numam-dpdk/drivers/net/cnxk/cn9k_rx.h

1110 lines
40 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2021 Marvell.
*/
#ifndef __CN9K_RX_H__
#define __CN9K_RX_H__
#include <rte_ether.h>
#include <rte_vect.h>
#include <cnxk_ethdev.h>
#define NIX_RX_OFFLOAD_NONE (0)
#define NIX_RX_OFFLOAD_RSS_F BIT(0)
#define NIX_RX_OFFLOAD_PTYPE_F BIT(1)
#define NIX_RX_OFFLOAD_CHECKSUM_F BIT(2)
#define NIX_RX_OFFLOAD_MARK_UPDATE_F BIT(3)
#define NIX_RX_OFFLOAD_TSTAMP_F BIT(4)
#define NIX_RX_OFFLOAD_VLAN_STRIP_F BIT(5)
#define NIX_RX_OFFLOAD_SECURITY_F BIT(6)
#define NIX_RX_OFFLOAD_MAX (NIX_RX_OFFLOAD_SECURITY_F << 1)
/* Flags to control cqe_to_mbuf conversion function.
* Defining it from backwards to denote its been
* not used as offload flags to pick function
*/
#define NIX_RX_MULTI_SEG_F BIT(14)
#define CPT_RX_WQE_F BIT(15)
#define CNXK_NIX_CQ_ENTRY_SZ 128
#define NIX_DESCS_PER_LOOP 4
#define CQE_CAST(x) ((struct nix_cqe_hdr_s *)(x))
#define CQE_SZ(x) ((x) * CNXK_NIX_CQ_ENTRY_SZ)
#define IPSEC_SQ_LO_IDX 4
#define IPSEC_SQ_HI_IDX 8
union mbuf_initializer {
struct {
uint16_t data_off;
uint16_t refcnt;
uint16_t nb_segs;
uint16_t port;
} fields;
uint64_t value;
};
static __rte_always_inline uint64_t
nix_clear_data_off(uint64_t oldval)
{
union mbuf_initializer mbuf_init = {.value = oldval};
mbuf_init.fields.data_off = 0;
return mbuf_init.value;
}
static __rte_always_inline struct rte_mbuf *
nix_get_mbuf_from_cqe(void *cq, const uint64_t data_off)
{
rte_iova_t buff;
/* Skip CQE, NIX_RX_PARSE_S and SG HDR(9 DWORDs) and peek buff addr */
buff = *((rte_iova_t *)((uint64_t *)cq + 9));
return (struct rte_mbuf *)(buff - data_off);
}
static __rte_always_inline uint32_t
nix_ptype_get(const void *const lookup_mem, const uint64_t in)
{
const uint16_t *const ptype = lookup_mem;
const uint16_t lh_lg_lf = (in & 0xFFF0000000000000) >> 52;
const uint16_t tu_l2 = ptype[(in & 0x000FFFF000000000) >> 36];
const uint16_t il4_tu = ptype[PTYPE_NON_TUNNEL_ARRAY_SZ + lh_lg_lf];
return (il4_tu << PTYPE_NON_TUNNEL_WIDTH) | tu_l2;
}
static __rte_always_inline uint32_t
nix_rx_olflags_get(const void *const lookup_mem, const uint64_t in)
{
const uint32_t *const ol_flags =
(const uint32_t *)((const uint8_t *)lookup_mem +
PTYPE_ARRAY_SZ);
return ol_flags[(in & 0xfff00000) >> 20];
}
static inline uint64_t
nix_update_match_id(const uint16_t match_id, uint64_t ol_flags,
struct rte_mbuf *mbuf)
{
/* There is no separate bit to check match_id
* is valid or not? and no flag to identify it is an
* RTE_FLOW_ACTION_TYPE_FLAG vs RTE_FLOW_ACTION_TYPE_MARK
* action. The former case addressed through 0 being invalid
* value and inc/dec match_id pair when MARK is activated.
* The later case addressed through defining
* CNXK_FLOW_MARK_DEFAULT as value for
* RTE_FLOW_ACTION_TYPE_MARK.
* This would translate to not use
* CNXK_FLOW_ACTION_FLAG_DEFAULT - 1 and
* CNXK_FLOW_ACTION_FLAG_DEFAULT for match_id.
* i.e valid mark_id's are from
* 0 to CNXK_FLOW_ACTION_FLAG_DEFAULT - 2
*/
if (likely(match_id)) {
ol_flags |= RTE_MBUF_F_RX_FDIR;
if (match_id != CNXK_FLOW_ACTION_FLAG_DEFAULT) {
ol_flags |= RTE_MBUF_F_RX_FDIR_ID;
mbuf->hash.fdir.hi = match_id - 1;
}
}
return ol_flags;
}
static __rte_always_inline void
nix_cqe_xtract_mseg(const union nix_rx_parse_u *rx, struct rte_mbuf *mbuf,
uint64_t rearm, const uint16_t flags)
{
const rte_iova_t *iova_list;
struct rte_mbuf *head;
const rte_iova_t *eol;
uint8_t nb_segs;
uint64_t sg;
sg = *(const uint64_t *)(rx + 1);
nb_segs = (sg >> 48) & 0x3;
if (nb_segs == 1) {
mbuf->next = NULL;
return;
}
mbuf->pkt_len = (rx->pkt_lenm1 + 1) - (flags & NIX_RX_OFFLOAD_TSTAMP_F ?
CNXK_NIX_TIMESYNC_RX_OFFSET : 0);
mbuf->data_len = (sg & 0xFFFF) - (flags & NIX_RX_OFFLOAD_TSTAMP_F ?
