numam-dpdk/lib/librte_pmd_pcap/rte_eth_pcap.c

778 lines
20 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* Copyright(c) 2014 6WIND S.A.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <time.h>
#include <rte_mbuf.h>
#include <rte_ethdev.h>
#include <rte_malloc.h>
#include <rte_memcpy.h>
#include <rte_string_fns.h>
#include <rte_cycles.h>
#include <rte_kvargs.h>
#include <rte_dev.h>
#include <net/if.h>
#include <pcap.h>
#define RTE_ETH_PCAP_SNAPSHOT_LEN 65535
#define RTE_ETH_PCAP_SNAPLEN 4096
#define RTE_ETH_PCAP_PROMISC 1
#define RTE_ETH_PCAP_TIMEOUT -1
#define ETH_PCAP_RX_PCAP_ARG "rx_pcap"
#define ETH_PCAP_TX_PCAP_ARG "tx_pcap"
#define ETH_PCAP_RX_IFACE_ARG "rx_iface"
#define ETH_PCAP_TX_IFACE_ARG "tx_iface"
#define ETH_PCAP_IFACE_ARG "iface"
static char errbuf[PCAP_ERRBUF_SIZE];
static struct timeval start_time;
static uint64_t start_cycles;
static uint64_t hz;
struct pcap_rx_queue {
pcap_t *pcap;
struct rte_mempool *mb_pool;
volatile unsigned long rx_pkts;
volatile unsigned long err_pkts;
};
struct pcap_tx_queue {
pcap_dumper_t *dumper;
pcap_t *pcap;
volatile unsigned long tx_pkts;
volatile unsigned long err_pkts;
};
struct rx_pcaps {
unsigned num_of_rx;
pcap_t *pcaps[RTE_PMD_RING_MAX_RX_RINGS];
};
struct tx_pcaps {
unsigned num_of_tx;
pcap_dumper_t *dumpers[RTE_PMD_RING_MAX_TX_RINGS];
pcap_t *pcaps[RTE_PMD_RING_MAX_RX_RINGS];
};
struct pmd_internals {
unsigned nb_rx_queues;
unsigned nb_tx_queues;
int if_index;
struct pcap_rx_queue rx_queue[RTE_PMD_RING_MAX_RX_RINGS];
struct pcap_tx_queue tx_queue[RTE_PMD_RING_MAX_TX_RINGS];
};
const char *valid_arguments[] = {
ETH_PCAP_RX_PCAP_ARG,
ETH_PCAP_TX_PCAP_ARG,
ETH_PCAP_RX_IFACE_ARG,
ETH_PCAP_TX_IFACE_ARG,
ETH_PCAP_IFACE_ARG,
NULL
};
static struct ether_addr eth_addr = { .addr_bytes = { 0, 0, 0, 0x1, 0x2, 0x3 } };
static const char *drivername = "Pcap PMD";
static struct rte_eth_link pmd_link = {
.link_speed = 10000,
.link_duplex = ETH_LINK_FULL_DUPLEX,
.link_status = 0
};
static uint16_t
eth_pcap_rx(void *queue,
struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
unsigned i;
struct pcap_pkthdr header;
const u_char *packet;
struct rte_mbuf *mbuf;
struct pcap_rx_queue *pcap_q = queue;
struct rte_pktmbuf_pool_private *mbp_priv;
uint16_t num_rx = 0;
uint16_t buf_size;
if (unlikely(pcap_q->pcap == NULL || nb_pkts == 0))
return 0;
/* Reads the given number of packets from the pcap file one by one
* and copies the packet data into a newly allocated mbuf to return.
