numam-dpdk/drivers/net/virtio/virtio_pci.c

877 lines
21 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#ifdef RTE_EXEC_ENV_LINUXAPP
#include <dirent.h>
#include <fcntl.h>
#endif
#include "virtio_pci.h"
#include "virtio_logs.h"
#include "virtqueue.h"
virtio: support specification 1.0 Modern (v1.0) virtio pci device defines several pci capabilities. Each cap has a configure structure corresponding to it, and the cap.bar and cap.offset fields tell us where to find it. Firstly, we map the pci resources by rte_eal_pci_map_device(). We then could easily locate a cfg structure by: cfg_addr = dev->mem_resources[cap.bar].addr + cap.offset; Therefore, the entrance of enabling modern (v1.0) pci device support is to iterate the pci capability lists, and to locate some configs we care; and they are: - common cfg For generic virtio and virtqueue configuration, such as setting/getting features, enabling a specific queue, and so on. - nofity cfg Combining with `queue_notify_off' from common cfg, we could use it to notify a specific virt queue. - device cfg Where virtio_net_config structure is located. - isr cfg Where to read isr (interrupt status). If any of above cap is not found, we fallback to the legacy virtio handling. If succeed, hw->vtpci_ops is assigned to modern_ops, where all operations are implemented by reading/writing a (or few) specific configuration space from above 4 cfg structures. And that's basically how this patch works. Besides those changes, virtio 1.0 introduces a new status field: FEATURES_OK, which is set after features negotiation is done. Last, set the VIRTIO_F_VERSION_1 feature flag. Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com> Tested-by: Qian Xu <qian.q.xu@intel.com> Reviewed-by: Tetsuya Mukawa <mukawa@igel.co.jp> Tested-by: Tetsuya Mukawa <mukawa@igel.co.jp> Acked-by: Huawei Xie <huawei.xie@intel.com>
2016-02-02 21:48:19 +08:00
/*
* Following macros are derived from linux/pci_regs.h, however,
* we can't simply include that header here, as there is no such
* file for non-Linux platform.
*/
#define PCI_CAPABILITY_LIST 0x34
#define PCI_CAP_ID_VNDR 0x09
static void
legacy_read_dev_config(struct virtio_hw *hw, size_t offset,
void *dst, int length)
{
uint64_t off;
uint8_t *d;
int size;
off = VIRTIO_PCI_CONFIG(hw) + offset;
for (d = dst; length > 0; d += size, off += size, length -= size) {
if (length >= 4) {
size = 4;
*(uint32_t *)d = VIRTIO_READ_REG_4(hw, off);
} else if (length >= 2) {
size = 2;
*(uint16_t *)d = VIRTIO_READ_REG_2(hw, off);
} else {
size = 1;
*d = VIRTIO_READ_REG_1(hw, off);
}
}
}
static void
legacy_write_dev_config(struct virtio_hw *hw, size_t offset,
const void *src, int length)
{
uint64_t off;
const uint8_t *s;
int size;
off = VIRTIO_PCI_CONFIG(hw) + offset;
for (s = src; length > 0; s += size, off += size, length -= size) {
if (length >= 4) {
size = 4;
VIRTIO_WRITE_REG_4(hw, off, *(const uint32_t *)s);
} else if (length >= 2) {
size = 2;
VIRTIO_WRITE_REG_2(hw, off, *(const uint16_t *)s);
} else {
size = 1;
VIRTIO_WRITE_REG_1(hw, off, *s);
}
}
}
static uint64_t
legacy_get_features(struct virtio_hw *hw)
{
return VIRTIO_READ_REG_4(hw, VIRTIO_PCI_HOST_FEATURES);
}
static void
legacy_set_features(struct virtio_hw *hw, uint64_t features)
{
if ((features >> 32) != 0) {
PMD_DRV_LOG(ERR,
"only 32 bit features are allowed for legacy virtio!");
return;
}
VIRTIO_WRITE_REG_4(hw, VIRTIO_PCI_GUEST_FEATURES, features);
}
static uint8_t
legacy_get_status(struct virtio_hw *hw)
{
return VIRTIO_READ_REG_1(hw, VIRTIO_PCI_STATUS);
}
static void
legacy_set_status(struct virtio_hw *hw, uint8_t status)
{
VIRTIO_WRITE_REG_1(hw, VIRTIO_PCI_STATUS, status);