CNXK_NIX_TIMESYNC_RX_OFFSET : 0);
mbuf->nb_segs = nb_segs;
sg = sg >> 16;
eol = ((const rte_iova_t *)(rx + 1) +
((rx->cn9k.desc_sizem1 + 1) << 1));
/* Skip SG_S and first IOVA*/
iova_list = ((const rte_iova_t *)(rx + 1)) + 2;
nb_segs--;
rearm = rearm & ~0xFFFF;
head = mbuf;
while (nb_segs) {
mbuf->next = ((struct rte_mbuf *)*iova_list) - 1;
mbuf = mbuf->next;
RTE_MEMPOOL_CHECK_COOKIES(mbuf->pool, (void **)&mbuf, 1, 1);
mbuf->data_len = sg & 0xFFFF;
sg = sg >> 16;
*(uint64_t *)(&mbuf->rearm_data) = rearm;
nb_segs--;
iova_list++;
if (!nb_segs && (iova_list + 1 < eol)) {
sg = *(const uint64_t *)(iova_list);
nb_segs = (sg >> 48) & 0x3;
head->nb_segs += nb_segs;
iova_list = (const rte_iova_t *)(iova_list + 1);
}
}
mbuf->next = NULL;
}
static inline int
ipsec_antireplay_check(struct roc_ie_on_inb_sa *sa,
struct cn9k_inb_priv_data *priv, uintptr_t data,
uint32_t win_sz)
{
struct cnxk_on_ipsec_ar *ar = &priv->ar;
uint64_t seq_in_sa;
uint32_t seqh = 0;
uint32_t seql;
uint64_t seq;
uint8_t esn;
int rc;
esn = sa->common_sa.ctl.esn_en;
seql = rte_be_to_cpu_32(*((uint32_t *)(data + IPSEC_SQ_LO_IDX)));
if (!esn) {
seq = (uint64_t)seql;
} else {
seqh = rte_be_to_cpu_32(*((uint32_t *)(data +
IPSEC_SQ_HI_IDX)));
seq = ((uint64_t)seqh << 32) | seql;
}
if (unlikely(seq == 0))
return -1;
rte_spinlock_lock(&ar->lock);
rc = cnxk_on_anti_replay_check(seq, ar, win_sz);
if (esn && !rc) {
seq_in_sa = ((uint64_t)rte_be_to_cpu_32(sa->common_sa.seq_t.th)
<< 32) |
rte_be_to_cpu_32(sa->common_sa.seq_t.tl);
if (seq > seq_in_sa) {
sa->common_sa.seq_t.tl = rte_cpu_to_be_32(seql);
sa->common_sa.seq_t.th = rte_cpu_to_be_32(seqh);
}
}
rte_spinlock_unlock(&ar->lock);
return rc;
}
static inline uint64_t
nix_rx_sec_mbuf_err_update(const union nix_rx_parse_u *rx, uint16_t res,
uint64_t *rearm_val, uint16_t *len)
{
uint8_t uc_cc = res >> 8;
uint8_t cc = res & 0xFF;
uint64_t data_off;
uint64_t ol_flags;
uint16_t m_len;
if (unlikely(cc != CPT_COMP_GOOD))
return RTE_MBUF_F_RX_SEC_OFFLOAD |
RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED;
data_off = *rearm_val & (BIT_ULL(16) - 1);
m_len = rx->cn9k.pkt_lenm1 + 1;
switch (uc_cc) {
case ROC_IE_ON_UCC_IP_PAYLOAD_TYPE_ERR:
case ROC_IE_ON_UCC_AUTH_ERR:
case ROC_IE_ON_UCC_PADDING_INVALID:
/* Adjust data offset to start at copied L2 */
data_off += ROC_ONF_IPSEC_INB_SPI_SEQ_SZ +
ROC_ONF_IPSEC_INB_MAX_L2_SZ;
ol_flags = RTE_MBUF_F_RX_SEC_OFFLOAD |
RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED;
break;
case ROC_IE_ON_UCC_CTX_INVALID:
case ROC_IE_ON_UCC_SPI_MISMATCH:
case ROC_IE_ON_UCC_SA_MISMATCH:
/* Return as normal packet */
ol_flags = 0;
break;
default:
/* Return as error packet after updating packet lengths */
ol_flags = RTE_MBUF_F_RX_SEC_OFFLOAD |
RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED;
break;
}
*len = m_len;
*rearm_val = *rearm_val & ~(BIT_ULL(16) - 1);
*rearm_val |= data_off;
return ol_flags;
}
static __rte_always_inline uint64_t
nix_rx_sec_mbuf_update(const struct nix_cqe_hdr_s *cq, struct rte_mbuf *m,
uintptr_t sa_base, uint64_t *rearm_val, uint16_t *len)
{
uintptr_t res_sg0 = ((uintptr_t)cq + ROC_ONF_IPSEC_INB_RES_OFF - 8);
const union nix_rx_parse_u *rx =
(const union nix_rx_parse_u *)((const uint64_t *)cq + 1);
struct cn9k_inb_priv_data *sa_priv;
struct roc_ie_on_inb_sa *sa;
uint8_t lcptr = rx->lcptr;
struct rte_ipv4_hdr *ip;
struct rte_ipv6_hdr *ip6;
uint16_t data_off, res;
uint32_t spi, win_sz;
uint32_t spi_mask;
uintptr_t data;
__uint128_t dw;
uint8_t sa_w;
res = *(uint64_t *)(res_sg0 + 8);
data_off = *rearm_val & (BIT_ULL(16) - 1);
data = (uintptr_t)m->buf_addr;
data += data_off;
rte_prefetch0((void *)data);
if (unlikely(res != (CPT_COMP_GOOD | ROC_IE_ON_UCC_SUCCESS << 8)))
return nix_rx_sec_mbuf_err_update(rx, res, rearm_val, len);
data += lcptr;
/* 20 bits of tag would have the SPI */
spi = cq->tag & CNXK_ETHDEV_SPI_TAG_MASK;
/* Get SA */
sa_w = sa_base & (ROC_NIX_INL_SA_BASE_ALIGN - 1);
sa_base &= ~(ROC_NIX_INL_SA_BASE_ALIGN - 1);
spi_mask = (1ULL << sa_w) - 1;
sa = roc_nix_inl_on_ipsec_inb_sa(sa_base, spi & spi_mask);
/* Update dynamic field with userdata */
sa_priv = roc_nix_inl_on_ipsec_inb_sa_sw_rsvd(sa);
dw = *(__uint128_t *)sa_priv;
*rte_security_dynfield(m) = (uint64_t)dw;
/* Check if anti-replay is enabled */
win_sz = (uint32_t)(dw >> 64);
if (win_sz) {