*/
for (i = 0; i < nb_pkts; i++) {
/* Get the next PCAP packet */
packet = pcap_next(pcap_q->pcap, &header);
if (unlikely(packet == NULL))
break;
else
mbuf = rte_pktmbuf_alloc(pcap_q->mb_pool);
if (unlikely(mbuf == NULL))
break;
/* Now get the space available for data in the mbuf */
mbp_priv = rte_mempool_get_priv(pcap_q->mb_pool);
buf_size = (uint16_t) (mbp_priv->mbuf_data_room_size -
RTE_PKTMBUF_HEADROOM);
if (header.len <= buf_size) {
/* pcap packet will fit in the mbuf, go ahead and copy */
rte_memcpy(mbuf->data, packet, header.len);
mbuf->data_len = (uint16_t)header.len;
mbuf->pkt_len = mbuf->data_len;
bufs[num_rx] = mbuf;
num_rx++;
} else {
/* pcap packet will not fit in the mbuf, so drop packet */
RTE_LOG(ERR, PMD,
"PCAP packet %d bytes will not fit in mbuf (%d bytes)\n",
header.len, buf_size);
rte_pktmbuf_free(mbuf);
}
}
pcap_q->rx_pkts += num_rx;
return num_rx;
}
static inline void
calculate_timestamp(struct timeval *ts) {
uint64_t cycles;
struct timeval cur_time;
cycles = rte_get_timer_cycles() - start_cycles;
cur_time.tv_sec = cycles / hz;
cur_time.tv_usec = (cycles % hz) * 10e6 / hz;
timeradd(&start_time, &cur_time, ts);
}
/*
* Callback to handle writing packets to a pcap file.
*/
static uint16_t
eth_pcap_tx_dumper(void *queue,
struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
unsigned i;
struct rte_mbuf *mbuf;
struct pcap_tx_queue *dumper_q = queue;
uint16_t num_tx = 0;
struct pcap_pkthdr header;
if (dumper_q->dumper == NULL || nb_pkts == 0)
return 0;
/* writes the nb_pkts packets to the previously opened pcap file dumper */
for (i = 0; i < nb_pkts; i++) {
mbuf = bufs[i];
calculate_timestamp(&header.ts);
header.len = mbuf->data_len;
header.caplen = header.len;
pcap_dump((u_char*) dumper_q->dumper, &header, mbuf->data);
rte_pktmbuf_free(mbuf);
num_tx++;
}
/*
* Since there's no place to hook a callback when the forwarding
* process stops and to make sure the pcap file is actually written,
* we flush the pcap dumper within each burst.
*/
pcap_dump_flush(dumper_q->dumper);
dumper_q->tx_pkts += num_tx;
dumper_q->err_pkts += nb_pkts - num_tx;
return num_tx;
}
/*
* Callback to handle sending packets through a real NIC.
*/
static uint16_t
eth_pcap_tx(void *queue,
struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
unsigned i;
int ret;
struct rte_mbuf *mbuf;
struct pcap_tx_queue *tx_queue = queue;
uint16_t num_tx = 0;
if (unlikely(nb_pkts == 0 || tx_queue->pcap == NULL))
return 0;
for (i = 0; i < nb_pkts; i++) {
mbuf = bufs[i];
ret = pcap_sendpacket(tx_queue->pcap, (u_char*) mbuf->data,
mbuf->data_len);
if (unlikely(ret != 0))
break;
num_tx++;
rte_pktmbuf_free(mbuf);
}
tx_queue->tx_pkts += num_tx;
tx_queue->err_pkts += nb_pkts - num_tx;
return num_tx;
}
static int
eth_dev_start(struct rte_eth_dev *dev)
{
dev->data->dev_link.link_status = 1;
return 0;
}
/*
* This function gets called when the current port gets stopped.
* Is the only place for us to close all the tx streams dumpers.
* If not called the dumpers will be flushed within each tx burst.