}
static void
legacy_reset(struct virtio_hw *hw)
{
legacy_set_status(hw, VIRTIO_CONFIG_STATUS_RESET);
}
static uint8_t
legacy_get_isr(struct virtio_hw *hw)
{
return VIRTIO_READ_REG_1(hw, VIRTIO_PCI_ISR);
}
/* Enable one vector (0) for Link State Intrerrupt */
static uint16_t
legacy_set_config_irq(struct virtio_hw *hw, uint16_t vec)
{
VIRTIO_WRITE_REG_2(hw, VIRTIO_MSI_CONFIG_VECTOR, vec);
return VIRTIO_READ_REG_2(hw, VIRTIO_MSI_CONFIG_VECTOR);
}
static uint16_t
legacy_get_queue_num(struct virtio_hw *hw, uint16_t queue_id)
{
VIRTIO_WRITE_REG_2(hw, VIRTIO_PCI_QUEUE_SEL, queue_id);
return VIRTIO_READ_REG_2(hw, VIRTIO_PCI_QUEUE_NUM);
}
static void
legacy_setup_queue(struct virtio_hw *hw, struct virtqueue *vq)
{
VIRTIO_WRITE_REG_2(hw, VIRTIO_PCI_QUEUE_SEL, vq->vq_queue_index);
VIRTIO_WRITE_REG_4(hw, VIRTIO_PCI_QUEUE_PFN,
vq->mz->phys_addr >> VIRTIO_PCI_QUEUE_ADDR_SHIFT);
}
static void
legacy_del_queue(struct virtio_hw *hw, struct virtqueue *vq)
{
VIRTIO_WRITE_REG_2(hw, VIRTIO_PCI_QUEUE_SEL, vq->vq_queue_index);
VIRTIO_WRITE_REG_4(hw, VIRTIO_PCI_QUEUE_PFN, 0);
}
static void
legacy_notify_queue(struct virtio_hw *hw, struct virtqueue *vq)
{
VIRTIO_WRITE_REG_2(hw, VIRTIO_PCI_QUEUE_NOTIFY, vq->vq_queue_index);
}
#ifdef RTE_EXEC_ENV_LINUXAPP
static int
parse_sysfs_value(const char *filename, unsigned long *val)
{
FILE *f;
char buf[BUFSIZ];
char *end = NULL;
f = fopen(filename, "r");
if (f == NULL) {
PMD_INIT_LOG(ERR, "%s(): cannot open sysfs value %s",
__func__, filename);
return -1;
}
if (fgets(buf, sizeof(buf), f) == NULL) {
PMD_INIT_LOG(ERR, "%s(): cannot read sysfs value %s",
__func__, filename);
fclose(f);
return -1;
}
*val = strtoul(buf, &end, 0);
if ((buf[0] == '\0') || (end == NULL) || (*end != '\n')) {
PMD_INIT_LOG(ERR, "%s(): cannot parse sysfs value %s",
__func__, filename);
fclose(f);
return -1;
}
fclose(f);
return 0;
}
static int
get_uio_dev(struct rte_pci_addr *loc, char *buf, unsigned int buflen,
unsigned int *uio_num)
{
struct dirent *e;
DIR *dir;
char dirname[PATH_MAX];
/*
* depending on kernel version, uio can be located in uio/uioX
* or uio:uioX
*/
snprintf(dirname, sizeof(dirname),
SYSFS_PCI_DEVICES "/" PCI_PRI_FMT "/uio",
loc->domain, loc->bus, loc->devid, loc->function);
dir = opendir(dirname);
if (dir == NULL) {
/* retry with the parent directory */
snprintf(dirname, sizeof(dirname),
SYSFS_PCI_DEVICES "/" PCI_PRI_FMT,
loc->domain, loc->bus, loc->devid, loc->function);
dir = opendir(dirname);
if (dir == NULL) {
PMD_INIT_LOG(ERR, "Cannot opendir %s", dirname);
return -1;
}
}
/* take the first file starting with "uio" */
while ((e = readdir(dir)) != NULL) {
/* format could be uio%d ...*/
int shortprefix_len = sizeof("uio") - 1;
/* ... or uio:uio%d */
int longprefix_len = sizeof("uio:uio") - 1;
char *endptr;
if (strncmp(e->d_name, "uio", 3) != 0)
continue;
/* first try uio%d */
errno = 0;
*uio_num = strtoull(e->d_name + shortprefix_len, &endptr, 10);
if (errno == 0 && endptr != (e->d_name + shortprefix_len)) {
snprintf(buf, buflen, "%s/uio%u", dirname, *uio_num);
break;
}
/* then try uio:uio%d */
errno = 0;
*uio_num = strtoull(e->d_name + longprefix_len, &endptr, 10);
if (errno == 0 && endptr != (e->d_name + longprefix_len)) {
snprintf(buf, buflen, "%s/uio:uio%u", dirname,
*uio_num);
break;
}
}
closedir(dir);
/* No uio resource found */
if (e == NULL) {
PMD_INIT_LOG(ERR, "Could not find uio resource");
return -1;
}
return 0;
}
static int
legacy_virtio_has_msix(const struct rte_pci_addr *loc)
{
DIR *d;
char dirname[PATH_MAX];
snprintf(dirname, sizeof(dirname),
SYSFS_PCI_DEVICES "/" PCI_PRI_FMT "/msi_irqs",
