numam-dpdk/lib/librte_mempool/rte_mempool.c

1162 lines
30 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* Copyright(c) 2016 6WIND S.A.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <stdarg.h>
#include <unistd.h>
#include <inttypes.h>
#include <errno.h>
#include <sys/queue.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_malloc.h>
#include <rte_atomic.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_ring.h>
#include <rte_errno.h>
#include <rte_string_fns.h>
#include <rte_spinlock.h>
#include "rte_mempool.h"
TAILQ_HEAD(rte_mempool_list, rte_tailq_entry);
static struct rte_tailq_elem rte_mempool_tailq = {
.name = "RTE_MEMPOOL",
};
EAL_REGISTER_TAILQ(rte_mempool_tailq)
#define CACHE_FLUSHTHRESH_MULTIPLIER 1.5
#define CALC_CACHE_FLUSHTHRESH(c) \
((typeof(c))((c) * CACHE_FLUSHTHRESH_MULTIPLIER))
/*
* return the greatest common divisor between a and b (fast algorithm)
*
*/
static unsigned get_gcd(unsigned a, unsigned b)
{
unsigned c;
if (0 == a)
return b;
if (0 == b)
return a;
if (a < b) {
c = a;
a = b;
b = c;
}
while (b != 0) {
c = a % b;
a = b;
b = c;
}
return a;
}
/*
* Depending on memory configuration, objects addresses are spread
* between channels and ranks in RAM: the pool allocator will add
* padding between objects. This function return the new size of the
* object.
*/
static unsigned optimize_object_size(unsigned obj_size)
{
unsigned nrank, nchan;
unsigned new_obj_size;
/* get number of channels */
nchan = rte_memory_get_nchannel();
if (nchan == 0)
nchan = 4;
nrank = rte_memory_get_nrank();
if (nrank == 0)
nrank = 1;
/* process new object size */
new_obj_size = (obj_size + RTE_MEMPOOL_ALIGN_MASK) / RTE_MEMPOOL_ALIGN;
mem: remove redundant check in optimize_object_size The second condition of this logical OR: (get_gcd(new_obj_size, nrank * nchan) != 1 || get_gcd(nchan, new_obj_size) != 1) is redundant with the first condition. We can show that the first condition is equivalent to its disjunction with the second condition using these two results: - R1: For all conditions A and B, if B implies A, then (A || B) is equivalent to A. - R2: (get_gcd(nchan, new_obj_size) != 1) implies (get_gcd(new_obj_size, nrank * nchan) != 1) We can show R1 with the following truth table (0 is false, 1 is true): +-----+-----++----------+-----+-------------+ | A | B || (A || B) | A | B implies A | +-----+-----++----------+-----+-------------+ | 0 | 0 || 0 | 0 | 1 | | 0 | 1 || 1 | 0 | 0 | | 1 | 0 || 1 | 1 | 1 | | 1 | 1 || 1 | 1 | 1 | +-----+-----++----------+-----+-------------+ Truth table of (A || B) and A We can show R2 by looking at the code of optimize_object_size and get_gcd. We see that: - S1: (nchan >= 1) and (nrank >= 1). - S2: get_gcd returns 0 only when both arguments are 0. Let: - X be get_gcd(new_obj_size, nrank * nchan). - Y be get_gcd(nchan, new_obj_size). Suppose: - H1: get_gcd returns the greatest common divisor of its arguments. - H2: (nrank * nchan) does not exceed UINT_MAX. We prove (Y != 1) implies (X != 1) with the following steps: - Suppose L0: (Y != 1). We have to show (X != 1). - By H1, Y is the greatest common divisor of nchan and new_obj_size. In particular, we have L1: Y divides nchan and new_obj_size. - By H2, we have L2: nchan divides (nrank * nchan) - By L1 and L2, we have L3: Y divides (nrank * nchan) and new_obj_size. - By H1 and L3, we have L4: (Y <= X). - By S1 and S2, we have L5: (Y != 0). - By L0 and L5, we have L6: (Y > 1). - By L4 and L6, we have (X > 1) and thus (X != 1), which concludes. R2 was also tested for all values of new_obj_size, nrank, and nchan between 0 and 2000. This redundant condition was found using TrustInSoft Analyzer. Signed-off-by: Julien Cretin <julien.cretin@trust-in-soft.com> Acked-by: Thomas Monjalon <thomas.monjalon@6wind.com>