*/
static void
eth_dev_stop(struct rte_eth_dev *dev)
{
unsigned i;
pcap_dumper_t *dumper;
pcap_t *pcap;
struct pmd_internals *internals = dev->data->dev_private;
for (i = 0; i < internals->nb_tx_queues; i++) {
dumper = internals->tx_queue[i].dumper;
if(dumper != NULL)
pcap_dump_close(dumper);
pcap = internals->tx_queue[i].pcap;
if(pcap != NULL)
pcap_close(pcap);
}
dev->data->dev_link.link_status = 0;
}
static int
eth_dev_configure(struct rte_eth_dev *dev __rte_unused)
{
return 0;
}
static void
eth_dev_info(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info)
{
struct pmd_internals *internals = dev->data->dev_private;
dev_info->driver_name = drivername;
dev_info->if_index = internals->if_index;
dev_info->max_mac_addrs = 1;
dev_info->max_rx_pktlen = (uint32_t) -1;
dev_info->max_rx_queues = (uint16_t)internals->nb_rx_queues;
dev_info->max_tx_queues = (uint16_t)internals->nb_tx_queues;
dev_info->min_rx_bufsize = 0;
dev_info->pci_dev = NULL;
}
static void
eth_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *igb_stats)
{
unsigned i;
unsigned long rx_total = 0, tx_total = 0, tx_err_total = 0;
const struct pmd_internals *internal = dev->data->dev_private;
memset(igb_stats, 0, sizeof(*igb_stats));
for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS && i < internal->nb_rx_queues;
i++) {
igb_stats->q_ipackets[i] = internal->rx_queue[i].rx_pkts;
rx_total += igb_stats->q_ipackets[i];
}
for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS && i < internal->nb_tx_queues;
i++) {
igb_stats->q_opackets[i] = internal->tx_queue[i].tx_pkts;
igb_stats->q_errors[i] = internal->tx_queue[i].err_pkts;
tx_total += igb_stats->q_opackets[i];
tx_err_total += igb_stats->q_errors[i];
}
igb_stats->ipackets = rx_total;
igb_stats->opackets = tx_total;
igb_stats->oerrors = tx_err_total;
}
static void
eth_stats_reset(struct rte_eth_dev *dev)
{
unsigned i;
struct pmd_internals *internal = dev->data->dev_private;
for (i = 0; i < internal->nb_rx_queues; i++)
internal->rx_queue[i].rx_pkts = 0;
for (i = 0; i < internal->nb_tx_queues; i++) {
internal->tx_queue[i].tx_pkts = 0;
internal->tx_queue[i].err_pkts = 0;
}
}
static void
eth_dev_close(struct rte_eth_dev *dev __rte_unused)
{
}
static void
eth_queue_release(void *q __rte_unused)
{
}
static int
eth_link_update(struct rte_eth_dev *dev __rte_unused,
int wait_to_complete __rte_unused)
{
return 0;
}
static int
eth_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t rx_queue_id,
uint16_t nb_rx_desc __rte_unused,
unsigned int socket_id __rte_unused,
const struct rte_eth_rxconf *rx_conf __rte_unused,
struct rte_mempool *mb_pool)
{
struct pmd_internals *internals = dev->data->dev_private;
struct pcap_rx_queue *pcap_q = &internals->rx_queue[rx_queue_id];
pcap_q->mb_pool = mb_pool;
dev->data->rx_queues[rx_queue_id] = pcap_q;
return 0;
}
static int
eth_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t tx_queue_id,
uint16_t nb_tx_desc __rte_unused,
unsigned int socket_id __rte_unused,
const struct rte_eth_txconf *tx_conf __rte_unused)
{
struct pmd_internals *internals = dev->data->dev_private;
dev->data->tx_queues[tx_queue_id] = &internals->tx_queue[tx_queue_id];
return 0;
}
static struct eth_dev_ops ops = {
.dev_start = eth_dev_start,
.dev_stop = eth_dev_stop,
.dev_close = eth_dev_close,
.dev_configure = eth_dev_configure,
.dev_infos_get = eth_dev_info,
.rx_queue_setup = eth_rx_queue_setup,
.tx_queue_setup = eth_tx_queue_setup,
.rx_queue_release = eth_queue_release,
.tx_queue_release = eth_queue_release,
.link_update = eth_link_update,
.stats_get = eth_stats_get,
.stats_reset = eth_stats_reset,
};
/*
* Function handler that opens the pcap file for reading a stores a
* reference of it for use it later on.
