numam-dpdk/lib/librte_net/rte_ether.h

419 lines
12 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#ifndef _RTE_ETHER_H_
#define _RTE_ETHER_H_
/**
* @file
*
* Ethernet Helpers in RTE
*/
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdio.h>
#include <rte_memcpy.h>
#include <rte_random.h>
#include <rte_mbuf.h>
#include <rte_byteorder.h>
#define ETHER_ADDR_LEN 6 /**< Length of Ethernet address. */
#define ETHER_TYPE_LEN 2 /**< Length of Ethernet type field. */
#define ETHER_CRC_LEN 4 /**< Length of Ethernet CRC. */
#define ETHER_HDR_LEN \
(ETHER_ADDR_LEN * 2 + ETHER_TYPE_LEN) /**< Length of Ethernet header. */
#define ETHER_MIN_LEN 64 /**< Minimum frame len, including CRC. */
#define ETHER_MAX_LEN 1518 /**< Maximum frame len, including CRC. */
#define ETHER_MTU \
(ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN) /**< Ethernet MTU. */
#define ETHER_MAX_VLAN_FRAME_LEN \
(ETHER_MAX_LEN + 4) /**< Maximum VLAN frame length, including CRC. */
#define ETHER_MAX_JUMBO_FRAME_LEN \
0x3F00 /**< Maximum Jumbo frame length, including CRC. */
#define ETHER_MAX_VLAN_ID 4095 /**< Maximum VLAN ID. */
#define ETHER_MIN_MTU 68 /**< Minimum MTU for IPv4 packets, see RFC 791. */
/**
* Ethernet address:
* A universally administered address is uniquely assigned to a device by its
* manufacturer. The first three octets (in transmission order) contain the
* Organizationally Unique Identifier (OUI). The following three (MAC-48 and
* EUI-48) octets are assigned by that organization with the only constraint
* of uniqueness.
* A locally administered address is assigned to a device by a network
* administrator and does not contain OUIs.
* See http://standards.ieee.org/regauth/groupmac/tutorial.html
*/
struct ether_addr {
uint8_t addr_bytes[ETHER_ADDR_LEN]; /**< Addr bytes in tx order */
} __attribute__((__packed__));
#define ETHER_LOCAL_ADMIN_ADDR 0x02 /**< Locally assigned Eth. address. */
#define ETHER_GROUP_ADDR 0x01 /**< Multicast or broadcast Eth. address. */
/**
* Check if two Ethernet addresses are the same.
*
* @param ea1
* A pointer to the first ether_addr structure containing
* the ethernet address.
* @param ea2
* A pointer to the second ether_addr structure containing
* the ethernet address.
*
* @return
* True (1) if the given two ethernet address are the same;
* False (0) otherwise.
*/
static inline int is_same_ether_addr(const struct ether_addr *ea1,
const struct ether_addr *ea2)
{
int i;
for (i = 0; i < ETHER_ADDR_LEN; i++)
if (ea1->addr_bytes[i] != ea2->addr_bytes[i])
return 0;
return 1;
}
/**
* Check if an Ethernet address is filled with zeros.
*
* @param ea
* A pointer to a ether_addr structure containing the ethernet address
* to check.
* @return
* True (1) if the given ethernet address is filled with zeros;
* false (0) otherwise.
*/
static inline int is_zero_ether_addr(const struct ether_addr *ea)
{
int i;
for (i = 0; i < ETHER_ADDR_LEN; i++)
if (ea->addr_bytes[i] != 0x00)
return 0;
return 1;
}
/**
* Check if an Ethernet address is a unicast address.
*
* @param ea
* A pointer to a ether_addr structure containing the ethernet address
* to check.
* @return
* True (1) if the given ethernet address is a unicast address;
* false (0) otherwise.
*/
static inline int is_unicast_ether_addr(const struct ether_addr *ea)
{
return (ea->addr_bytes[0] & ETHER_GROUP_ADDR) == 0;
}
/**
* Check if an Ethernet address is a multicast address.
*
* @param ea
* A pointer to a ether_addr structure containing the ethernet address
* to check.
* @return
* True (1) if the given ethernet address is a multicast address;
* false (0) otherwise.
*/
static inline int is_multicast_ether_addr(const struct ether_addr *ea)
{
return ea->addr_bytes[0] & ETHER_GROUP_ADDR;
}
/**
* Check if an Ethernet address is a broadcast address.
*
* @param ea
* A pointer to a ether_addr structure containing the ethernet address
* to check.
* @return
* True (1) if the given ethernet address is a broadcast address;
* false (0) otherwise.