2014-05-12 15:35:10 +00:00
while (get_gcd(new_obj_size, nrank * nchan) != 1)
new_obj_size++;
return new_obj_size * RTE_MEMPOOL_ALIGN;
}
static void
mempool_add_elem(struct rte_mempool *mp, void *obj, phys_addr_t physaddr)
{
struct rte_mempool_objhdr *hdr;
struct rte_mempool_objtlr *tlr __rte_unused;
/* set mempool ptr in header */
hdr = RTE_PTR_SUB(obj, sizeof(*hdr));
hdr->mp = mp;
hdr->physaddr = physaddr;
STAILQ_INSERT_TAIL(&mp->elt_list, hdr, next);
mp->populated_size++;
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
tlr = __mempool_get_trailer(obj);
tlr->cookie = RTE_MEMPOOL_TRAILER_COOKIE;
#endif
/* enqueue in ring */
rte_ring_sp_enqueue(mp->ring, obj);
}
/* call obj_cb() for each mempool element */
uint32_t
rte_mempool_obj_iter(struct rte_mempool *mp,
rte_mempool_obj_cb_t *obj_cb, void *obj_cb_arg)
{
struct rte_mempool_objhdr *hdr;
void *obj;
unsigned n = 0;
STAILQ_FOREACH(hdr, &mp->elt_list, next) {
obj = (char *)hdr + sizeof(*hdr);
obj_cb(mp, obj_cb_arg, obj, n);
n++;
}
return n;
}
/* call mem_cb() for each mempool memory chunk */
uint32_t
rte_mempool_mem_iter(struct rte_mempool *mp,
rte_mempool_mem_cb_t *mem_cb, void *mem_cb_arg)
{
struct rte_mempool_memhdr *hdr;
unsigned n = 0;
STAILQ_FOREACH(hdr, &mp->mem_list, next) {
mem_cb(mp, mem_cb_arg, hdr, n);
n++;
}
return n;
}
/* get the header, trailer and total size of a mempool element. */
uint32_t
rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
struct rte_mempool_objsz *sz)
{
struct rte_mempool_objsz lsz;
sz = (sz != NULL) ? sz : &lsz;
sz->header_size = sizeof(struct rte_mempool_objhdr);
if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0)
sz->header_size = RTE_ALIGN_CEIL(sz->header_size,
RTE_MEMPOOL_ALIGN);
sz->trailer_size = sizeof(struct rte_mempool_objtlr);
/* element size is 8 bytes-aligned at least */
sz->elt_size = RTE_ALIGN_CEIL(elt_size, sizeof(uint64_t));
/* expand trailer to next cache line */
if ((flags & MEMPOOL_F_NO_CACHE_ALIGN) == 0) {
sz->total_size = sz->header_size + sz->elt_size +
sz->trailer_size;
sz->trailer_size += ((RTE_MEMPOOL_ALIGN -
(sz->total_size & RTE_MEMPOOL_ALIGN_MASK)) &
RTE_MEMPOOL_ALIGN_MASK);
}
/*
* increase trailer to add padding between objects in order to
* spread them across memory channels/ranks
*/
if ((flags & MEMPOOL_F_NO_SPREAD) == 0) {
unsigned new_size;
new_size = optimize_object_size(sz->header_size + sz->elt_size +
sz->trailer_size);
sz->trailer_size = new_size - sz->header_size - sz->elt_size;
}
/* this is the size of an object, including header and trailer */
sz->total_size = sz->header_size + sz->elt_size + sz->trailer_size;
return sz->total_size;
}
/*
* Calculate maximum amount of memory required to store given number of objects.
*/
size_t
rte_mempool_xmem_size(uint32_t elt_num, size_t total_elt_sz, uint32_t pg_shift)
{
size_t obj_per_page, pg_num, pg_sz;
if (pg_shift == 0)
return total_elt_sz * elt_num;
pg_sz = (size_t)1 << pg_shift;
obj_per_page = pg_sz / total_elt_sz;
if (obj_per_page == 0)
return RTE_ALIGN_CEIL(total_elt_sz, pg_sz) * elt_num;
pg_num = (elt_num + obj_per_page - 1) / obj_per_page;
return pg_num << pg_shift;
}
/*
* Calculate how much memory would be actually required with the
* given memory footprint to store required number of elements.