loc->domain, loc->bus, loc->devid, loc->function);
d = opendir(dirname);
if (d)
closedir(d);
return (d != NULL);
}
/* Extract I/O port numbers from sysfs */
static int
virtio_resource_init_by_uio(struct rte_pci_device *pci_dev)
{
char dirname[PATH_MAX];
char filename[PATH_MAX];
unsigned long start, size;
unsigned int uio_num;
if (get_uio_dev(&pci_dev->addr, dirname, sizeof(dirname), &uio_num) < 0)
return -1;
/* get portio size */
snprintf(filename, sizeof(filename),
"%s/portio/port0/size", dirname);
if (parse_sysfs_value(filename, &size) < 0) {
PMD_INIT_LOG(ERR, "%s(): cannot parse size",
__func__);
return -1;
}
/* get portio start */
snprintf(filename, sizeof(filename),
"%s/portio/port0/start", dirname);
if (parse_sysfs_value(filename, &start) < 0) {
PMD_INIT_LOG(ERR, "%s(): cannot parse portio start",
__func__);
return -1;
}
pci_dev->mem_resource[0].addr = (void *)(uintptr_t)start;
pci_dev->mem_resource[0].len = (uint64_t)size;
PMD_INIT_LOG(DEBUG,
"PCI Port IO found start=0x%lx with size=0x%lx",
start, size);
/* save fd */
memset(dirname, 0, sizeof(dirname));
snprintf(dirname, sizeof(dirname), "/dev/uio%u", uio_num);
pci_dev->intr_handle.fd = open(dirname, O_RDWR);
if (pci_dev->intr_handle.fd < 0) {
PMD_INIT_LOG(ERR, "Cannot open %s: %s\n",
dirname, strerror(errno));
return -1;
}
pci_dev->intr_handle.type = RTE_INTR_HANDLE_UIO;
pci_dev->driver->drv_flags |= RTE_PCI_DRV_INTR_LSC;
return 0;
}
/* Extract port I/O numbers from proc/ioports */
static int
virtio_resource_init_by_ioports(struct rte_pci_device *pci_dev)
{
uint16_t start, end;
int size;
FILE *fp;
char *line = NULL;
char pci_id[16];
int found = 0;
size_t linesz;
snprintf(pci_id, sizeof(pci_id), PCI_PRI_FMT,
pci_dev->addr.domain,
pci_dev->addr.bus,
pci_dev->addr.devid,
pci_dev->addr.function);
fp = fopen("/proc/ioports", "r");
if (fp == NULL) {
PMD_INIT_LOG(ERR, "%s(): can't open ioports", __func__);
return -1;
}
while (getdelim(&line, &linesz, '\n', fp) > 0) {
char *ptr = line;
char *left;
int n;
n = strcspn(ptr, ":");
ptr[n] = 0;
left = &ptr[n + 1];
while (*left && isspace(*left))
left++;
if (!strncmp(left, pci_id, strlen(pci_id))) {
found = 1;
while (*ptr && isspace(*ptr))
ptr++;
sscanf(ptr, "%04hx-%04hx", &start, &end);
size = end - start + 1;
break;
}
}
free(line);
fclose(fp);
if (!found)
return -1;
pci_dev->mem_resource[0].addr = (void *)(uintptr_t)(uint32_t)start;
pci_dev->mem_resource[0].len = (uint64_t)size;
PMD_INIT_LOG(DEBUG,
"PCI Port IO found start=0x%x with size=0x%x",
start, size);
/* can't support lsc interrupt without uio */
pci_dev->driver->drv_flags &= ~RTE_PCI_DRV_INTR_LSC;
return 0;
}
/* Extract I/O port numbers from sysfs */
static int
legacy_virtio_resource_init(struct rte_pci_device *pci_dev)
{
if (virtio_resource_init_by_uio(pci_dev) == 0)
return 0;
else
return virtio_resource_init_by_ioports(pci_dev);
}
#else
static int
legayc_virtio_has_msix(const struct rte_pci_addr *loc __rte_unused)
{
/* nic_uio does not enable interrupts, return 0 (false). */
return 0;
}
static int
legacy_virtio_resource_init(struct rte_pci_device *pci_dev __rte_unused)
{
/* no setup required */
return 0;
}
#endif
static const struct virtio_pci_ops legacy_ops = {
.read_dev_cfg = legacy_read_dev_config,
.write_dev_cfg = legacy_write_dev_config,
.reset = legacy_reset,
.get_status = legacy_get_status,
.set_status = legacy_set_status,
.get_features = legacy_get_features,
.set_features = legacy_set_features,
.get_isr = legacy_get_isr,
.set_config_irq = legacy_set_config_irq,
.get_queue_num = legacy_get_queue_num,
.setup_queue = legacy_setup_queue,
.del_queue = legacy_del_queue,
.notify_queue = legacy_notify_queue,
};