if (ipsec_antireplay_check(sa, sa_priv, data, win_sz) < 0)
return RTE_MBUF_F_RX_SEC_OFFLOAD | RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED;
}
/* Get total length from IPv4 header. We can assume only IPv4 */
ip = (struct rte_ipv4_hdr *)(data + ROC_ONF_IPSEC_INB_SPI_SEQ_SZ +
ROC_ONF_IPSEC_INB_MAX_L2_SZ);
if (((ip->version_ihl & 0xf0) >> RTE_IPV4_IHL_MULTIPLIER) ==
IPVERSION) {
*len = rte_be_to_cpu_16(ip->total_length) + lcptr;
} else {
PLT_ASSERT(((ip->version_ihl & 0xf0) >>
RTE_IPV4_IHL_MULTIPLIER) == 6);
ip6 = (struct rte_ipv6_hdr *)ip;
*len = rte_be_to_cpu_16(ip6->payload_len) +
sizeof(struct rte_ipv6_hdr) + lcptr;
}
/* Update data offset */
data_off +=
(ROC_ONF_IPSEC_INB_SPI_SEQ_SZ + ROC_ONF_IPSEC_INB_MAX_L2_SZ);
*rearm_val = *rearm_val & ~(BIT_ULL(16) - 1);
*rearm_val |= data_off;
return RTE_MBUF_F_RX_SEC_OFFLOAD;
}
static __rte_always_inline void
cn9k_nix_cqe_to_mbuf(const struct nix_cqe_hdr_s *cq, const uint32_t tag,
struct rte_mbuf *mbuf, const void *lookup_mem,
uint64_t val, const uint16_t flag)
{
const union nix_rx_parse_u *rx =
(const union nix_rx_parse_u *)((const uint64_t *)cq + 1);
uint16_t len = rx->cn9k.pkt_lenm1 + 1;
const uint64_t w1 = *(const uint64_t *)rx;
uint32_t packet_type;
uint64_t ol_flags = 0;
/* Mark mempool obj as "get" as it is alloc'ed by NIX */
RTE_MEMPOOL_CHECK_COOKIES(mbuf->pool, (void **)&mbuf, 1, 1);
if (flag & NIX_RX_OFFLOAD_PTYPE_F)
packet_type = nix_ptype_get(lookup_mem, w1);
else
packet_type = 0;
if ((flag & NIX_RX_OFFLOAD_SECURITY_F) &&
cq->cqe_type == NIX_XQE_TYPE_RX_IPSECH) {
uint16_t port = val >> 48;
uintptr_t sa_base;
/* Get SA Base from lookup mem */
sa_base = cnxk_nix_sa_base_get(port, lookup_mem);
ol_flags |= nix_rx_sec_mbuf_update(cq, mbuf, sa_base, &val,
&len);
/* Only Tunnel inner IPv4 is supported */
packet_type = (packet_type &
~(RTE_PTYPE_L3_MASK | RTE_PTYPE_TUNNEL_MASK));
packet_type |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
mbuf->packet_type = packet_type;
goto skip_parse;
}
if (flag & NIX_RX_OFFLOAD_PTYPE_F)
mbuf->packet_type = packet_type;
if (flag & NIX_RX_OFFLOAD_RSS_F) {
mbuf->hash.rss = tag;
ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
}
if (flag & NIX_RX_OFFLOAD_CHECKSUM_F)
ol_flags |= nix_rx_olflags_get(lookup_mem, w1);
skip_parse:
if (flag & NIX_RX_OFFLOAD_VLAN_STRIP_F) {
if (rx->cn9k.vtag0_gone) {
ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
mbuf->vlan_tci = rx->cn9k.vtag0_tci;
}
if (rx->cn9k.vtag1_gone) {
ol_flags |= RTE_MBUF_F_RX_QINQ | RTE_MBUF_F_RX_QINQ_STRIPPED;
mbuf->vlan_tci_outer = rx->cn9k.vtag1_tci;
}
}
if (flag & NIX_RX_OFFLOAD_MARK_UPDATE_F)
ol_flags =
nix_update_match_id(rx->cn9k.match_id, ol_flags, mbuf);
mbuf->ol_flags = ol_flags;
*(uint64_t *)(&mbuf->rearm_data) = val;
mbuf->pkt_len = len;
mbuf->data_len = len;
if (flag & NIX_RX_MULTI_SEG_F)
/*
* For multi segment packets, mbuf length correction according
* to Rx timestamp length will be handled later during
* timestamp data process.
* Hence, flag argument is not required.
*/
nix_cqe_xtract_mseg(rx, mbuf, val, 0);
else
mbuf->next = NULL;
}
static inline uint16_t
nix_rx_nb_pkts(struct cn9k_eth_rxq *rxq, const uint64_t wdata,
const uint16_t pkts, const uint32_t qmask)
{
uint32_t available = rxq->available;
/* Update the available count if cached value is not enough */
if (unlikely(available < pkts)) {
uint64_t reg, head, tail;
/* Use LDADDA version to avoid reorder */
reg = roc_atomic64_add_sync(wdata, rxq->cq_status);
/* CQ_OP_STATUS operation error */
if (reg & BIT_ULL(NIX_CQ_OP_STAT_OP_ERR) ||
reg & BIT_ULL(NIX_CQ_OP_STAT_CQ_ERR))
return 0;
tail = reg & 0xFFFFF;
head = (reg >> 20) & 0xFFFFF;
if (tail < head)
available = tail - head + qmask + 1;
else
available = tail - head;
rxq->available = available;
}
return RTE_MIN(pkts, available);
}
static __rte_always_inline void
cn9k_nix_mbuf_to_tstamp(struct rte_mbuf *mbuf,
struct cnxk_timesync_info *tstamp,
const uint8_t ts_enable, uint64_t *tstamp_ptr)
{
if (ts_enable) {
mbuf->pkt_len -= CNXK_NIX_TIMESYNC_RX_OFFSET;
mbuf->data_len -= CNXK_NIX_TIMESYNC_RX_OFFSET;
/* Reading the rx timestamp inserted by CGX, viz at
* starting of the packet data.
*/
*cnxk_nix_timestamp_dynfield(mbuf, tstamp) =
rte_be_to_cpu_64(*tstamp_ptr);
/* RTE_MBUF_F_RX_IEEE1588_TMST flag needs to be set only in case
* PTP packets are received.