*/
static int
open_rx_pcap(const char *key __rte_unused, const char *value, void *extra_args)
{
unsigned i;
const char *pcap_filename = value;
struct rx_pcaps *pcaps = extra_args;
pcap_t *rx_pcap;
for (i = 0; i < pcaps->num_of_rx; i++) {
if ((rx_pcap = pcap_open_offline(pcap_filename, errbuf)) == NULL) {
RTE_LOG(ERR, PMD, "Couldn't open %s: %s\n", pcap_filename, errbuf);
return -1;
}
pcaps->pcaps[i] = rx_pcap;
}
return 0;
}
/*
* Opens a pcap file for writing and stores a reference to it
* for use it later on.
*/
static int
open_tx_pcap(const char *key __rte_unused, const char *value, void *extra_args)
{
unsigned i;
const char *pcap_filename = value;
struct tx_pcaps *dumpers = extra_args;
pcap_t *tx_pcap;
pcap_dumper_t *dumper;
for (i = 0; i < dumpers->num_of_tx; i++) {
/*
* We need to create a dummy empty pcap_t to use it
* with pcap_dump_open(). We create big enough an Ethernet
* pcap holder.
*/
if ((tx_pcap = pcap_open_dead(DLT_EN10MB, RTE_ETH_PCAP_SNAPSHOT_LEN))
== NULL) {
RTE_LOG(ERR, PMD, "Couldn't create dead pcap\n");
return -1;
}
/* The dumper is created using the previous pcap_t reference */
if ((dumper = pcap_dump_open(tx_pcap, pcap_filename)) == NULL) {
RTE_LOG(ERR, PMD, "Couldn't open %s for writing.\n", pcap_filename);
return -1;
}
dumpers->dumpers[i] = dumper;
}
return 0;
}
/*
* pcap_open_live wrapper function
*/
static inline int
open_iface_live(const char *iface, pcap_t **pcap) {
*pcap = pcap_open_live(iface, RTE_ETH_PCAP_SNAPLEN,
RTE_ETH_PCAP_PROMISC, RTE_ETH_PCAP_TIMEOUT, errbuf);
if (*pcap == NULL) {
RTE_LOG(ERR, PMD, "Couldn't open %s: %s\n", iface, errbuf);
return -1;
}
return 0;
}
/*
* Opens an interface for reading and writing
*/
static inline int
open_rx_tx_iface(const char *key __rte_unused, const char *value, void *extra_args)
{
const char *iface = value;
pcap_t **pcap = extra_args;
if(open_iface_live(iface, pcap) < 0)
return -1;
return 0;
}
/*
* Opens a NIC for reading packets from it
*/
static inline int
open_rx_iface(const char *key __rte_unused, const char *value, void *extra_args)
{
unsigned i;
const char *iface = value;
struct rx_pcaps *pcaps = extra_args;
pcap_t *pcap = NULL;
for (i = 0; i < pcaps->num_of_rx; i++) {
if(open_iface_live(iface, &pcap) < 0)
return -1;
pcaps->pcaps[i] = pcap;
}
return 0;
}
/*
* Opens a NIC for writing packets to it
*/
static inline int
open_tx_iface(const char *key __rte_unused, const char *value, void *extra_args)
{
unsigned i;
const char *iface = value;
struct tx_pcaps *pcaps = extra_args;
pcap_t *pcap;
for (i = 0; i < pcaps->num_of_tx; i++) {
if(open_iface_live(iface, &pcap) < 0)
return -1;
pcaps->pcaps[i] = pcap;
}
return 0;
}
static int
rte_pmd_init_internals(const char *name, const unsigned nb_rx_queues,
const unsigned nb_tx_queues,
const unsigned numa_node,
struct pmd_internals **internals,
struct rte_eth_dev **eth_dev,