*/
ssize_t
rte_mempool_xmem_usage(__rte_unused void *vaddr, uint32_t elt_num,
size_t total_elt_sz, const phys_addr_t paddr[], uint32_t pg_num,
uint32_t pg_shift)
{
uint32_t elt_cnt = 0;
phys_addr_t start, end;
uint32_t paddr_idx;
size_t pg_sz = (size_t)1 << pg_shift;
/* if paddr is NULL, assume contiguous memory */
if (paddr == NULL) {
start = 0;
end = pg_sz * pg_num;
paddr_idx = pg_num;
} else {
start = paddr[0];
end = paddr[0] + pg_sz;
paddr_idx = 1;
}
while (elt_cnt < elt_num) {
if (end - start >= total_elt_sz) {
/* enough contiguous memory, add an object */
start += total_elt_sz;
elt_cnt++;
} else if (paddr_idx < pg_num) {
/* no room to store one obj, add a page */
if (end == paddr[paddr_idx]) {
end += pg_sz;
} else {
start = paddr[paddr_idx];
end = paddr[paddr_idx] + pg_sz;
}
paddr_idx++;
} else {
/* no more page, return how many elements fit */
return -(size_t)elt_cnt;
}
}
return (size_t)paddr_idx << pg_shift;
}
#ifndef RTE_LIBRTE_XEN_DOM0
/* stub if DOM0 support not configured */
struct rte_mempool *
rte_dom0_mempool_create(const char *name __rte_unused,
unsigned n __rte_unused,
unsigned elt_size __rte_unused,
unsigned cache_size __rte_unused,
unsigned private_data_size __rte_unused,
rte_mempool_ctor_t *mp_init __rte_unused,
void *mp_init_arg __rte_unused,
rte_mempool_obj_ctor_t *obj_init __rte_unused,
void *obj_init_arg __rte_unused,
int socket_id __rte_unused,
unsigned flags __rte_unused)
{
rte_errno = EINVAL;
return NULL;
}
#endif
/* create the internal ring */
static int
rte_mempool_ring_create(struct rte_mempool *mp)
{
int rg_flags = 0;
char rg_name[RTE_RING_NAMESIZE];
struct rte_ring *r;
snprintf(rg_name, sizeof(rg_name), RTE_MEMPOOL_MZ_FORMAT, mp->name);
/* ring flags */
if (mp->flags & MEMPOOL_F_SP_PUT)
rg_flags |= RING_F_SP_ENQ;
if (mp->flags & MEMPOOL_F_SC_GET)
rg_flags |= RING_F_SC_DEQ;
/* Allocate the ring that will be used to store objects.
* Ring functions will return appropriate errors if we are
* running as a secondary process etc., so no checks made
* in this function for that condition.
*/
r = rte_ring_create(rg_name, rte_align32pow2(mp->size + 1),
mp->socket_id, rg_flags);
if (r == NULL)
return -rte_errno;
mp->ring = r;
return 0;
}
/* free a memchunk allocated with rte_memzone_reserve() */
static void
rte_mempool_memchunk_mz_free(__rte_unused struct rte_mempool_memhdr *memhdr,
void *opaque)
{
const struct rte_memzone *mz = opaque;
rte_memzone_free(mz);
}
/* Free memory chunks used by a mempool. Objects must be in pool */
static void
rte_mempool_free_memchunks(struct rte_mempool *mp)
{
struct rte_mempool_memhdr *memhdr;
void *elt;
while (!STAILQ_EMPTY(&mp->elt_list)) {
rte_ring_sc_dequeue(mp->ring, &elt);
(void)elt;
STAILQ_REMOVE_HEAD(&mp->elt_list, next);
mp->populated_size--;
}
while (!STAILQ_EMPTY(&mp->mem_list)) {
memhdr = STAILQ_FIRST(&mp->mem_list);
STAILQ_REMOVE_HEAD(&mp->mem_list, next);
if (memhdr->free_cb != NULL)
memhdr->free_cb(memhdr, memhdr->opaque);
rte_free(memhdr);
mp->nb_mem_chunks--;
}
}
/* Add objects in the pool, using a physically contiguous memory
* zone. Return the number of objects added, or a negative value
* on error.
*/
static int
rte_mempool_populate_phys(struct rte_mempool *mp, char *vaddr,
phys_addr_t paddr, size_t len, rte_mempool_memchunk_free_cb_t *free_cb,
void *opaque)
{
unsigned total_elt_sz;
unsigned i = 0;
size_t off;
struct rte_mempool_memhdr *memhdr;
/* mempool is already populated */
if (mp->populated_size >= mp->size)
return -ENOSPC;
total_elt_sz = mp->header_size + mp->elt_size + mp->trailer_size;
memhdr = rte_zmalloc("MEMPOOL_MEMHDR", sizeof(*memhdr), 0);
if (memhdr == NULL)
return -ENOMEM;
memhdr->mp = mp;
memhdr->addr = vaddr;
memhdr->phys_addr = paddr;
memhdr->len = len;
memhdr->free_cb = free_cb;
memhdr->opaque = opaque;
if (mp->flags & MEMPOOL_F_NO_CACHE_ALIGN)
off = RTE_PTR_ALIGN_CEIL(vaddr, 8) - vaddr;
else
off = RTE_PTR_ALIGN_CEIL(vaddr, RTE_CACHE_LINE_SIZE) - vaddr;
while (off + total_elt_sz <= len && mp->populated_size < mp->size) {
off += mp->header_size;
mempool_add_elem(mp, (char *)vaddr + off, paddr + off);
off += mp->elt_size + mp->trailer_size;
i++;
}
/* not enough room to store one object */
if (i == 0)
return -EINVAL;
STAILQ_INSERT_TAIL(&mp->mem_list, memhdr, next);
mp->nb_mem_chunks++;
return i;
}
/* Add objects in the pool, using a table of physical pages. Return the
* number of objects added, or a negative value on error.