*/
if (mbuf->packet_type == RTE_PTYPE_L2_ETHER_TIMESYNC) {
tstamp->rx_tstamp =
*cnxk_nix_timestamp_dynfield(mbuf, tstamp);
tstamp->rx_ready = 1;
mbuf->ol_flags |= RTE_MBUF_F_RX_IEEE1588_PTP |
RTE_MBUF_F_RX_IEEE1588_TMST |
tstamp->rx_tstamp_dynflag;
}
}
}
static __rte_always_inline uint16_t
cn9k_nix_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts,
const uint16_t flags)
{
struct cn9k_eth_rxq *rxq = rx_queue;
const uint64_t mbuf_init = rxq->mbuf_initializer;
const void *lookup_mem = rxq->lookup_mem;
const uint64_t data_off = rxq->data_off;
const uintptr_t desc = rxq->desc;
const uint64_t wdata = rxq->wdata;
const uint32_t qmask = rxq->qmask;
uint16_t packets = 0, nb_pkts;
uint32_t head = rxq->head;
struct nix_cqe_hdr_s *cq;
struct rte_mbuf *mbuf;
nb_pkts = nix_rx_nb_pkts(rxq, wdata, pkts, qmask);
while (packets < nb_pkts) {
/* Prefetch N desc ahead */
rte_prefetch_non_temporal(
(void *)(desc + (CQE_SZ((head + 2) & qmask))));
cq = (struct nix_cqe_hdr_s *)(desc + CQE_SZ(head));
mbuf = nix_get_mbuf_from_cqe(cq, data_off);
cn9k_nix_cqe_to_mbuf(cq, cq->tag, mbuf, lookup_mem, mbuf_init,
flags);
cn9k_nix_mbuf_to_tstamp(mbuf, rxq->tstamp,
(flags & NIX_RX_OFFLOAD_TSTAMP_F),
(uint64_t *)((uint8_t *)mbuf
+ data_off));
rx_pkts[packets++] = mbuf;
roc_prefetch_store_keep(mbuf);
head++;
head &= qmask;
}
rxq->head = head;
rxq->available -= nb_pkts;
/* Free all the CQs that we've processed */
plt_write64((wdata | nb_pkts), rxq->cq_door);
return nb_pkts;
}
#if defined(RTE_ARCH_ARM64)
static __rte_always_inline uint64_t
nix_vlan_update(const uint64_t w2, uint64_t ol_flags, uint8x16_t *f)
{
if (w2 & BIT_ULL(21) /* vtag0_gone */) {
ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
*f = vsetq_lane_u16((uint16_t)(w2 >> 32), *f, 5);
}
return ol_flags;
}
static __rte_always_inline uint64_t
nix_qinq_update(const uint64_t w2, uint64_t ol_flags, struct rte_mbuf *mbuf)
{
if (w2 & BIT_ULL(23) /* vtag1_gone */) {
ol_flags |= RTE_MBUF_F_RX_QINQ | RTE_MBUF_F_RX_QINQ_STRIPPED;
mbuf->vlan_tci_outer = (uint16_t)(w2 >> 48);
}
return ol_flags;
}
static __rte_always_inline uint16_t
cn9k_nix_recv_pkts_vector(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t pkts, const uint16_t flags)
{
struct cn9k_eth_rxq *rxq = rx_queue;
uint16_t packets = 0;
uint64x2_t cq0_w8, cq1_w8, cq2_w8, cq3_w8, mbuf01, mbuf23;
const uint64_t mbuf_initializer = rxq->mbuf_initializer;
const uint64x2_t data_off = vdupq_n_u64(rxq->data_off);
uint64_t ol_flags0, ol_flags1, ol_flags2, ol_flags3;
uint64x2_t rearm0 = vdupq_n_u64(mbuf_initializer);
uint64x2_t rearm1 = vdupq_n_u64(mbuf_initializer);
uint64x2_t rearm2 = vdupq_n_u64(mbuf_initializer);
uint64x2_t rearm3 = vdupq_n_u64(mbuf_initializer);
struct rte_mbuf *mbuf0, *mbuf1, *mbuf2, *mbuf3;
const uint16_t *lookup_mem = rxq->lookup_mem;
const uint32_t qmask = rxq->qmask;
const uint64_t wdata = rxq->wdata;
const uintptr_t desc = rxq->desc;
uint8x16_t f0, f1, f2, f3;
uint32_t head = rxq->head;
uint16_t pkts_left;
pkts = nix_rx_nb_pkts(rxq, wdata, pkts, qmask);
pkts_left = pkts & (NIX_DESCS_PER_LOOP - 1);
/* Packets has to be floor-aligned to NIX_DESCS_PER_LOOP */
pkts = RTE_ALIGN_FLOOR(pkts, NIX_DESCS_PER_LOOP);
while (packets < pkts) {
/* Exit loop if head is about to wrap and become unaligned */
if (((head + NIX_DESCS_PER_LOOP - 1) & qmask) <
NIX_DESCS_PER_LOOP) {
pkts_left += (pkts - packets);
break;
}
const uintptr_t cq0 = desc + CQE_SZ(head);
/* Prefetch N desc ahead */
rte_prefetch_non_temporal((void *)(cq0 + CQE_SZ(8)));
rte_prefetch_non_temporal((void *)(cq0 + CQE_SZ(9)));
rte_prefetch_non_temporal((void *)(cq0 + CQE_SZ(10)));
rte_prefetch_non_temporal((void *)(cq0 + CQE_SZ(11)));
/* Get NIX_RX_SG_S for size and buffer pointer */
cq0_w8 = vld1q_u64((uint64_t *)(cq0 + CQE_SZ(0) + 64));
cq1_w8 = vld1q_u64((uint64_t *)(cq0 + CQE_SZ(1) + 64));
cq2_w8 = vld1q_u64((uint64_t *)(cq0 + CQE_SZ(2) + 64));
cq3_w8 = vld1q_u64((uint64_t *)(cq0 + CQE_SZ(3) + 64));
/* Extract mbuf from NIX_RX_SG_S */
mbuf01 = vzip2q_u64(cq0_w8, cq1_w8);
mbuf23 = vzip2q_u64(cq2_w8, cq3_w8);
mbuf01 = vqsubq_u64(mbuf01, data_off);
mbuf23 = vqsubq_u64(mbuf23, data_off);
/* Move mbufs to scalar registers for future use */
mbuf0 = (struct rte_mbuf *)vgetq_lane_u64(mbuf01, 0);
mbuf1 = (struct rte_mbuf *)vgetq_lane_u64(mbuf01, 1);
mbuf2 = (struct rte_mbuf *)vgetq_lane_u64(mbuf23, 0);
mbuf3 = (struct rte_mbuf *)vgetq_lane_u64(mbuf23, 1);
/* Mask to get packet len from NIX_RX_SG_S */
const uint8x16_t shuf_msk = {
0xFF, 0xFF, /* pkt_type set as unknown */
0xFF, 0xFF, /* pkt_type set as unknown */
0, 1, /* octet 1~0, low 16 bits pkt_len */
0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
0, 1, /* octet 1~0, 16 bits data_len */
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
/* Form the rx_descriptor_fields1 with pkt_len and data_len */
f0 = vqtbl1q_u8(cq0_w8, shuf_msk);
f1 = vqtbl1q_u8(cq1_w8, shuf_msk);
f2 = vqtbl1q_u8(cq2_w8, shuf_msk);
