502 lines
13 KiB
C
502 lines
13 KiB
C
|
/*-
|
||
|
* BSD LICENSE
|
||
|
*
|
||
|
* Copyright(c) 2016 Intel Corporation. All rights reserved.
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in
|
||
|
* the documentation and/or other materials provided with the
|
||
|
* distribution.
|
||
|
* * Neither the name of Intel Corporation nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
|
||
|
#ifndef _L3FWD_COMMON_H_
|
||
|
#define _L3FWD_COMMON_H_
|
||
|
|
||
|
#include "l3fwd.h"
|
||
|
|
||
|
#ifdef DO_RFC_1812_CHECKS
|
||
|
|
||
|
#define IPV4_MIN_VER_IHL 0x45
|
||
|
#define IPV4_MAX_VER_IHL 0x4f
|
||
|
#define IPV4_MAX_VER_IHL_DIFF (IPV4_MAX_VER_IHL - IPV4_MIN_VER_IHL)
|
||
|
|
||
|
/* Minimum value of IPV4 total length (20B) in network byte order. */
|
||
|
#define IPV4_MIN_LEN_BE (sizeof(struct ipv4_hdr) << 8)
|
||
|
|
||
|
/*
|
||
|
* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2:
|
||
|
* - The IP version number must be 4.
|
||
|
* - The IP header length field must be large enough to hold the
|
||
|
* minimum length legal IP datagram (20 bytes = 5 words).
|
||
|
* - The IP total length field must be large enough to hold the IP
|
||
|
* datagram header, whose length is specified in the IP header length
|
||
|
* field.
|
||
|
* If we encounter invalid IPV4 packet, then set destination port for it
|
||
|
* to BAD_PORT value.
|
||
|
*/
|
||
|
static inline __attribute__((always_inline)) void
|
||
|
rfc1812_process(struct ipv4_hdr *ipv4_hdr, uint16_t *dp, uint32_t ptype)
|
||
|
{
|
||
|
uint8_t ihl;
|
||
|
|
||
|
if (RTE_ETH_IS_IPV4_HDR(ptype)) {
|
||
|
ihl = ipv4_hdr->version_ihl - IPV4_MIN_VER_IHL;
|
||
|
|
||
|
ipv4_hdr->time_to_live--;
|
||
|
ipv4_hdr->hdr_checksum++;
|
||
|
|
||
|
if (ihl > IPV4_MAX_VER_IHL_DIFF ||
|
||
|
((uint8_t)ipv4_hdr->total_length == 0 &&
|
||
|
ipv4_hdr->total_length < IPV4_MIN_LEN_BE))
|
||
|
dp[0] = BAD_PORT;
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
#define rfc1812_process(mb, dp, ptype) do { } while (0)
|
||
|
#endif /* DO_RFC_1812_CHECKS */
|
||
|
|
||
|
/*
|
||
|
* Update source and destination MAC addresses in the ethernet header.
|
||
|
* Perform RFC1812 checks and updates for IPV4 packets.
|
||
|
*/
|
||
|
static inline void
|
||
|
processx4_step3(struct rte_mbuf *pkt[FWDSTEP], uint16_t dst_port[FWDSTEP])
|
||
|
{
|
||
|
__m128i te[FWDSTEP];
|
||
|
__m128i ve[FWDSTEP];
|
||
|
__m128i *p[FWDSTEP];
|
||
|
|
||
|
p[0] = rte_pktmbuf_mtod(pkt[0], __m128i *);
|
||
|
p[1] = rte_pktmbuf_mtod(pkt[1], __m128i *);
|
||
|
p[2] = rte_pktmbuf_mtod(pkt[2], __m128i *);
|
||
|
p[3] = rte_pktmbuf_mtod(pkt[3], __m128i *);
|
||
|
|
||
|
ve[0] = val_eth[dst_port[0]];
|
||
|
te[0] = _mm_loadu_si128(p[0]);
|
||
|
|
||
|
ve[1] = val_eth[dst_port[1]];
|
||
|
te[1] = _mm_loadu_si128(p[1]);
|
||
|
|
||
|
ve[2] = val_eth[dst_port[2]];
|
||
|
te[2] = _mm_loadu_si128(p[2]);
|
||
|
|
||
|
ve[3] = val_eth[dst_port[3]];
|
||
|
te[3] = _mm_loadu_si128(p[3]);
|
||
|
|
||
|
/* Update first 12 bytes, keep rest bytes intact. */
|
||
|
te[0] = _mm_blend_epi16(te[0], ve[0], MASK_ETH);
|
||
|
te[1] = _mm_blend_epi16(te[1], ve[1], MASK_ETH);
|
||
|
te[2] = _mm_blend_epi16(te[2], ve[2], MASK_ETH);
|
||
|
te[3] = _mm_blend_epi16(te[3], ve[3], MASK_ETH);
|
||
|
|
||
|
_mm_storeu_si128(p[0], te[0]);
|
||
|
_mm_storeu_si128(p[1], te[1]);
|
||
|
_mm_storeu_si128(p[2], te[2]);
|
||
|
_mm_storeu_si128(p[3], te[3]);
|
||
|
|
||
|
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[0] + 1),
|
||
|
&dst_port[0], pkt[0]->packet_type);
|
||
|
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[1] + 1),
|
||
|
&dst_port[1], pkt[1]->packet_type);
|
||
|
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[2] + 1),
|
||
|
&dst_port[2], pkt[2]->packet_type);
|
||
|
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[3] + 1),
|
||
|
&dst_port[3], pkt[3]->packet_type);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We group consecutive packets with the same destionation port into one burst.