virtio: support specification 1.0 Modern (v1.0) virtio pci device defines several pci capabilities. Each cap has a configure structure corresponding to it, and the cap.bar and cap.offset fields tell us where to find it. Firstly, we map the pci resources by rte_eal_pci_map_device(). We then could easily locate a cfg structure by: cfg_addr = dev->mem_resources[cap.bar].addr + cap.offset; Therefore, the entrance of enabling modern (v1.0) pci device support is to iterate the pci capability lists, and to locate some configs we care; and they are: - common cfg For generic virtio and virtqueue configuration, such as setting/getting features, enabling a specific queue, and so on. - nofity cfg Combining with `queue_notify_off' from common cfg, we could use it to notify a specific virt queue. - device cfg Where virtio_net_config structure is located. - isr cfg Where to read isr (interrupt status). If any of above cap is not found, we fallback to the legacy virtio handling. If succeed, hw->vtpci_ops is assigned to modern_ops, where all operations are implemented by reading/writing a (or few) specific configuration space from above 4 cfg structures. And that's basically how this patch works. Besides those changes, virtio 1.0 introduces a new status field: FEATURES_OK, which is set after features negotiation is done. Last, set the VIRTIO_F_VERSION_1 feature flag. Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com> Tested-by: Qian Xu <qian.q.xu@intel.com> Reviewed-by: Tetsuya Mukawa <mukawa@igel.co.jp> Tested-by: Tetsuya Mukawa <mukawa@igel.co.jp> Acked-by: Huawei Xie <huawei.xie@intel.com>
2016-02-02 21:48:19 +08:00
static inline uint8_t
io_read8(uint8_t *addr)
{
return *(volatile uint8_t *)addr;
}
static inline void
io_write8(uint8_t val, uint8_t *addr)
{
*(volatile uint8_t *)addr = val;
}
static inline uint16_t
io_read16(uint16_t *addr)
{
return *(volatile uint16_t *)addr;
}
static inline void
io_write16(uint16_t val, uint16_t *addr)
{
*(volatile uint16_t *)addr = val;
}
static inline uint32_t
io_read32(uint32_t *addr)
{
return *(volatile uint32_t *)addr;
}
static inline void
io_write32(uint32_t val, uint32_t *addr)
{
*(volatile uint32_t *)addr = val;
}
static inline void
io_write64_twopart(uint64_t val, uint32_t *lo, uint32_t *hi)
{
io_write32(val & ((1ULL << 32) - 1), lo);
io_write32(val >> 32, hi);
}
static void
modern_read_dev_config(struct virtio_hw *hw, size_t offset,
void *dst, int length)
{
int i;
uint8_t *p;
uint8_t old_gen, new_gen;
do {
old_gen = io_read8(&hw->common_cfg->config_generation);
p = dst;
for (i = 0; i < length; i++)
*p++ = io_read8((uint8_t *)hw->dev_cfg + offset + i);
new_gen = io_read8(&hw->common_cfg->config_generation);
} while (old_gen != new_gen);
}
static void
modern_write_dev_config(struct virtio_hw *hw, size_t offset,
const void *src, int length)
{
int i;
const uint8_t *p = src;
for (i = 0; i < length; i++)
io_write8(*p++, (uint8_t *)hw->dev_cfg + offset + i);
}
static uint64_t
modern_get_features(struct virtio_hw *hw)
{
uint32_t features_lo, features_hi;
io_write32(0, &hw->common_cfg->device_feature_select);
features_lo = io_read32(&hw->common_cfg->device_feature);
io_write32(1, &hw->common_cfg->device_feature_select);
features_hi = io_read32(&hw->common_cfg->device_feature);
return ((uint64_t)features_hi << 32) | features_lo;
}
static void
modern_set_features(struct virtio_hw *hw, uint64_t features)
{
io_write32(0, &hw->common_cfg->guest_feature_select);
io_write32(features & ((1ULL << 32) - 1),
&hw->common_cfg->guest_feature);
io_write32(1, &hw->common_cfg->guest_feature_select);
io_write32(features >> 32,
&hw->common_cfg->guest_feature);