f3 = vqtbl1q_u8(cq3_w8, shuf_msk);
/* Load CQE word0 and word 1 */
uint64_t cq0_w0 = ((uint64_t *)(cq0 + CQE_SZ(0)))[0];
uint64_t cq0_w1 = ((uint64_t *)(cq0 + CQE_SZ(0)))[1];
uint64_t cq1_w0 = ((uint64_t *)(cq0 + CQE_SZ(1)))[0];
uint64_t cq1_w1 = ((uint64_t *)(cq0 + CQE_SZ(1)))[1];
uint64_t cq2_w0 = ((uint64_t *)(cq0 + CQE_SZ(2)))[0];
uint64_t cq2_w1 = ((uint64_t *)(cq0 + CQE_SZ(2)))[1];
uint64_t cq3_w0 = ((uint64_t *)(cq0 + CQE_SZ(3)))[0];
uint64_t cq3_w1 = ((uint64_t *)(cq0 + CQE_SZ(3)))[1];
if (flags & NIX_RX_OFFLOAD_RSS_F) {
/* Fill rss in the rx_descriptor_fields1 */
f0 = vsetq_lane_u32(cq0_w0, f0, 3);
f1 = vsetq_lane_u32(cq1_w0, f1, 3);
f2 = vsetq_lane_u32(cq2_w0, f2, 3);
f3 = vsetq_lane_u32(cq3_w0, f3, 3);
ol_flags0 = RTE_MBUF_F_RX_RSS_HASH;
ol_flags1 = RTE_MBUF_F_RX_RSS_HASH;
ol_flags2 = RTE_MBUF_F_RX_RSS_HASH;
ol_flags3 = RTE_MBUF_F_RX_RSS_HASH;
} else {
ol_flags0 = 0;
ol_flags1 = 0;
ol_flags2 = 0;
ol_flags3 = 0;
}
if (flags & NIX_RX_OFFLOAD_PTYPE_F) {
/* Fill packet_type in the rx_descriptor_fields1 */
f0 = vsetq_lane_u32(nix_ptype_get(lookup_mem, cq0_w1),
f0, 0);
f1 = vsetq_lane_u32(nix_ptype_get(lookup_mem, cq1_w1),
f1, 0);
f2 = vsetq_lane_u32(nix_ptype_get(lookup_mem, cq2_w1),
f2, 0);
f3 = vsetq_lane_u32(nix_ptype_get(lookup_mem, cq3_w1),
f3, 0);
}
if (flags & NIX_RX_OFFLOAD_CHECKSUM_F) {
ol_flags0 |= nix_rx_olflags_get(lookup_mem, cq0_w1);
ol_flags1 |= nix_rx_olflags_get(lookup_mem, cq1_w1);
ol_flags2 |= nix_rx_olflags_get(lookup_mem, cq2_w1);
ol_flags3 |= nix_rx_olflags_get(lookup_mem, cq3_w1);
}
if (flags & NIX_RX_OFFLOAD_VLAN_STRIP_F) {
uint64_t cq0_w2 = *(uint64_t *)(cq0 + CQE_SZ(0) + 16);
uint64_t cq1_w2 = *(uint64_t *)(cq0 + CQE_SZ(1) + 16);
uint64_t cq2_w2 = *(uint64_t *)(cq0 + CQE_SZ(2) + 16);
uint64_t cq3_w2 = *(uint64_t *)(cq0 + CQE_SZ(3) + 16);
ol_flags0 = nix_vlan_update(cq0_w2, ol_flags0, &f0);
ol_flags1 = nix_vlan_update(cq1_w2, ol_flags1, &f1);
ol_flags2 = nix_vlan_update(cq2_w2, ol_flags2, &f2);
ol_flags3 = nix_vlan_update(cq3_w2, ol_flags3, &f3);
ol_flags0 = nix_qinq_update(cq0_w2, ol_flags0, mbuf0);
ol_flags1 = nix_qinq_update(cq1_w2, ol_flags1, mbuf1);
ol_flags2 = nix_qinq_update(cq2_w2, ol_flags2, mbuf2);
ol_flags3 = nix_qinq_update(cq3_w2, ol_flags3, mbuf3);
}
if (flags & NIX_RX_OFFLOAD_MARK_UPDATE_F) {
ol_flags0 = nix_update_match_id(
*(uint16_t *)(cq0 + CQE_SZ(0) + 38), ol_flags0,
mbuf0);
ol_flags1 = nix_update_match_id(
*(uint16_t *)(cq0 + CQE_SZ(1) + 38), ol_flags1,
mbuf1);
ol_flags2 = nix_update_match_id(
*(uint16_t *)(cq0 + CQE_SZ(2) + 38), ol_flags2,
mbuf2);
ol_flags3 = nix_update_match_id(
*(uint16_t *)(cq0 + CQE_SZ(3) + 38), ol_flags3,
mbuf3);
}
if (flags & NIX_RX_OFFLOAD_TSTAMP_F) {
const uint16x8_t len_off = {
0, /* ptype 0:15 */
0, /* ptype 16:32 */
CNXK_NIX_TIMESYNC_RX_OFFSET, /* pktlen 0:15*/
0, /* pktlen 16:32 */
CNXK_NIX_TIMESYNC_RX_OFFSET, /* datalen 0:15 */
0,
0,
0};
const uint32x4_t ptype = {RTE_PTYPE_L2_ETHER_TIMESYNC,
RTE_PTYPE_L2_ETHER_TIMESYNC,
RTE_PTYPE_L2_ETHER_TIMESYNC,
RTE_PTYPE_L2_ETHER_TIMESYNC};
const uint64_t ts_olf = RTE_MBUF_F_RX_IEEE1588_PTP |
RTE_MBUF_F_RX_IEEE1588_TMST |
rxq->tstamp->rx_tstamp_dynflag;
const uint32x4_t and_mask = {0x1, 0x2, 0x4, 0x8};
uint64x2_t ts01, ts23, mask;
uint64_t ts[4];
uint8_t res;
/* Subtract timesync length from total pkt length. */
f0 = vsubq_u16(f0, len_off);
f1 = vsubq_u16(f1, len_off);
f2 = vsubq_u16(f2, len_off);
f3 = vsubq_u16(f3, len_off);
/* Get the address of actual timestamp. */
ts01 = vaddq_u64(mbuf01, data_off);
ts23 = vaddq_u64(mbuf23, data_off);
/* Load timestamp from address. */
ts01 = vsetq_lane_u64(*(uint64_t *)vgetq_lane_u64(ts01,
0),
ts01, 0);
ts01 = vsetq_lane_u64(*(uint64_t *)vgetq_lane_u64(ts01,
1),
ts01, 1);
ts23 = vsetq_lane_u64(*(uint64_t *)vgetq_lane_u64(ts23,
0),
ts23, 0);
ts23 = vsetq_lane_u64(*(uint64_t *)vgetq_lane_u64(ts23,
1),
ts23, 1);
/* Convert from be to cpu byteorder. */
ts01 = vrev64q_u8(ts01);
ts23 = vrev64q_u8(ts23);
/* Store timestamp into scalar for later use. */
ts[0] = vgetq_lane_u64(ts01, 0);
ts[1] = vgetq_lane_u64(ts01, 1);
ts[2] = vgetq_lane_u64(ts23, 0);
ts[3] = vgetq_lane_u64(ts23, 1);
/* Store timestamp into dynfield. */
*cnxk_nix_timestamp_dynfield(mbuf0, rxq->tstamp) =
ts[0];
*cnxk_nix_timestamp_dynfield(mbuf1, rxq->tstamp) =
ts[1];
*cnxk_nix_timestamp_dynfield(mbuf2, rxq->tstamp) =
ts[2];
*cnxk_nix_timestamp_dynfield(mbuf3, rxq->tstamp) =
ts[3];
/* Generate ptype mask to filter L2 ether timesync */
mask = vdupq_n_u32(vgetq_lane_u32(f0, 0));
mask = vsetq_lane_u32(vgetq_lane_u32(f1, 0), mask, 1);
mask = vsetq_lane_u32(vgetq_lane_u32(f2, 0), mask, 2);
mask = vsetq_lane_u32(vgetq_lane_u32(f3, 0), mask, 3);
/* Match against L2 ether timesync. */
mask = vceqq_u32(mask, ptype);
/* Convert from vector from scalar mask */
res = vaddvq_u32(vandq_u32(mask, and_mask));
res &= 0xF;
if (res) {
/* Fill in the ol_flags for any packets that
* matched.