struct rte_kvargs *kvlist)
{
struct rte_eth_dev_data *data = NULL;
struct rte_pci_device *pci_dev = NULL;
unsigned k_idx;
struct rte_kvargs_pair *pair = NULL;
for (k_idx = 0; k_idx < kvlist->count; k_idx++) {
pair = &kvlist->pairs[k_idx];
if (strstr(pair->key, ETH_PCAP_IFACE_ARG) != NULL)
break;
}
RTE_LOG(INFO, PMD,
"Creating pcap-backed ethdev on numa socket %u\n", numa_node);
/* now do all data allocation - for eth_dev structure, dummy pci driver
* and internal (private) data
*/
data = rte_zmalloc_socket(name, sizeof(*data), 0, numa_node);
if (data == NULL)
goto error;
pci_dev = rte_zmalloc_socket(name, sizeof(*pci_dev), 0, numa_node);
if (pci_dev == NULL)
goto error;
*internals = rte_zmalloc_socket(name, sizeof(**internals), 0, numa_node);
if (*internals == NULL)
goto error;
/* reserve an ethdev entry */
*eth_dev = rte_eth_dev_allocate(name);
if (*eth_dev == NULL)
goto error;
/* now put it all together
* - store queue data in internals,
* - store numa_node info in pci_driver
* - point eth_dev_data to internals and pci_driver
* - and point eth_dev structure to new eth_dev_data structure
*/
/* NOTE: we'll replace the data element, of originally allocated eth_dev
* so the rings are local per-process */
(*internals)->nb_rx_queues = nb_rx_queues;
(*internals)->nb_tx_queues = nb_tx_queues;
if (pair == NULL)
(*internals)->if_index = 0;
else
(*internals)->if_index = if_nametoindex(pair->value);
pci_dev->numa_node = numa_node;
data->dev_private = *internals;
data->port_id = (*eth_dev)->data->port_id;
data->nb_rx_queues = (uint16_t)nb_rx_queues;
data->nb_tx_queues = (uint16_t)nb_tx_queues;
data->dev_link = pmd_link;
data->mac_addrs = &eth_addr;
(*eth_dev)->data = data;
(*eth_dev)->dev_ops = &ops;
(*eth_dev)->pci_dev = pci_dev;
return 0;
error: if (data)
rte_free(data);
if (pci_dev)
rte_free(pci_dev);
if (*internals)
rte_free(*internals);
return -1;
}
static int
rte_eth_from_pcaps_n_dumpers(const char *name, pcap_t * const rx_queues[],
const unsigned nb_rx_queues,
pcap_dumper_t * const tx_queues[],
const unsigned nb_tx_queues,
const unsigned numa_node,
struct rte_kvargs *kvlist)
{
struct pmd_internals *internals = NULL;
struct rte_eth_dev *eth_dev = NULL;
unsigned i;
/* do some parameter checking */
if (rx_queues == NULL && nb_rx_queues > 0)
return -1;
if (tx_queues == NULL && nb_tx_queues > 0)
return -1;
if (rte_pmd_init_internals(name, nb_rx_queues, nb_tx_queues, numa_node,
&internals, &eth_dev, kvlist) < 0)
return -1;
for (i = 0; i < nb_rx_queues; i++) {
internals->rx_queue->pcap = rx_queues[i];
}
for (i = 0; i < nb_tx_queues; i++) {
internals->tx_queue->dumper = tx_queues[i];
}
eth_dev->rx_pkt_burst = eth_pcap_rx;
eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
return 0;
}
static int
rte_eth_from_pcaps(const char *name, pcap_t * const rx_queues[],
const unsigned nb_rx_queues,