*/
static inline int is_broadcast_ether_addr(const struct ether_addr *ea)
{
const unaligned_uint16_t *ea_words = (const unaligned_uint16_t *)ea;
return (ea_words[0] == 0xFFFF && ea_words[1] == 0xFFFF &&
ea_words[2] == 0xFFFF);
}
/**
* Check if an Ethernet address is a universally assigned address.
*
* @param ea
* A pointer to a ether_addr structure containing the ethernet address
* to check.
* @return
* True (1) if the given ethernet address is a universally assigned address;
* false (0) otherwise.
*/
static inline int is_universal_ether_addr(const struct ether_addr *ea)
{
return (ea->addr_bytes[0] & ETHER_LOCAL_ADMIN_ADDR) == 0;
}
/**
* Check if an Ethernet address is a locally assigned address.
*
* @param ea
* A pointer to a ether_addr structure containing the ethernet address
* to check.
* @return
* True (1) if the given ethernet address is a locally assigned address;
* false (0) otherwise.
*/
static inline int is_local_admin_ether_addr(const struct ether_addr *ea)
{
return (ea->addr_bytes[0] & ETHER_LOCAL_ADMIN_ADDR) != 0;
}
/**
* Check if an Ethernet address is a valid address. Checks that the address is a
* unicast address and is not filled with zeros.
*
* @param ea
* A pointer to a ether_addr structure containing the ethernet address
* to check.
* @return
* True (1) if the given ethernet address is valid;
* false (0) otherwise.
*/
static inline int is_valid_assigned_ether_addr(const struct ether_addr *ea)
{
return is_unicast_ether_addr(ea) && (!is_zero_ether_addr(ea));
}
/**
* Generate a random Ethernet address that is locally administered
* and not multicast.
* @param addr
* A pointer to Ethernet address.
*/
static inline void eth_random_addr(uint8_t *addr)
{
uint64_t rand = rte_rand();
uint8_t *p = (uint8_t *)&rand;
rte_memcpy(addr, p, ETHER_ADDR_LEN);
addr[0] &= (uint8_t)~ETHER_GROUP_ADDR; /* clear multicast bit */
addr[0] |= ETHER_LOCAL_ADMIN_ADDR; /* set local assignment bit */
}
/**
* Fast copy an Ethernet address.
*
* @param ea_from
* A pointer to a ether_addr structure holding the Ethernet address to copy.
* @param ea_to
* A pointer to a ether_addr structure where to copy the Ethernet address.
*/
static inline void ether_addr_copy(const struct ether_addr *ea_from,
struct ether_addr *ea_to)
{
#ifdef __INTEL_COMPILER
uint16_t *from_words = (uint16_t *)(ea_from->addr_bytes);
uint16_t *to_words = (uint16_t *)(ea_to->addr_bytes);
to_words[0] = from_words[0];
to_words[1] = from_words[1];
to_words[2] = from_words[2];
#else
/*
* Use the common way, because of a strange gcc warning.
*/
*ea_to = *ea_from;
#endif
}
#define ETHER_ADDR_FMT_SIZE 18
/**
* Format 48bits Ethernet address in pattern xx:xx:xx:xx:xx:xx.
*
* @param buf
* A pointer to buffer contains the formatted MAC address.
* @param size
* The format buffer size.
* @param eth_addr
* A pointer to a ether_addr structure.
*/
static inline void
ether_format_addr(char *buf, uint16_t size,
const struct ether_addr *eth_addr)
{
snprintf(buf, size, "%02X:%02X:%02X:%02X:%02X:%02X",
eth_addr->addr_bytes[0],
eth_addr->addr_bytes[1],
eth_addr->addr_bytes[2],
eth_addr->addr_bytes[3],
eth_addr->addr_bytes[4],
eth_addr->addr_bytes[5]);
}
/**
* Ethernet header: Contains the destination address, source address
* and frame type.
*/
struct ether_hdr {
struct ether_addr d_addr; /**< Destination address. */
struct ether_addr s_addr; /**< Source address. */
uint16_t ether_type; /**< Frame type. */
} __attribute__((__packed__));
/**
* Ethernet VLAN Header.
* Contains the 16-bit VLAN Tag Control Identifier and the Ethernet type
* of the encapsulated frame.
*/
struct vlan_hdr {
uint16_t vlan_tci; /**< Priority (3) + CFI (1) + Identifier Code (12) */
uint16_t eth_proto;/**< Ethernet type of encapsulated frame. */
} __attribute__((__packed__));
/**
* VXLAN protocol header.