*/
ol_flags0 |= ((res & 0x1) ? ts_olf : 0);
ol_flags1 |= ((res & 0x2) ? ts_olf : 0);
ol_flags2 |= ((res & 0x4) ? ts_olf : 0);
ol_flags3 |= ((res & 0x8) ? ts_olf : 0);
/* Update Rxq timestamp with the latest
* timestamp.
*/
rxq->tstamp->rx_ready = 1;
rxq->tstamp->rx_tstamp =
ts[31 - __builtin_clz(res)];
}
}
/* Form rearm_data with ol_flags */
rearm0 = vsetq_lane_u64(ol_flags0, rearm0, 1);
rearm1 = vsetq_lane_u64(ol_flags1, rearm1, 1);
rearm2 = vsetq_lane_u64(ol_flags2, rearm2, 1);
rearm3 = vsetq_lane_u64(ol_flags3, rearm3, 1);
/* Update rx_descriptor_fields1 */
vst1q_u64((uint64_t *)mbuf0->rx_descriptor_fields1, f0);
vst1q_u64((uint64_t *)mbuf1->rx_descriptor_fields1, f1);
vst1q_u64((uint64_t *)mbuf2->rx_descriptor_fields1, f2);
vst1q_u64((uint64_t *)mbuf3->rx_descriptor_fields1, f3);
/* Update rearm_data */
vst1q_u64((uint64_t *)mbuf0->rearm_data, rearm0);
vst1q_u64((uint64_t *)mbuf1->rearm_data, rearm1);
vst1q_u64((uint64_t *)mbuf2->rearm_data, rearm2);
vst1q_u64((uint64_t *)mbuf3->rearm_data, rearm3);
if (flags & NIX_RX_MULTI_SEG_F) {
/* Multi segment is enable build mseg list for
* individual mbufs in scalar mode.
*/
nix_cqe_xtract_mseg((union nix_rx_parse_u *)
(cq0 + CQE_SZ(0) + 8), mbuf0,
mbuf_initializer, flags);
nix_cqe_xtract_mseg((union nix_rx_parse_u *)
(cq0 + CQE_SZ(1) + 8), mbuf1,
mbuf_initializer, flags);
nix_cqe_xtract_mseg((union nix_rx_parse_u *)
(cq0 + CQE_SZ(2) + 8), mbuf2,
mbuf_initializer, flags);
nix_cqe_xtract_mseg((union nix_rx_parse_u *)
(cq0 + CQE_SZ(3) + 8), mbuf3,
mbuf_initializer, flags);
} else {
/* Update that no more segments */
mbuf0->next = NULL;
mbuf1->next = NULL;
mbuf2->next = NULL;
mbuf3->next = NULL;
}
/* Store the mbufs to rx_pkts */
vst1q_u64((uint64_t *)&rx_pkts[packets], mbuf01);
vst1q_u64((uint64_t *)&rx_pkts[packets + 2], mbuf23);
/* Prefetch mbufs */
roc_prefetch_store_keep(mbuf0);
roc_prefetch_store_keep(mbuf1);
roc_prefetch_store_keep(mbuf2);
roc_prefetch_store_keep(mbuf3);
/* Mark mempool obj as "get" as it is alloc'ed by NIX */
RTE_MEMPOOL_CHECK_COOKIES(mbuf0->pool, (void **)&mbuf0, 1, 1);
RTE_MEMPOOL_CHECK_COOKIES(mbuf1->pool, (void **)&mbuf1, 1, 1);
RTE_MEMPOOL_CHECK_COOKIES(mbuf2->pool, (void **)&mbuf2, 1, 1);
RTE_MEMPOOL_CHECK_COOKIES(mbuf3->pool, (void **)&mbuf3, 1, 1);
/* Advance head pointer and packets */
head += NIX_DESCS_PER_LOOP;
head &= qmask;
packets += NIX_DESCS_PER_LOOP;
}
rxq->head = head;
rxq->available -= packets;
rte_io_wmb();
/* Free all the CQs that we've processed */
plt_write64((rxq->wdata | packets), rxq->cq_door);
if (unlikely(pkts_left))
packets += cn9k_nix_recv_pkts(rx_queue, &rx_pkts[packets],
pkts_left, flags);
return packets;
}
#else
static inline uint16_t
cn9k_nix_recv_pkts_vector(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t pkts, const uint16_t flags)
{
RTE_SET_USED(rx_queue);
RTE_SET_USED(rx_pkts);
RTE_SET_USED(pkts);
RTE_SET_USED(flags);
return 0;
}
#endif
#define RSS_F NIX_RX_OFFLOAD_RSS_F
#define PTYPE_F NIX_RX_OFFLOAD_PTYPE_F
#define CKSUM_F NIX_RX_OFFLOAD_CHECKSUM_F
#define MARK_F NIX_RX_OFFLOAD_MARK_UPDATE_F
#define TS_F NIX_RX_OFFLOAD_TSTAMP_F
#define RX_VLAN_F NIX_RX_OFFLOAD_VLAN_STRIP_F
#define R_SEC_F NIX_RX_OFFLOAD_SECURITY_F
/* [R_SEC_F] [RX_VLAN_F] [TS] [MARK] [CKSUM] [PTYPE] [RSS] */
#define NIX_RX_FASTPATH_MODES_0_15 \
R(no_offload, NIX_RX_OFFLOAD_NONE) \
R(rss, RSS_F) \
R(ptype, PTYPE_F) \
R(ptype_rss, PTYPE_F | RSS_F) \
R(cksum, CKSUM_F) \
R(cksum_rss, CKSUM_F | RSS_F) \
R(cksum_ptype, CKSUM_F | PTYPE_F) \
R(cksum_ptype_rss, CKSUM_F | PTYPE_F | RSS_F) \
R(mark, MARK_F) \
R(mark_rss, MARK_F | RSS_F) \
R(mark_ptype, MARK_F | PTYPE_F) \
R(mark_ptype_rss, MARK_F | PTYPE_F | RSS_F) \
R(mark_cksum, MARK_F | CKSUM_F) \
R(mark_cksum_rss, MARK_F | CKSUM_F | RSS_F) \
R(mark_cksum_ptype, MARK_F | CKSUM_F | PTYPE_F) \
R(mark_cksum_ptype_rss, MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES_16_31 \
R(ts, TS_F) \
R(ts_rss, TS_F | RSS_F) \
R(ts_ptype, TS_F | PTYPE_F) \