*/
static int
rte_mempool_populate_phys_tab(struct rte_mempool *mp, char *vaddr,
const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift,
rte_mempool_memchunk_free_cb_t *free_cb, void *opaque)
{
uint32_t i, n;
int ret, cnt = 0;
size_t pg_sz = (size_t)1 << pg_shift;
/* mempool must not be populated */
if (mp->nb_mem_chunks != 0)
return -EEXIST;
for (i = 0; i < pg_num && mp->populated_size < mp->size; i += n) {
/* populate with the largest group of contiguous pages */
for (n = 1; (i + n) < pg_num &&
paddr[i] + pg_sz == paddr[i+n]; n++)
;
ret = rte_mempool_populate_phys(mp, vaddr + i * pg_sz,
paddr[i], n * pg_sz, free_cb, opaque);
if (ret < 0) {
rte_mempool_free_memchunks(mp);
return ret;
}
/* no need to call the free callback for next chunks */
free_cb = NULL;
cnt += ret;
}
return cnt;
}
/* Populate the mempool with a virtual area. Return the number of
* objects added, or a negative value on error.
*/
static int
rte_mempool_populate_virt(struct rte_mempool *mp, char *addr,
size_t len, size_t pg_sz, rte_mempool_memchunk_free_cb_t *free_cb,
void *opaque)
{
phys_addr_t paddr;
size_t off, phys_len;
int ret, cnt = 0;
/* mempool must not be populated */
if (mp->nb_mem_chunks != 0)
return -EEXIST;
/* address and len must be page-aligned */
if (RTE_PTR_ALIGN_CEIL(addr, pg_sz) != addr)
return -EINVAL;
if (RTE_ALIGN_CEIL(len, pg_sz) != len)
return -EINVAL;
for (off = 0; off + pg_sz <= len &&
mp->populated_size < mp->size; off += phys_len) {
paddr = rte_mem_virt2phy(addr + off);
if (paddr == RTE_BAD_PHYS_ADDR) {
ret = -EINVAL;
goto fail;
}
/* populate with the largest group of contiguous pages */
for (phys_len = pg_sz; off + phys_len < len; phys_len += pg_sz) {
phys_addr_t paddr_tmp;
paddr_tmp = rte_mem_virt2phy(addr + off + phys_len);
paddr_tmp = rte_mem_phy2mch(-1, paddr_tmp);
if (paddr_tmp != paddr + phys_len)
break;
}
ret = rte_mempool_populate_phys(mp, addr + off, paddr,
phys_len, free_cb, opaque);
if (ret < 0)
goto fail;
/* no need to call the free callback for next chunks */
free_cb = NULL;
cnt += ret;
}
return cnt;
fail:
rte_mempool_free_memchunks(mp);
return ret;
}
/* Default function to populate the mempool: allocate memory in memzones,
* and populate them. Return the number of objects added, or a negative
* value on error.