* Contains the 8-bit flag, 24-bit VXLAN Network Identifier and
* Reserved fields (24 bits and 8 bits)
*/
struct vxlan_hdr {
uint32_t vx_flags; /**< flag (8) + Reserved (24). */
uint32_t vx_vni; /**< VNI (24) + Reserved (8). */
} __attribute__((__packed__));
/* Ethernet frame types */
#define ETHER_TYPE_IPv4 0x0800 /**< IPv4 Protocol. */
#define ETHER_TYPE_IPv6 0x86DD /**< IPv6 Protocol. */
#define ETHER_TYPE_ARP 0x0806 /**< Arp Protocol. */
#define ETHER_TYPE_RARP 0x8035 /**< Reverse Arp Protocol. */
#define ETHER_TYPE_VLAN 0x8100 /**< IEEE 802.1Q VLAN tagging. */
#define ETHER_TYPE_QINQ 0x88A8 /**< IEEE 802.1ad QinQ tagging. */
ethdev: fix TPID handling in flow API TPID handling in rte_flow VLAN and E_TAG pattern item definitions is not consistent with the normal stacking order of pattern items, which is confusing to applications. Problem is that when followed by one of these layers, the EtherType field of the preceding layer keeps its "inner" definition, and the "outer" TPID is provided by the subsequent layer, the reverse of how a packet looks like on the wire: Wire: [ ETH TPID = A | VLAN EtherType = B | B DATA ] rte_flow: [ ETH EtherType = B | VLAN TPID = A | B DATA ] Worse, when QinQ is involved, the stacking order of VLAN layers is unspecified. It is unclear whether it should be reversed (innermost to outermost) as well given TPID applies to the previous layer: Wire: [ ETH TPID = A | VLAN TPID = B | VLAN EtherType = C | C DATA ] rte_flow 1: [ ETH EtherType = C | VLAN TPID = B | VLAN TPID = A | C DATA ] rte_flow 2: [ ETH EtherType = C | VLAN TPID = A | VLAN TPID = B | C DATA ] While specifying EtherType/TPID is hopefully rarely necessary, the stacking order in case of QinQ and the lack of documentation remain an issue. This patch replaces TPID in the VLAN pattern item with an inner EtherType/TPID as is usually done everywhere else (e.g. struct vlan_hdr), clarifies documentation and updates all relevant code. It breaks ABI compatibility for the following public functions: - rte_flow_copy() - rte_flow_create() - rte_flow_query() - rte_flow_validate() Summary of changes for PMDs that implement ETH, VLAN or E_TAG pattern items: - bnxt: EtherType matching is supported with and without VLAN, but TPID matching is not and triggers an error. - e1000: EtherType matching is only supported with the ETHERTYPE filter, which does not support VLAN matching, therefore no impact. - enic: same as bnxt. - i40e: same as bnxt with existing FDIR limitations on allowed EtherType values. The remaining filter types (VXLAN, NVGRE, QINQ) do not support EtherType matching. - ixgbe: same as e1000, with additional minor change to rely on the new E-Tag macro definition. - mlx4: EtherType/TPID matching is not supported, no impact. - mlx5: same as bnxt. - mvpp2: same as bnxt. - sfc: same as bnxt. - tap: same as bnxt. Fixes: b1a4b4cbc0a8 ("ethdev: introduce generic flow API") Fixes: 99e7003831c3 ("net/ixgbe: parse L2 tunnel filter") Signed-off-by: Adrien Mazarguil <adrien.mazarguil@6wind.com> Acked-by: Andrew Rybchenko <arybchenko@solarflare.com>
2018-04-25 15:27:56 +00:00
#define ETHER_TYPE_ETAG 0x893F /**< IEEE 802.1BR E-Tag. */
#define ETHER_TYPE_1588 0x88F7 /**< IEEE 802.1AS 1588 Precise Time Protocol. */
bond: add mode 4 This patch set add support for dynamic link aggregation (mode 4) to the librte_pmd_bond library. This mode provides auto negotiation/configuration of peers and well as link status changes monitoring using out of band LACP (link aggregation control protocol) messages. For further details of LACP specification see the IEEE 802.3ad/802.1AX standards. It is also described here https://www.kernel.org/doc/Documentation/networking/bonding.txt. In this implementation we have an array of mode 4 settings for each slave. There is also assumption that for every port is one aggregator (it might be unused if better is found). Difference in this implementation vs Linux implementation: - this implementation it is not directly based on state machines but current state is calculated from actor and partner states (and other things too). Some implementation details: - during rx burst every packet Is checked if this is LACP or marker packet. If it is LACP frame it is passed to mode 4 logic using slaves rx ring and removed from rx buffer before it is returned - in tx burst, packets from mode 4 (if any) are injected into each slave. - there is a timer running in background to process/produce mode 4 frames form rx/to tx functions. Some requirements for this mode: - for LACP mode to work rx and tx burst functions must be invoked at least in 100ms intervals - provided buffer to rx burst should be at least 2x slave count size. This is not needed but might increase performance especially during initial handshake. Signed-off-by: Pawel Wodkowski <pawelx.wodkowski@intel.com> Acked-by: Declan Doherty <declan.doherty@intel.com>
2014-11-27 18:01:10 +00:00
#define ETHER_TYPE_SLOW 0x8809 /**< Slow protocols (LACP and Marker). */
#define ETHER_TYPE_TEB 0x6558 /**< Transparent Ethernet Bridging. */
#define ETHER_TYPE_LLDP 0x88CC /**< LLDP Protocol. */
#define ETHER_VXLAN_HLEN (sizeof(struct udp_hdr) + sizeof(struct vxlan_hdr))
/**< VXLAN tunnel header length. */
/**
* VXLAN-GPE protocol header (draft-ietf-nvo3-vxlan-gpe-05).