}
static uint8_t
modern_get_status(struct virtio_hw *hw)
{
return io_read8(&hw->common_cfg->device_status);
}
static void
modern_set_status(struct virtio_hw *hw, uint8_t status)
{
io_write8(status, &hw->common_cfg->device_status);
}
static void
modern_reset(struct virtio_hw *hw)
{
modern_set_status(hw, VIRTIO_CONFIG_STATUS_RESET);
modern_get_status(hw);
}
static uint8_t
modern_get_isr(struct virtio_hw *hw)
{
return io_read8(hw->isr);
}
static uint16_t
modern_set_config_irq(struct virtio_hw *hw, uint16_t vec)
{
io_write16(vec, &hw->common_cfg->msix_config);
return io_read16(&hw->common_cfg->msix_config);
}
static uint16_t
modern_get_queue_num(struct virtio_hw *hw, uint16_t queue_id)
{
io_write16(queue_id, &hw->common_cfg->queue_select);
return io_read16(&hw->common_cfg->queue_size);
}
static void
modern_setup_queue(struct virtio_hw *hw, struct virtqueue *vq)
{
uint64_t desc_addr, avail_addr, used_addr;
uint16_t notify_off;
desc_addr = vq->mz->phys_addr;
avail_addr = desc_addr + vq->vq_nentries * sizeof(struct vring_desc);
used_addr = RTE_ALIGN_CEIL(avail_addr + offsetof(struct vring_avail,
ring[vq->vq_nentries]),
VIRTIO_PCI_VRING_ALIGN);
io_write16(vq->vq_queue_index, &hw->common_cfg->queue_select);
io_write64_twopart(desc_addr, &hw->common_cfg->queue_desc_lo,
&hw->common_cfg->queue_desc_hi);
io_write64_twopart(avail_addr, &hw->common_cfg->queue_avail_lo,
&hw->common_cfg->queue_avail_hi);
io_write64_twopart(used_addr, &hw->common_cfg->queue_used_lo,
&hw->common_cfg->queue_used_hi);
notify_off = io_read16(&hw->common_cfg->queue_notify_off);
vq->notify_addr = (void *)((uint8_t *)hw->notify_base +
notify_off * hw->notify_off_multiplier);
io_write16(1, &hw->common_cfg->queue_enable);
PMD_INIT_LOG(DEBUG, "queue %u addresses:", vq->vq_queue_index);
PMD_INIT_LOG(DEBUG, "\t desc_addr: %" PRIx64, desc_addr);
PMD_INIT_LOG(DEBUG, "\t aval_addr: %" PRIx64, avail_addr);
PMD_INIT_LOG(DEBUG, "\t used_addr: %" PRIx64, used_addr);
PMD_INIT_LOG(DEBUG, "\t notify addr: %p (notify offset: %u)",
vq->notify_addr, notify_off);
}
static void
modern_del_queue(struct virtio_hw *hw, struct virtqueue *vq)
{
io_write16(vq->vq_queue_index, &hw->common_cfg->queue_select);
io_write64_twopart(0, &hw->common_cfg->queue_desc_lo,
&hw->common_cfg->queue_desc_hi);
io_write64_twopart(0, &hw->common_cfg->queue_avail_lo,
&hw->common_cfg->queue_avail_hi);
io_write64_twopart(0, &hw->common_cfg->queue_used_lo,
&hw->common_cfg->queue_used_hi);
io_write16(0, &hw->common_cfg->queue_enable);
}
static void
modern_notify_queue(struct virtio_hw *hw __rte_unused, struct virtqueue *vq)
{
io_write16(1, vq->notify_addr);
}
static const struct virtio_pci_ops modern_ops = {
.read_dev_cfg = modern_read_dev_config,
.write_dev_cfg = modern_write_dev_config,
.reset = modern_reset,
.get_status = modern_get_status,
.set_status = modern_set_status,
.get_features = modern_get_features,
.set_features = modern_set_features,
.get_isr = modern_get_isr,
.set_config_irq = modern_set_config_irq,
.get_queue_num = modern_get_queue_num,
.setup_queue = modern_setup_queue,
.del_queue = modern_del_queue,
.notify_queue = modern_notify_queue,
};
void
vtpci_read_dev_config(struct virtio_hw *hw, size_t offset,
void *dst, int length)
{
hw->vtpci_ops->read_dev_cfg(hw, offset, dst, length);
}
void
vtpci_write_dev_config(struct virtio_hw *hw, size_t offset,
const void *src, int length)
{
hw->vtpci_ops->write_dev_cfg(hw, offset, src, length);
}
uint64_t
vtpci_negotiate_features(struct virtio_hw *hw, uint64_t host_features)
{
uint64_t features;
/*
* Limit negotiated features to what the driver, virtqueue, and
* host all support.