*/
static int
rte_mempool_populate_default(struct rte_mempool *mp)
{
int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
char mz_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *mz;
size_t size, total_elt_sz, align, pg_sz, pg_shift;
unsigned mz_id, n;
int ret;
/* mempool must not be populated */
if (mp->nb_mem_chunks != 0)
return -EEXIST;
if (rte_eal_has_hugepages()) {
pg_shift = 0; /* not needed, zone is physically contiguous */
pg_sz = 0;
align = RTE_CACHE_LINE_SIZE;
} else {
pg_sz = getpagesize();
pg_shift = rte_bsf32(pg_sz);
align = pg_sz;
}
total_elt_sz = mp->header_size + mp->elt_size + mp->trailer_size;
for (mz_id = 0, n = mp->size; n > 0; mz_id++, n -= ret) {
size = rte_mempool_xmem_size(n, total_elt_sz, pg_shift);
ret = snprintf(mz_name, sizeof(mz_name),
RTE_MEMPOOL_MZ_FORMAT "_%d", mp->name, mz_id);
if (ret < 0 || ret >= (int)sizeof(mz_name)) {
ret = -ENAMETOOLONG;
goto fail;
}
mz = rte_memzone_reserve_aligned(mz_name, size,
mp->socket_id, mz_flags, align);
/* not enough memory, retry with the biggest zone we have */
if (mz == NULL)
mz = rte_memzone_reserve_aligned(mz_name, 0,
mp->socket_id, mz_flags, align);
if (mz == NULL) {
ret = -rte_errno;
goto fail;
}
if (rte_eal_has_hugepages())
ret = rte_mempool_populate_phys(mp, mz->addr,
mz->phys_addr, mz->len,
rte_mempool_memchunk_mz_free,
(void *)(uintptr_t)mz);
else
ret = rte_mempool_populate_virt(mp, mz->addr,
mz->len, pg_sz,
rte_mempool_memchunk_mz_free,
(void *)(uintptr_t)mz);
if (ret < 0)
goto fail;
}
return mp->size;
fail:
rte_mempool_free_memchunks(mp);
return ret;
}
/* free a mempool */
static void
rte_mempool_free(struct rte_mempool *mp)
{
struct rte_mempool_list *mempool_list = NULL;
struct rte_tailq_entry *te;
if (mp == NULL)
return;
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
/* find out tailq entry */
TAILQ_FOREACH(te, mempool_list, next) {
if (te->data == (void *)mp)
break;
}
if (te != NULL) {
TAILQ_REMOVE(mempool_list, te, next);
rte_free(te);
}
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
rte_mempool_free_memchunks(mp);
rte_ring_free(mp->ring);
rte_memzone_free(mp->mz);
}
/* create an empty mempool */
static struct rte_mempool *
rte_mempool_create_empty(const char *name, unsigned n, unsigned elt_size,
unsigned cache_size, unsigned private_data_size,
int socket_id, unsigned flags)
{
char mz_name[RTE_MEMZONE_NAMESIZE];
struct rte_mempool_list *mempool_list;
struct rte_mempool *mp = NULL;
struct rte_tailq_entry *te = NULL;
const struct rte_memzone *mz = NULL;
size_t mempool_size;
int mz_flags = RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY;
struct rte_mempool_objsz objsz;
/* compilation-time checks */
RTE_BUILD_BUG_ON((sizeof(struct rte_mempool) &
RTE_CACHE_LINE_MASK) != 0);
RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_cache) &
RTE_CACHE_LINE_MASK) != 0);
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
RTE_BUILD_BUG_ON((sizeof(struct rte_mempool_debug_stats) &
RTE_CACHE_LINE_MASK) != 0);
RTE_BUILD_BUG_ON((offsetof(struct rte_mempool, stats) &
RTE_CACHE_LINE_MASK) != 0);
#endif
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
/* asked cache too big */
if (cache_size > RTE_MEMPOOL_CACHE_MAX_SIZE ||
CALC_CACHE_FLUSHTHRESH(cache_size) > n) {
rte_errno = EINVAL;
return NULL;
}
/* "no cache align" imply "no spread" */
if (flags & MEMPOOL_F_NO_CACHE_ALIGN)
flags |= MEMPOOL_F_NO_SPREAD;
/* calculate mempool object sizes. */
if (!rte_mempool_calc_obj_size(elt_size, flags, &objsz)) {
rte_errno = EINVAL;
return NULL;
}
rte_rwlock_write_lock(RTE_EAL_MEMPOOL_RWLOCK);
/*
* reserve a memory zone for this mempool: private data is
* cache-aligned
*/
private_data_size = (private_data_size +
RTE_MEMPOOL_ALIGN_MASK) & (~RTE_MEMPOOL_ALIGN_MASK);
/* try to allocate tailq entry */
te = rte_zmalloc("MEMPOOL_TAILQ_ENTRY", sizeof(*te), 0);
if (te == NULL) {
RTE_LOG(ERR, MEMPOOL, "Cannot allocate tailq entry!\n");
goto exit_unlock;
}
mempool_size = MEMPOOL_HEADER_SIZE(mp, cache_size);
mempool_size += private_data_size;
mempool_size = RTE_ALIGN_CEIL(mempool_size, RTE_MEMPOOL_ALIGN);
snprintf(mz_name, sizeof(mz_name), RTE_MEMPOOL_MZ_FORMAT, name);
mz = rte_memzone_reserve(mz_name, mempool_size, socket_id, mz_flags);
if (mz == NULL)
goto exit_unlock;
/* init the mempool structure */
mp = mz->addr;
memset(mp, 0, sizeof(*mp));
snprintf(mp->name, sizeof(mp->name), "%s", name);
mp->mz = mz;
mp->socket_id = socket_id;
mp->size = n;
mp->flags = flags;
mp->socket_id = socket_id;
mp->elt_size = objsz.elt_size;
mp->header_size = objsz.header_size;
mp->trailer_size = objsz.trailer_size;
mp->cache_size = cache_size;
mp->cache_flushthresh = CALC_CACHE_FLUSHTHRESH(cache_size);
mp->private_data_size = private_data_size;
STAILQ_INIT(&mp->elt_list);
STAILQ_INIT(&mp->mem_list);
if (rte_mempool_ring_create(mp) < 0)
goto exit_unlock;
/*
* local_cache pointer is set even if cache_size is zero.