R(ts_ptype_rss, TS_F | PTYPE_F | RSS_F) \
R(ts_cksum, TS_F | CKSUM_F) \
R(ts_cksum_rss, TS_F | CKSUM_F | RSS_F) \
R(ts_cksum_ptype, TS_F | CKSUM_F | PTYPE_F) \
R(ts_cksum_ptype_rss, TS_F | CKSUM_F | PTYPE_F | RSS_F) \
R(ts_mark, TS_F | MARK_F) \
R(ts_mark_rss, TS_F | MARK_F | RSS_F) \
R(ts_mark_ptype, TS_F | MARK_F | PTYPE_F) \
R(ts_mark_ptype_rss, TS_F | MARK_F | PTYPE_F | RSS_F) \
R(ts_mark_cksum, TS_F | MARK_F | CKSUM_F) \
R(ts_mark_cksum_rss, TS_F | MARK_F | CKSUM_F | RSS_F) \
R(ts_mark_cksum_ptype, TS_F | MARK_F | CKSUM_F | PTYPE_F) \
R(ts_mark_cksum_ptype_rss, TS_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES_32_47 \
R(vlan, RX_VLAN_F) \
R(vlan_rss, RX_VLAN_F | RSS_F) \
R(vlan_ptype, RX_VLAN_F | PTYPE_F) \
R(vlan_ptype_rss, RX_VLAN_F | PTYPE_F | RSS_F) \
R(vlan_cksum, RX_VLAN_F | CKSUM_F) \
R(vlan_cksum_rss, RX_VLAN_F | CKSUM_F | RSS_F) \
R(vlan_cksum_ptype, RX_VLAN_F | CKSUM_F | PTYPE_F) \
R(vlan_cksum_ptype_rss, RX_VLAN_F | CKSUM_F | PTYPE_F | RSS_F) \
R(vlan_mark, RX_VLAN_F | MARK_F) \
R(vlan_mark_rss, RX_VLAN_F | MARK_F | RSS_F) \
R(vlan_mark_ptype, RX_VLAN_F | MARK_F | PTYPE_F) \
R(vlan_mark_ptype_rss, RX_VLAN_F | MARK_F | PTYPE_F | RSS_F) \
R(vlan_mark_cksum, RX_VLAN_F | MARK_F | CKSUM_F) \
R(vlan_mark_cksum_rss, RX_VLAN_F | MARK_F | CKSUM_F | RSS_F) \
R(vlan_mark_cksum_ptype, RX_VLAN_F | MARK_F | CKSUM_F | PTYPE_F) \
R(vlan_mark_cksum_ptype_rss, \
RX_VLAN_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES_48_63 \
R(vlan_ts, RX_VLAN_F | TS_F) \
R(vlan_ts_rss, RX_VLAN_F | TS_F | RSS_F) \
R(vlan_ts_ptype, RX_VLAN_F | TS_F | PTYPE_F) \
R(vlan_ts_ptype_rss, RX_VLAN_F | TS_F | PTYPE_F | RSS_F) \
R(vlan_ts_cksum, RX_VLAN_F | TS_F | CKSUM_F) \
R(vlan_ts_cksum_rss, RX_VLAN_F | TS_F | CKSUM_F | RSS_F) \
R(vlan_ts_cksum_ptype, RX_VLAN_F | TS_F | CKSUM_F | PTYPE_F) \
R(vlan_ts_cksum_ptype_rss, \
RX_VLAN_F | TS_F | CKSUM_F | PTYPE_F | RSS_F) \
R(vlan_ts_mark, RX_VLAN_F | TS_F | MARK_F) \
R(vlan_ts_mark_rss, RX_VLAN_F | TS_F | MARK_F | RSS_F) \
R(vlan_ts_mark_ptype, RX_VLAN_F | TS_F | MARK_F | PTYPE_F) \
R(vlan_ts_mark_ptype_rss, RX_VLAN_F | TS_F | MARK_F | PTYPE_F | RSS_F) \
R(vlan_ts_mark_cksum, RX_VLAN_F | TS_F | MARK_F | CKSUM_F) \
R(vlan_ts_mark_cksum_rss, RX_VLAN_F | TS_F | MARK_F | CKSUM_F | RSS_F) \
R(vlan_ts_mark_cksum_ptype, \
RX_VLAN_F | TS_F | MARK_F | CKSUM_F | PTYPE_F) \
R(vlan_ts_mark_cksum_ptype_rss, \
RX_VLAN_F | TS_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES_64_79 \
R(sec, R_SEC_F) \
R(sec_rss, R_SEC_F | RSS_F) \
R(sec_ptype, R_SEC_F | PTYPE_F) \
R(sec_ptype_rss, R_SEC_F | PTYPE_F | RSS_F) \
R(sec_cksum, R_SEC_F | CKSUM_F) \
R(sec_cksum_rss, R_SEC_F | CKSUM_F | RSS_F) \
R(sec_cksum_ptype, R_SEC_F | CKSUM_F | PTYPE_F) \
R(sec_cksum_ptype_rss, R_SEC_F | CKSUM_F | PTYPE_F | RSS_F) \
R(sec_mark, R_SEC_F | MARK_F) \
R(sec_mark_rss, R_SEC_F | MARK_F | RSS_F) \
R(sec_mark_ptype, R_SEC_F | MARK_F | PTYPE_F) \
R(sec_mark_ptype_rss, R_SEC_F | MARK_F | PTYPE_F | RSS_F) \
R(sec_mark_cksum, R_SEC_F | MARK_F | CKSUM_F) \
R(sec_mark_cksum_rss, R_SEC_F | MARK_F | CKSUM_F | RSS_F) \
R(sec_mark_cksum_ptype, R_SEC_F | MARK_F | CKSUM_F | PTYPE_F) \
R(sec_mark_cksum_ptype_rss, \
R_SEC_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES_80_95 \
R(sec_ts, R_SEC_F | TS_F) \
R(sec_ts_rss, R_SEC_F | TS_F | RSS_F) \
R(sec_ts_ptype, R_SEC_F | TS_F | PTYPE_F) \
R(sec_ts_ptype_rss, R_SEC_F | TS_F | PTYPE_F | RSS_F) \
R(sec_ts_cksum, R_SEC_F | TS_F | CKSUM_F) \
R(sec_ts_cksum_rss, R_SEC_F | TS_F | CKSUM_F | RSS_F) \
R(sec_ts_cksum_ptype, R_SEC_F | TS_F | CKSUM_F | PTYPE_F) \
R(sec_ts_cksum_ptype_rss, R_SEC_F | TS_F | CKSUM_F | PTYPE_F | RSS_F) \
R(sec_ts_mark, R_SEC_F | TS_F | MARK_F) \
R(sec_ts_mark_rss, R_SEC_F | TS_F | MARK_F | RSS_F) \
R(sec_ts_mark_ptype, R_SEC_F | TS_F | MARK_F | PTYPE_F) \
R(sec_ts_mark_ptype_rss, R_SEC_F | TS_F | MARK_F | PTYPE_F | RSS_F) \
R(sec_ts_mark_cksum, R_SEC_F | TS_F | MARK_F | CKSUM_F) \