*/
features = host_features & hw->guest_features;
hw->vtpci_ops->set_features(hw, features);
return features;
}
void
vtpci_reset(struct virtio_hw *hw)
{
hw->vtpci_ops->set_status(hw, VIRTIO_CONFIG_STATUS_RESET);
/* flush status write */
hw->vtpci_ops->get_status(hw);
}
void
vtpci_reinit_complete(struct virtio_hw *hw)
{
vtpci_set_status(hw, VIRTIO_CONFIG_STATUS_DRIVER_OK);
}
void
vtpci_set_status(struct virtio_hw *hw, uint8_t status)
{
if (status != VIRTIO_CONFIG_STATUS_RESET)
status |= hw->vtpci_ops->get_status(hw);
hw->vtpci_ops->set_status(hw, status);
}
virtio: support specification 1.0 Modern (v1.0) virtio pci device defines several pci capabilities. Each cap has a configure structure corresponding to it, and the cap.bar and cap.offset fields tell us where to find it. Firstly, we map the pci resources by rte_eal_pci_map_device(). We then could easily locate a cfg structure by: cfg_addr = dev->mem_resources[cap.bar].addr + cap.offset; Therefore, the entrance of enabling modern (v1.0) pci device support is to iterate the pci capability lists, and to locate some configs we care; and they are: - common cfg For generic virtio and virtqueue configuration, such as setting/getting features, enabling a specific queue, and so on. - nofity cfg Combining with `queue_notify_off' from common cfg, we could use it to notify a specific virt queue. - device cfg Where virtio_net_config structure is located. - isr cfg Where to read isr (interrupt status). If any of above cap is not found, we fallback to the legacy virtio handling. If succeed, hw->vtpci_ops is assigned to modern_ops, where all operations are implemented by reading/writing a (or few) specific configuration space from above 4 cfg structures. And that's basically how this patch works. Besides those changes, virtio 1.0 introduces a new status field: FEATURES_OK, which is set after features negotiation is done. Last, set the VIRTIO_F_VERSION_1 feature flag. Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com> Tested-by: Qian Xu <qian.q.xu@intel.com> Reviewed-by: Tetsuya Mukawa <mukawa@igel.co.jp> Tested-by: Tetsuya Mukawa <mukawa@igel.co.jp> Acked-by: Huawei Xie <huawei.xie@intel.com>
2016-02-02 21:48:19 +08:00
uint8_t
vtpci_get_status(struct virtio_hw *hw)
{
return hw->vtpci_ops->get_status(hw);
}
uint8_t
vtpci_isr(struct virtio_hw *hw)
{
return hw->vtpci_ops->get_isr(hw);
}
/* Enable one vector (0) for Link State Intrerrupt */
uint16_t
vtpci_irq_config(struct virtio_hw *hw, uint16_t vec)
{
return hw->vtpci_ops->set_config_irq(hw, vec);
}
virtio: support specification 1.0 Modern (v1.0) virtio pci device defines several pci capabilities. Each cap has a configure structure corresponding to it, and the cap.bar and cap.offset fields tell us where to find it. Firstly, we map the pci resources by rte_eal_pci_map_device(). We then could easily locate a cfg structure by: cfg_addr = dev->mem_resources[cap.bar].addr + cap.offset; Therefore, the entrance of enabling modern (v1.0) pci device support is to iterate the pci capability lists, and to locate some configs we care; and they are: - common cfg For generic virtio and virtqueue configuration, such as setting/getting features, enabling a specific queue, and so on. - nofity cfg Combining with `queue_notify_off' from common cfg, we could use it to notify a specific virt queue. - device cfg Where virtio_net_config structure is located. - isr cfg Where to read isr (interrupt status). If any of above cap is not found, we fallback to the legacy virtio handling. If succeed, hw->vtpci_ops is assigned to modern_ops, where all operations are implemented by reading/writing a (or few) specific configuration space from above 4 cfg structures. And that's basically how this patch works. Besides those changes, virtio 1.0 introduces a new status field: FEATURES_OK, which is set after features negotiation is done. Last, set the VIRTIO_F_VERSION_1 feature flag. Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com> Tested-by: Qian Xu <qian.q.xu@intel.com> Reviewed-by: Tetsuya Mukawa <mukawa@igel.co.jp> Tested-by: Tetsuya Mukawa <mukawa@igel.co.jp> Acked-by: Huawei Xie <huawei.xie@intel.com>
2016-02-02 21:48:19 +08:00
static void *
get_cfg_addr(struct rte_pci_device *dev, struct virtio_pci_cap *cap)
{
uint8_t bar = cap->bar;
uint32_t length = cap->length;
uint32_t offset = cap->offset;
uint8_t *base;
if (bar > 5) {
PMD_INIT_LOG(ERR, "invalid bar: %u", bar);
return NULL;
}
if (offset + length < offset) {
PMD_INIT_LOG(ERR, "offset(%u) + length(%u) overflows",
offset, length);
return NULL;
}
if (offset + length > dev->mem_resource[bar].len) {
PMD_INIT_LOG(ERR,
"invalid cap: overflows bar space: %u > %" PRIu64,
offset + length, dev->mem_resource[bar].len);
return NULL;
}
base = dev->mem_resource[bar].addr;
if (base == NULL) {
PMD_INIT_LOG(ERR, "bar %u base addr is NULL", bar);
return NULL;
}
return base + offset;
}
static int
virtio_read_caps(struct rte_pci_device *dev, struct virtio_hw *hw)
{
uint8_t pos;
struct virtio_pci_cap cap;
int ret;
if (rte_eal_pci_map_device(dev) < 0) {
PMD_INIT_LOG(DEBUG, "failed to map pci device!");