pcap_t * const tx_queues[],
const unsigned nb_tx_queues,
const unsigned numa_node,
struct rte_kvargs *kvlist)
{
struct pmd_internals *internals = NULL;
struct rte_eth_dev *eth_dev = NULL;
unsigned i;
/* do some parameter checking */
if (rx_queues == NULL && nb_rx_queues > 0)
return -1;
if (tx_queues == NULL && nb_tx_queues > 0)
return -1;
if (rte_pmd_init_internals(name, nb_rx_queues, nb_tx_queues, numa_node,
&internals, &eth_dev, kvlist) < 0)
return -1;
for (i = 0; i < nb_rx_queues; i++) {
internals->rx_queue->pcap = rx_queues[i];
}
for (i = 0; i < nb_tx_queues; i++) {
internals->tx_queue->pcap = tx_queues[i];
}
eth_dev->rx_pkt_burst = eth_pcap_rx;
eth_dev->tx_pkt_burst = eth_pcap_tx;
return 0;
}
static int
rte_pmd_pcap_devinit(const char *name, const char *params)
{
unsigned numa_node, using_dumpers = 0;
int ret;
struct rte_kvargs *kvlist;
struct rx_pcaps pcaps;
struct tx_pcaps dumpers;
RTE_LOG(INFO, PMD, "Initializing pmd_pcap for %s\n", name);
numa_node = rte_socket_id();
gettimeofday(&start_time, NULL);
start_cycles = rte_get_timer_cycles();
hz = rte_get_timer_hz();
kvlist = rte_kvargs_parse(params, valid_arguments);
if (kvlist == NULL)
return -1;
/*
* If iface argument is passed we open the NICs and use them for
* reading / writing
*/
if (rte_kvargs_count(kvlist, ETH_PCAP_IFACE_ARG) == 1) {
ret = rte_kvargs_process(kvlist, ETH_PCAP_IFACE_ARG,
&open_rx_tx_iface, &pcaps.pcaps[0]);
if (ret < 0)
return -1;
return rte_eth_from_pcaps(name, pcaps.pcaps, 1, pcaps.pcaps, 1,
numa_node, kvlist);
}
/*
* We check whether we want to open a RX stream from a real NIC or a
* pcap file
*/
if ((pcaps.num_of_rx = rte_kvargs_count(kvlist, ETH_PCAP_RX_PCAP_ARG))) {
ret = rte_kvargs_process(kvlist, ETH_PCAP_RX_PCAP_ARG,
&open_rx_pcap, &pcaps);
} else {
pcaps.num_of_rx = rte_kvargs_count(kvlist,
ETH_PCAP_RX_IFACE_ARG);
ret = rte_kvargs_process(kvlist, ETH_PCAP_RX_IFACE_ARG,
&open_rx_iface, &pcaps);
}
if (ret < 0)
return -1;
/*
* We check whether we want to open a TX stream to a real NIC or a
* pcap file
*/
if ((dumpers.num_of_tx = rte_kvargs_count(kvlist,
ETH_PCAP_TX_PCAP_ARG))) {
ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_PCAP_ARG,
&open_tx_pcap, &dumpers);
using_dumpers = 1;
} else {
dumpers.num_of_tx = rte_kvargs_count(kvlist,
ETH_PCAP_TX_IFACE_ARG);
ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_IFACE_ARG,
&open_tx_iface, &dumpers);
}
if (ret < 0)
return -1;
if (using_dumpers)
return rte_eth_from_pcaps_n_dumpers(name, pcaps.pcaps, pcaps.num_of_rx,
dumpers.dumpers, dumpers.num_of_tx, numa_node, kvlist);
return rte_eth_from_pcaps(name, pcaps.pcaps, pcaps.num_of_rx, dumpers.pcaps,
dumpers.num_of_tx, numa_node, kvlist);
}
static struct rte_driver pmd_pcap_drv = {
.name = "eth_pcap",
.type = PMD_VDEV,
.init = rte_pmd_pcap_devinit,
};
PMD_REGISTER_DRIVER(pmd_pcap_drv);