R(sec_ts_mark_cksum_rss, R_SEC_F | TS_F | MARK_F | CKSUM_F | RSS_F) \
R(sec_ts_mark_cksum_ptype, \
R_SEC_F | TS_F | MARK_F | CKSUM_F | PTYPE_F) \
R(sec_ts_mark_cksum_ptype_rss, \
R_SEC_F | TS_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES_96_111 \
R(sec_vlan, R_SEC_F | RX_VLAN_F) \
R(sec_vlan_rss, R_SEC_F | RX_VLAN_F | RSS_F) \
R(sec_vlan_ptype, R_SEC_F | RX_VLAN_F | PTYPE_F) \
R(sec_vlan_ptype_rss, R_SEC_F | RX_VLAN_F | PTYPE_F | RSS_F) \
R(sec_vlan_cksum, R_SEC_F | RX_VLAN_F | CKSUM_F) \
R(sec_vlan_cksum_rss, R_SEC_F | RX_VLAN_F | CKSUM_F | RSS_F) \
R(sec_vlan_cksum_ptype, R_SEC_F | RX_VLAN_F | CKSUM_F | PTYPE_F) \
R(sec_vlan_cksum_ptype_rss, \
R_SEC_F | RX_VLAN_F | CKSUM_F | PTYPE_F | RSS_F) \
R(sec_vlan_mark, R_SEC_F | RX_VLAN_F | MARK_F) \
R(sec_vlan_mark_rss, R_SEC_F | RX_VLAN_F | MARK_F | RSS_F) \
R(sec_vlan_mark_ptype, R_SEC_F | RX_VLAN_F | MARK_F | PTYPE_F) \
R(sec_vlan_mark_ptype_rss, \
R_SEC_F | RX_VLAN_F | MARK_F | PTYPE_F | RSS_F) \
R(sec_vlan_mark_cksum, R_SEC_F | RX_VLAN_F | MARK_F | CKSUM_F) \
R(sec_vlan_mark_cksum_rss, \
R_SEC_F | RX_VLAN_F | MARK_F | CKSUM_F | RSS_F) \
R(sec_vlan_mark_cksum_ptype, \
R_SEC_F | RX_VLAN_F | MARK_F | CKSUM_F | PTYPE_F) \
R(sec_vlan_mark_cksum_ptype_rss, \
R_SEC_F | RX_VLAN_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES_112_127 \
R(sec_vlan_ts, R_SEC_F | RX_VLAN_F | TS_F) \
R(sec_vlan_ts_rss, R_SEC_F | RX_VLAN_F | TS_F | RSS_F) \
R(sec_vlan_ts_ptype, R_SEC_F | RX_VLAN_F | TS_F | PTYPE_F) \
R(sec_vlan_ts_ptype_rss, R_SEC_F | RX_VLAN_F | TS_F | PTYPE_F | RSS_F) \
R(sec_vlan_ts_cksum, R_SEC_F | RX_VLAN_F | TS_F | CKSUM_F) \
R(sec_vlan_ts_cksum_rss, R_SEC_F | RX_VLAN_F | TS_F | CKSUM_F | RSS_F) \
R(sec_vlan_ts_cksum_ptype, \
R_SEC_F | RX_VLAN_F | TS_F | CKSUM_F | PTYPE_F) \
R(sec_vlan_ts_cksum_ptype_rss, \
R_SEC_F | RX_VLAN_F | TS_F | CKSUM_F | PTYPE_F | RSS_F) \
R(sec_vlan_ts_mark, R_SEC_F | RX_VLAN_F | TS_F | MARK_F) \
R(sec_vlan_ts_mark_rss, R_SEC_F | RX_VLAN_F | TS_F | MARK_F | RSS_F) \
R(sec_vlan_ts_mark_ptype, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | PTYPE_F) \
R(sec_vlan_ts_mark_ptype_rss, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | PTYPE_F | RSS_F) \
R(sec_vlan_ts_mark_cksum, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | CKSUM_F) \
R(sec_vlan_ts_mark_cksum_rss, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | CKSUM_F | RSS_F) \
R(sec_vlan_ts_mark_cksum_ptype, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | CKSUM_F | PTYPE_F) \
R(sec_vlan_ts_mark_cksum_ptype_rss, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES \
NIX_RX_FASTPATH_MODES_0_15 \
NIX_RX_FASTPATH_MODES_16_31 \
NIX_RX_FASTPATH_MODES_32_47 \
NIX_RX_FASTPATH_MODES_48_63 \
NIX_RX_FASTPATH_MODES_64_79 \
NIX_RX_FASTPATH_MODES_80_95 \
NIX_RX_FASTPATH_MODES_96_111 \
NIX_RX_FASTPATH_MODES_112_127
#define R(name, flags) \
uint16_t __rte_noinline __rte_hot cn9k_nix_recv_pkts_##name( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts); \
uint16_t __rte_noinline __rte_hot cn9k_nix_recv_pkts_mseg_##name( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts); \
uint16_t __rte_noinline __rte_hot cn9k_nix_recv_pkts_vec_##name( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts); \
uint16_t __rte_noinline __rte_hot cn9k_nix_recv_pkts_vec_mseg_##name( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts);
NIX_RX_FASTPATH_MODES
#undef R
#define NIX_RX_RECV(fn, flags) \
uint16_t __rte_noinline __rte_hot fn( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts) \
{ \
return cn9k_nix_recv_pkts(rx_queue, rx_pkts, pkts, (flags)); \
}
#define NIX_RX_RECV_MSEG(fn, flags) NIX_RX_RECV(fn, flags | NIX_RX_MULTI_SEG_F)
#define NIX_RX_RECV_VEC(fn, flags) \
uint16_t __rte_noinline __rte_hot fn( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts) \
{ \
return cn9k_nix_recv_pkts_vector(rx_queue, rx_pkts, pkts, \
(flags)); \
}
#define NIX_RX_RECV_VEC_MSEG(fn, flags) \
NIX_RX_RECV_VEC(fn, flags | NIX_RX_MULTI_SEG_F)
#endif /* __CN9K_RX_H__ */