys_addr));
}
return NULL;
}
static phys_addr_t dpaa2_mem_vtop(uint64_t vaddr) __attribute__((unused));
static phys_addr_t dpaa2_mem_vtop(uint64_t vaddr)
{
const struct rte_memseg *memseg = rte_eal_get_physmem_layout();
int i;
for (i = 0; i < RTE_MAX_MEMSEG && memseg[i].addr_64 != 0; i++) {
if (vaddr >= memseg[i].addr_64 &&
vaddr < memseg[i].addr_64 + memseg[i].len)
return memseg[i].phys_addr
+ (vaddr - memseg[i].addr_64);
}
return (phys_addr_t)(NULL);
}
/**
* When we are using Physical addresses as IO Virtual Addresses,
* Need to call conversion routines dpaa2_mem_vtop & dpaa2_mem_ptov
* wherever required.
* These routines are called with help of below MACRO's
*/
#define DPAA2_MBUF_VADDR_TO_IOVA(mbuf) ((mbuf)->buf_physaddr)
#define DPAA2_OP_VADDR_TO_IOVA(op) (op->phys_addr)
/**
* macro to convert Virtual address to IOVA
*/
#define DPAA2_VADDR_TO_IOVA(_vaddr) dpaa2_mem_vtop((uint64_t)(_vaddr))
/**
* macro to convert IOVA to Virtual address
*/
#define DPAA2_IOVA_TO_VADDR(_iova) dpaa2_mem_ptov((phys_addr_t)(_iova))
/**
* macro to convert modify the memory containing IOVA to Virtual address
*/
#define DPAA2_MODIFY_IOVA_TO_VADDR(_mem, _type) \
{_mem = (_type)(dpaa2_mem_ptov((phys_addr_t)(_mem))); }
#else /* RTE_LIBRTE_DPAA2_USE_PHYS_IOVA */
#define DPAA2_MBUF_VADDR_TO_IOVA(mbuf) ((mbuf)->buf_addr)
#define DPAA2_OP_VADDR_TO_IOVA(op) (op)
#define DPAA2_VADDR_TO_IOVA(_vaddr) (_vaddr)
#define DPAA2_IOVA_TO_VADDR(_iova) (_iova)
#define DPAA2_MODIFY_IOVA_TO_VADDR(_mem, _type)
#endif /* RTE_LIBRTE_DPAA2_USE_PHYS_IOVA */
static inline
int check_swp_active_dqs(uint16_t dpio_index)
{
if (rte_global_active_dqs_list[dpio_index].global_active_dqs != NULL)
return 1;
return 0;
}
static inline
void clear_swp_active_dqs(uint16_t dpio_index)
{
rte_global_active_dqs_list[dpio_index].global_active_dqs = NULL;
}
static inline
struct qbman_result *get_swp_active_dqs(uint16_t dpio_index)
{
return rte_global_active_dqs_list[dpio_index].global_active_dqs;
}
static inline
void set_swp_active_dqs(uint16_t dpio_index, struct qbman_result *dqs)
{
rte_global_active_dqs_list[dpio_index].global_active_dqs = dqs;
}
struct dpaa2_dpbp_dev *dpaa2_alloc_dpbp_dev(void);
void dpaa2_free_dpbp_dev(struct dpaa2_dpbp_dev *dpbp);
struct dpaa2_dpci_dev *rte_dpaa2_alloc_dpci_dev(void);
void rte_dpaa2_free_dpci_dev(struct dpaa2_dpci_dev *dpci);
#endif