return -1;
}
ret = rte_eal_pci_read_config(dev, &pos, 1, PCI_CAPABILITY_LIST);
if (ret < 0) {
PMD_INIT_LOG(DEBUG, "failed to read pci capability list");
return -1;
}
while (pos) {
ret = rte_eal_pci_read_config(dev, &cap, sizeof(cap), pos);
if (ret < 0) {
PMD_INIT_LOG(ERR,
"failed to read pci cap at pos: %x", pos);
break;
}
if (cap.cap_vndr != PCI_CAP_ID_VNDR) {
PMD_INIT_LOG(DEBUG,
"[%2x] skipping non VNDR cap id: %02x",
pos, cap.cap_vndr);
goto next;
}
PMD_INIT_LOG(DEBUG,
"[%2x] cfg type: %u, bar: %u, offset: %04x, len: %u",
pos, cap.cfg_type, cap.bar, cap.offset, cap.length);
switch (cap.cfg_type) {
case VIRTIO_PCI_CAP_COMMON_CFG:
hw->common_cfg = get_cfg_addr(dev, &cap);
break;
case VIRTIO_PCI_CAP_NOTIFY_CFG:
rte_eal_pci_read_config(dev, &hw->notify_off_multiplier,
4, pos + sizeof(cap));
hw->notify_base = get_cfg_addr(dev, &cap);
break;
case VIRTIO_PCI_CAP_DEVICE_CFG:
hw->dev_cfg = get_cfg_addr(dev, &cap);
break;
case VIRTIO_PCI_CAP_ISR_CFG:
hw->isr = get_cfg_addr(dev, &cap);
break;
}
next:
pos = cap.cap_next;
}
if (hw->common_cfg == NULL || hw->notify_base == NULL ||
hw->dev_cfg == NULL || hw->isr == NULL) {
PMD_INIT_LOG(INFO, "no modern virtio pci device found.");
return -1;
}
PMD_INIT_LOG(INFO, "found modern virtio pci device.");
PMD_INIT_LOG(DEBUG, "common cfg mapped at: %p", hw->common_cfg);
PMD_INIT_LOG(DEBUG, "device cfg mapped at: %p", hw->dev_cfg);
PMD_INIT_LOG(DEBUG, "isr cfg mapped at: %p", hw->isr);
PMD_INIT_LOG(DEBUG, "notify base: %p, notify off multiplier: %u",
hw->notify_base, hw->notify_off_multiplier);
return 0;
}
int
vtpci_init(struct rte_pci_device *dev, struct virtio_hw *hw)
{
virtio: support specification 1.0 Modern (v1.0) virtio pci device defines several pci capabilities. Each cap has a configure structure corresponding to it, and the cap.bar and cap.offset fields tell us where to find it. Firstly, we map the pci resources by rte_eal_pci_map_device(). We then could easily locate a cfg structure by: cfg_addr = dev->mem_resources[cap.bar].addr + cap.offset; Therefore, the entrance of enabling modern (v1.0) pci device support is to iterate the pci capability lists, and to locate some configs we care; and they are: - common cfg For generic virtio and virtqueue configuration, such as setting/getting features, enabling a specific queue, and so on. - nofity cfg Combining with `queue_notify_off' from common cfg, we could use it to notify a specific virt queue. - device cfg Where virtio_net_config structure is located. - isr cfg Where to read isr (interrupt status). If any of above cap is not found, we fallback to the legacy virtio handling. If succeed, hw->vtpci_ops is assigned to modern_ops, where all operations are implemented by reading/writing a (or few) specific configuration space from above 4 cfg structures. And that's basically how this patch works. Besides those changes, virtio 1.0 introduces a new status field: FEATURES_OK, which is set after features negotiation is done. Last, set the VIRTIO_F_VERSION_1 feature flag. Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com> Tested-by: Qian Xu <qian.q.xu@intel.com> Reviewed-by: Tetsuya Mukawa <mukawa@igel.co.jp> Tested-by: Tetsuya Mukawa <mukawa@igel.co.jp> Acked-by: Huawei Xie <huawei.xie@intel.com>
2016-02-02 21:48:19 +08:00
hw->dev = dev;
virtio: support specification 1.0 Modern (v1.0) virtio pci device defines several pci capabilities. Each cap has a configure structure corresponding to it, and the cap.bar and cap.offset fields tell us where to find it. Firstly, we map the pci resources by rte_eal_pci_map_device(). We then could easily locate a cfg structure by: cfg_addr = dev->mem_resources[cap.bar].addr + cap.offset; Therefore, the entrance of enabling modern (v1.0) pci device support is to iterate the pci capability lists, and to locate some configs we care; and they are: - common cfg For generic virtio and virtqueue configuration, such as setting/getting features, enabling a specific queue, and so on. - nofity cfg Combining with `queue_notify_off' from common cfg, we could use it to notify a specific virt queue. - device cfg Where virtio_net_config structure is located. - isr cfg Where to read isr (interrupt status). If any of above cap is not found, we fallback to the legacy virtio handling. If succeed, hw->vtpci_ops is assigned to modern_ops, where all operations are implemented by reading/writing a (or few) specific configuration space from above 4 cfg structures. And that's basically how this patch works. Besides those changes, virtio 1.0 introduces a new status field: FEATURES_OK, which is set after features negotiation is done. Last, set the VIRTIO_F_VERSION_1 feature flag. Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com> Tested-by: Qian Xu <qian.q.xu@intel.com> Reviewed-by: Tetsuya Mukawa <mukawa@igel.co.jp> Tested-by: Tetsuya Mukawa <mukawa@igel.co.jp> Acked-by: Huawei Xie <huawei.xie@intel.com>
2016-02-02 21:48:19 +08:00
/*
* Try if we can succeed reading virtio pci caps, which exists
* only on modern pci device. If failed, we fallback to legacy
* virtio handling.