* The local_cache points to just past the elt_pa[] array.
*/
mp->local_cache = (struct rte_mempool_cache *)
RTE_PTR_ADD(mp, MEMPOOL_HEADER_SIZE(mp, 0));
te->data = mp;
rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
TAILQ_INSERT_TAIL(mempool_list, te, next);
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
rte_rwlock_write_unlock(RTE_EAL_MEMPOOL_RWLOCK);
return mp;
exit_unlock:
rte_rwlock_write_unlock(RTE_EAL_MEMPOOL_RWLOCK);
rte_free(te);
rte_mempool_free(mp);
return NULL;
}
/* create the mempool */
struct rte_mempool *
rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
unsigned cache_size, unsigned private_data_size,
rte_mempool_ctor_t *mp_init, void *mp_init_arg,
rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
int socket_id, unsigned flags)
{
struct rte_mempool *mp;
if (rte_xen_dom0_supported())
return rte_dom0_mempool_create(name, n, elt_size,
cache_size, private_data_size,
mp_init, mp_init_arg,
obj_init, obj_init_arg,
socket_id, flags);
mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
private_data_size, socket_id, flags);
if (mp == NULL)
return NULL;
/* call the mempool priv initializer */
if (mp_init)
mp_init(mp, mp_init_arg);
if (rte_mempool_populate_default(mp) < 0)
goto fail;
/* call the object initializers */
if (obj_init)
rte_mempool_obj_iter(mp, obj_init, obj_init_arg);
return mp;
fail:
rte_mempool_free(mp);
return NULL;
}
/*
* Create the mempool over already allocated chunk of memory.
* That external memory buffer can consists of physically disjoint pages.
* Setting vaddr to NULL, makes mempool to fallback to original behaviour
* and allocate space for mempool and it's elements as one big chunk of
* physically continuos memory.
*/
struct rte_mempool *
rte_mempool_xmem_create(const char *name, unsigned n, unsigned elt_size,
unsigned cache_size, unsigned private_data_size,
rte_mempool_ctor_t *mp_init, void *mp_init_arg,
rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
int socket_id, unsigned flags, void *vaddr,
const phys_addr_t paddr[], uint32_t pg_num, uint32_t pg_shift)
{
struct rte_mempool *mp = NULL;
int ret;
/* no virtual address supplied, use rte_mempool_create() */
if (vaddr == NULL)
return rte_mempool_create(name, n, elt_size, cache_size,
private_data_size, mp_init, mp_init_arg,
obj_init, obj_init_arg, socket_id, flags);
/* check that we have both VA and PA */
if (paddr == NULL) {
rte_errno = EINVAL;
return NULL;
}
/* Check that pg_shift parameter is valid. */
if (pg_shift > MEMPOOL_PG_SHIFT_MAX) {
rte_errno = EINVAL;
return NULL;
}
mp = rte_mempool_create_empty(name, n, elt_size, cache_size,
private_data_size, socket_id, flags);
if (mp == NULL)
return NULL;
/* call the mempool priv initializer */
if (mp_init)
mp_init(mp, mp_init_arg);
ret = rte_mempool_populate_phys_tab(mp, vaddr, paddr, pg_num, pg_shift,
NULL, NULL);
if (ret < 0 || ret != (int)mp->size)
goto fail;
/* call the object initializers */
if (obj_init)
rte_mempool_obj_iter(mp, obj_init, obj_init_arg);
return mp;
fail:
rte_mempool_free(mp);
return NULL;
}
/* Return the number of entries in the mempool */
unsigned
rte_mempool_count(const struct rte_mempool *mp)
{
unsigned count;
unsigned lcore_id;
count = rte_ring_count(mp->ring);
if (mp->cache_size == 0)
return count;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++)
count += mp->local_cache[lcore_id].len;
/*
* due to race condition (access to len is not locked), the
* total can be greater than size... so fix the result
*/
if (count > mp->size)
return mp->size;
return count;
}
/* dump the cache status */
static unsigned
rte_mempool_dump_cache(FILE *f, const struct rte_mempool *mp)
{
unsigned lcore_id;
unsigned count = 0;
unsigned cache_count;
fprintf(f, " cache infos:\n");