* Contains the 8-bit flag, 8-bit next-protocol, 24-bit VXLAN Network
* Identifier and Reserved fields (16 bits and 8 bits).
*/
struct vxlan_gpe_hdr {
uint8_t vx_flags; /**< flag (8). */
uint8_t reserved[2]; /**< Reserved (16). */
uint8_t proto; /**< next-protocol (8). */
uint32_t vx_vni; /**< VNI (24) + Reserved (8). */
} __attribute__((__packed__));
/* VXLAN-GPE next protocol types */
#define VXLAN_GPE_TYPE_IPV4 1 /**< IPv4 Protocol. */
#define VXLAN_GPE_TYPE_IPV6 2 /**< IPv6 Protocol. */
#define VXLAN_GPE_TYPE_ETH 3 /**< Ethernet Protocol. */
#define VXLAN_GPE_TYPE_NSH 4 /**< NSH Protocol. */
#define VXLAN_GPE_TYPE_MPLS 5 /**< MPLS Protocol. */
#define VXLAN_GPE_TYPE_GBP 6 /**< GBP Protocol. */
#define VXLAN_GPE_TYPE_VBNG 7 /**< vBNG Protocol. */
#define ETHER_VXLAN_GPE_HLEN (sizeof(struct udp_hdr) + \
sizeof(struct vxlan_gpe_hdr))
/**< VXLAN-GPE tunnel header length. */
/**
* Extract VLAN tag information into mbuf
*
* Software version of VLAN stripping
*
* @param m
* The packet mbuf.
* @return
* - 0: Success
* - 1: not a vlan packet
*/
static inline int rte_vlan_strip(struct rte_mbuf *m)
{
struct ether_hdr *eh
= rte_pktmbuf_mtod(m, struct ether_hdr *);
struct vlan_hdr *vh;
if (eh->ether_type != rte_cpu_to_be_16(ETHER_TYPE_VLAN))
return -1;
vh = (struct vlan_hdr *)(eh + 1);
m->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
m->vlan_tci = rte_be_to_cpu_16(vh->vlan_tci);
/* Copy ether header over rather than moving whole packet */
memmove(rte_pktmbuf_adj(m, sizeof(struct vlan_hdr)),
eh, 2 * ETHER_ADDR_LEN);
return 0;
}
/**
* Insert VLAN tag into mbuf.
*
* Software version of VLAN unstripping
*
* @param m
* The packet mbuf.
* @return
* - 0: On success
* -EPERM: mbuf is is shared overwriting would be unsafe
* -ENOSPC: not enough headroom in mbuf
*/
static inline int rte_vlan_insert(struct rte_mbuf **m)
{
struct ether_hdr *oh, *nh;
struct vlan_hdr *vh;
/* Can't insert header if mbuf is shared */
if (rte_mbuf_refcnt_read(*m) > 1) {
struct rte_mbuf *copy;
copy = rte_pktmbuf_clone(*m, (*m)->pool);
if (unlikely(copy == NULL))
return -ENOMEM;
rte_pktmbuf_free(*m);
*m = copy;
}
oh = rte_pktmbuf_mtod(*m, struct ether_hdr *);
nh = (struct ether_hdr *)
rte_pktmbuf_prepend(*m, sizeof(struct vlan_hdr));
if (nh == NULL)
return -ENOSPC;
memmove(nh, oh, 2 * ETHER_ADDR_LEN);
nh->ether_type = rte_cpu_to_be_16(ETHER_TYPE_VLAN);
vh = (struct vlan_hdr *) (nh + 1);
vh->vlan_tci = rte_cpu_to_be_16((*m)->vlan_tci);
(*m)->ol_flags &= ~PKT_RX_VLAN_STRIPPED;
return 0;
}
#ifdef __cplusplus
}
#endif
#endif /* _RTE_ETHER_H_ */