*/
if (virtio_read_caps(dev, hw) == 0) {
PMD_INIT_LOG(INFO, "modern virtio pci detected.");
hw->vtpci_ops = &modern_ops;
hw->modern = 1;
dev->driver->drv_flags |= RTE_PCI_DRV_INTR_LSC;
return 0;
}
PMD_INIT_LOG(INFO, "trying with legacy virtio pci.");
if (legacy_virtio_resource_init(dev) < 0)
return -1;
virtio: support specification 1.0 Modern (v1.0) virtio pci device defines several pci capabilities. Each cap has a configure structure corresponding to it, and the cap.bar and cap.offset fields tell us where to find it. Firstly, we map the pci resources by rte_eal_pci_map_device(). We then could easily locate a cfg structure by: cfg_addr = dev->mem_resources[cap.bar].addr + cap.offset; Therefore, the entrance of enabling modern (v1.0) pci device support is to iterate the pci capability lists, and to locate some configs we care; and they are: - common cfg For generic virtio and virtqueue configuration, such as setting/getting features, enabling a specific queue, and so on. - nofity cfg Combining with `queue_notify_off' from common cfg, we could use it to notify a specific virt queue. - device cfg Where virtio_net_config structure is located. - isr cfg Where to read isr (interrupt status). If any of above cap is not found, we fallback to the legacy virtio handling. If succeed, hw->vtpci_ops is assigned to modern_ops, where all operations are implemented by reading/writing a (or few) specific configuration space from above 4 cfg structures. And that's basically how this patch works. Besides those changes, virtio 1.0 introduces a new status field: FEATURES_OK, which is set after features negotiation is done. Last, set the VIRTIO_F_VERSION_1 feature flag. Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com> Tested-by: Qian Xu <qian.q.xu@intel.com> Reviewed-by: Tetsuya Mukawa <mukawa@igel.co.jp> Tested-by: Tetsuya Mukawa <mukawa@igel.co.jp> Acked-by: Huawei Xie <huawei.xie@intel.com>
2016-02-02 21:48:19 +08:00
hw->vtpci_ops = &legacy_ops;
hw->use_msix = legacy_virtio_has_msix(&dev->addr);
hw->io_base = (uint32_t)(uintptr_t)dev->mem_resource[0].addr;
virtio: support specification 1.0 Modern (v1.0) virtio pci device defines several pci capabilities. Each cap has a configure structure corresponding to it, and the cap.bar and cap.offset fields tell us where to find it. Firstly, we map the pci resources by rte_eal_pci_map_device(). We then could easily locate a cfg structure by: cfg_addr = dev->mem_resources[cap.bar].addr + cap.offset; Therefore, the entrance of enabling modern (v1.0) pci device support is to iterate the pci capability lists, and to locate some configs we care; and they are: - common cfg For generic virtio and virtqueue configuration, such as setting/getting features, enabling a specific queue, and so on. - nofity cfg Combining with `queue_notify_off' from common cfg, we could use it to notify a specific virt queue. - device cfg Where virtio_net_config structure is located. - isr cfg Where to read isr (interrupt status). If any of above cap is not found, we fallback to the legacy virtio handling. If succeed, hw->vtpci_ops is assigned to modern_ops, where all operations are implemented by reading/writing a (or few) specific configuration space from above 4 cfg structures. And that's basically how this patch works. Besides those changes, virtio 1.0 introduces a new status field: FEATURES_OK, which is set after features negotiation is done. Last, set the VIRTIO_F_VERSION_1 feature flag. Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com> Tested-by: Qian Xu <qian.q.xu@intel.com> Reviewed-by: Tetsuya Mukawa <mukawa@igel.co.jp> Tested-by: Tetsuya Mukawa <mukawa@igel.co.jp> Acked-by: Huawei Xie <huawei.xie@intel.com>
2016-02-02 21:48:19 +08:00
hw->modern = 0;
return 0;
}