fprintf(f, " cache_size=%"PRIu32"\n", mp->cache_size);
if (mp->cache_size == 0)
return count;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
cache_count = mp->local_cache[lcore_id].len;
fprintf(f, " cache_count[%u]=%u\n", lcore_id, cache_count);
count += cache_count;
}
fprintf(f, " total_cache_count=%u\n", count);
return count;
}
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif
/* check and update cookies or panic (internal) */
void rte_mempool_check_cookies(const struct rte_mempool *mp,
void * const *obj_table_const, unsigned n, int free)
{
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
struct rte_mempool_objhdr *hdr;
struct rte_mempool_objtlr *tlr;
uint64_t cookie;
void *tmp;
void *obj;
void **obj_table;
/* Force to drop the "const" attribute. This is done only when
* DEBUG is enabled */
tmp = (void *) obj_table_const;
obj_table = (void **) tmp;
while (n--) {
obj = obj_table[n];
if (rte_mempool_from_obj(obj) != mp)
rte_panic("MEMPOOL: object is owned by another "
"mempool\n");
hdr = __mempool_get_header(obj);
cookie = hdr->cookie;
if (free == 0) {
if (cookie != RTE_MEMPOOL_HEADER_COOKIE1) {
rte_log_set_history(0);
RTE_LOG(CRIT, MEMPOOL,
"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
obj, (const void *) mp, cookie);
rte_panic("MEMPOOL: bad header cookie (put)\n");
}
hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE2;
} else if (free == 1) {
if (cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
rte_log_set_history(0);
RTE_LOG(CRIT, MEMPOOL,
"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
obj, (const void *) mp, cookie);
rte_panic("MEMPOOL: bad header cookie (get)\n");
}
hdr->cookie = RTE_MEMPOOL_HEADER_COOKIE1;
} else if (free == 2) {
if (cookie != RTE_MEMPOOL_HEADER_COOKIE1 &&
cookie != RTE_MEMPOOL_HEADER_COOKIE2) {
rte_log_set_history(0);
RTE_LOG(CRIT, MEMPOOL,
"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
obj, (const void *) mp, cookie);
rte_panic("MEMPOOL: bad header cookie (audit)\n");
}
}
tlr = __mempool_get_trailer(obj);
cookie = tlr->cookie;
if (cookie != RTE_MEMPOOL_TRAILER_COOKIE) {
rte_log_set_history(0);
RTE_LOG(CRIT, MEMPOOL,
"obj=%p, mempool=%p, cookie=%" PRIx64 "\n",
obj, (const void *) mp, cookie);
rte_panic("MEMPOOL: bad trailer cookie\n");
}
}
#else
RTE_SET_USED(mp);
RTE_SET_USED(obj_table_const);
RTE_SET_USED(n);
RTE_SET_USED(free);
#endif
}
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
static void
mempool_obj_audit(struct rte_mempool *mp, __rte_unused void *opaque,
void *obj, __rte_unused unsigned idx)
{
__mempool_check_cookies(mp, &obj, 1, 2);
}
static void
mempool_audit_cookies(struct rte_mempool *mp)
{
unsigned num;
num = rte_mempool_obj_iter(mp, mempool_obj_audit, NULL);
if (num != mp->size) {
rte_panic("rte_mempool_obj_iter(mempool=%p, size=%u) "
"iterated only over %u elements\n",
mp, mp->size, num);
}
}
#else
#define mempool_audit_cookies(mp) do {} while(0)
#endif
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic error "-Wcast-qual"
#endif
/* check cookies before and after objects */
static void
mempool_audit_cache(const struct rte_mempool *mp)
{
/* check cache size consistency */
unsigned lcore_id;
if (mp->cache_size == 0)
return;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (mp->local_cache[lcore_id].len > mp->cache_flushthresh) {
RTE_LOG(CRIT, MEMPOOL, "badness on cache[%u]\n",
lcore_id);
rte_panic("MEMPOOL: invalid cache len\n");
}
}
}
/* check the consistency of mempool (size, cookies, ...) */
void
rte_mempool_audit(struct rte_mempool *mp)
{
mempool_audit_cache(mp);
mempool_audit_cookies(mp);
/* For case where mempool DEBUG is not set, and cache size is 0 */
RTE_SET_USED(mp);
}
/* dump the status of the mempool on the console */
void
rte_mempool_dump(FILE *f, struct rte_mempool *mp)
{
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
struct rte_mempool_debug_stats sum;
unsigned lcore_id;
#endif
struct rte_mempool_memhdr *memhdr;
unsigned common_count;
unsigned cache_count;
size_t mem_len = 0;
RTE_ASSERT(f != NULL);
RTE_ASSERT(mp != NULL);
fprintf(f, "mempool <%s>@%p\n", mp->name, mp);
fprintf(f, " flags=%x\n", mp->flags);
fprintf(f, " ring=<%s>@%p\n", mp->ring->name, mp->ring);
fprintf(f, " phys_addr=0x%" PRIx64 "\n", mp->mz->phys_addr);
fprintf(f, " nb_mem_chunks=%u\n", mp->nb_mem_chunks);
fprintf(f, " size=%"PRIu32"\n", mp->size);
fprintf(f, " populated_size=%"PRIu32"\n", mp->populated_size);
fprintf(f, " header_size=%"PRIu32"\n", mp->header_size);
fprintf(f, " elt_size=%"PRIu32"\n", mp->elt_size);
fprintf(f, " trailer_size=%"PRIu32"\n", mp->trailer_size);
fprintf(f, " total_obj_size=%"PRIu32"\n",
mp->header_size + mp->elt_size + mp->trailer_size);
fprintf(f, " private_data_size=%"PRIu32"\n", mp->private_data_size);
STAILQ_FOREACH(memhdr, &mp->mem_list, next)
mem_len += memhdr->len;
if (mem_len != 0) {
fprintf(f, " avg bytes/object=%#Lf\n",
(long double)mem_len / mp->size);
}
cache_count = rte_mempool_dump_cache(f, mp);
common_count = rte_ring_count(mp->ring);
if ((cache_count + common_count) > mp->size)
common_count = mp->size - cache_count;
fprintf(f, " common_pool_count=%u\n", common_count);
/* sum and dump statistics */
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
memset(&sum, 0, sizeof(sum));
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
sum.put_bulk += mp->stats[lcore_id].put_bulk;
sum.put_objs += mp->stats[lcore_id].put_objs;
sum.get_success_bulk += mp->stats[lcore_id].get_success_bulk;
sum.get_success_objs += mp->stats[lcore_id].get_success_objs;
sum.get_fail_bulk += mp->stats[lcore_id].get_fail_bulk;
sum.get_fail_objs += mp->stats[lcore_id].get_fail_objs;
}
fprintf(f, " stats:\n");
fprintf(f, " put_bulk=%"PRIu64"\n", sum.put_bulk);
fprintf(f, " put_objs=%"PRIu64"\n", sum.put_objs);
fprintf(f, " get_success_bulk=%"PRIu64"\n", sum.get_success_bulk);
fprintf(f, " get_success_objs=%"PRIu64"\n", sum.get_success_objs);
fprintf(f, " get_fail_bulk=%"PRIu64"\n", sum.get_fail_bulk);
fprintf(f, " get_fail_objs=%"PRIu64"\n", sum.get_fail_objs);
#else
fprintf(f, " no statistics available\n");
#endif
rte_mempool_audit(mp);
}
/* dump the status of all mempools on the console */
void
rte_mempool_list_dump(FILE *f)
{
struct rte_mempool *mp = NULL;
struct rte_tailq_entry *te;
struct rte_mempool_list *mempool_list;
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
TAILQ_FOREACH(te, mempool_list, next) {
mp = (struct rte_mempool *) te->data;
rte_mempool_dump(f, mp);
}
rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
}
/* search a mempool from its name */
struct rte_mempool *
rte_mempool_lookup(const char *name)
{
struct rte_mempool *mp = NULL;
struct rte_tailq_entry *te;
struct rte_mempool_list *mempool_list;
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
TAILQ_FOREACH(te, mempool_list, next) {
mp = (struct rte_mempool *) te->data;
if (strncmp(name, mp->name, RTE_MEMPOOL_NAMESIZE) == 0)
break;
}
rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
if (te == NULL) {
rte_errno = ENOENT;
return NULL;
}
return mp;
}
void rte_mempool_walk(void (*func)(struct rte_mempool *, void *),
void *arg)
{
struct rte_tailq_entry *te = NULL;
struct rte_mempool_list *mempool_list;
mempool_list = RTE_TAILQ_CAST(rte_mempool_tailq.head, rte_mempool_list);
rte_rwlock_read_lock(RTE_EAL_MEMPOOL_RWLOCK);
TAILQ_FOREACH(te, mempool_list, next) {
(*func)((struct rte_mempool *) te->data, arg);
}
rte_rwlock_read_unlock(RTE_EAL_MEMPOOL_RWLOCK);
}