|
||
|
* To avoid extra latency this is done together with some other packet
|
||
|
* processing, but after we made a final decision about packet's destination.
|
||
|
* To do this we maintain:
|
||
|
* pnum - array of number of consecutive packets with the same dest port for
|
||
|
* each packet in the input burst.
|
||
|
* lp - pointer to the last updated element in the pnum.
|
||
|
* dlp - dest port value lp corresponds to.
|
||
|
*/
|
||
|
|
||
|
#define GRPSZ (1 << FWDSTEP)
|
||
|
#define GRPMSK (GRPSZ - 1)
|
||
|
|
||
|
#define GROUP_PORT_STEP(dlp, dcp, lp, pn, idx) do { \
|
||
|
if (likely((dlp) == (dcp)[(idx)])) { \
|
||
|
(lp)[0]++; \
|
||
|
} else { \
|
||
|
(dlp) = (dcp)[idx]; \
|
||
|
(lp) = (pn) + (idx); \
|
||
|
(lp)[0] = 1; \
|
||
|
} \
|
||
|
} while (0)
|
||
|
|
||
|
/*
|
||
|
* Group consecutive packets with the same destination port in bursts of 4.
|
||
|
* Suppose we have array of destionation ports:
|
||
|
* dst_port[] = {a, b, c, d,, e, ... }
|
||
|
* dp1 should contain: <a, b, c, d>, dp2: <b, c, d, e>.
|
||
|
* We doing 4 comparisions at once and the result is 4 bit mask.
|
||
|
* This mask is used as an index into prebuild array of pnum values.
|
||
|
*/
|
||
|
static inline uint16_t *
|
||
|
port_groupx4(uint16_t pn[FWDSTEP + 1], uint16_t *lp, __m128i dp1, __m128i dp2)
|
||
|
{
|
||
|
static const struct {
|
||
|
uint64_t pnum; /* prebuild 4 values for pnum[]. */
|
||
|
int32_t idx; /* index for new last updated elemnet. */
|
||
|
uint16_t lpv; /* add value to the last updated element. */
|
||
|
} gptbl[GRPSZ] = {
|
||
|
{
|
||
|
/* 0: a != b, b != c, c != d, d != e */
|
||
|
.pnum = UINT64_C(0x0001000100010001),
|
||
|
.idx = 4,
|
||
|
.lpv = 0,
|
||
|
},
|
||
|
{
|
||
|
/* 1: a == b, b != c, c != d, d != e */
|
||
|
.pnum = UINT64_C(0x0001000100010002),
|
||
|
.idx = 4,
|
||
|
.lpv = 1,
|
||
|
},
|
||
|
{
|
||
|
/* 2: a != b, b == c, c != d, d != e */
|
||
|
.pnum = UINT64_C(0x0001000100020001),
|
||
|
.idx = 4,
|
||
|
.lpv = 0,
|
||
|
},
|
||
|
{
|
||
|
/* 3: a == b, b == c, c != d, d != e */
|
||
|
.pnum = UINT64_C(0x0001000100020003),
|
||
|
.idx = 4,
|
||
|
.lpv = 2,
|
||
|
},
|
||
|
{
|
||
|
/* 4: a != b, b != c, c == d, d != e */
|
||
|
.pnum = UINT64_C(0x0001000200010001),
|
||
|
.idx = 4,
|
||
|
.lpv = 0,
|
||
|
},
|
||
|
{
|
||
|
/* 5: a == b, b != c, c == d, d != e */
|
||
|
.pnum = UINT64_C(0x0001000200010002),
|
||
|
.idx = 4,
|
||
|
.lpv = 1,
|
||
|
},
|
||
|
{
|
||
|
/* 6: a != b, b == c, c == d, d != e */
|
||
|
.pnum = UINT64_C(0x0001000200030001),
|
||
|
.idx = 4,
|
||
|
.lpv = 0,
|
||
|
},
|
||
|
{
|
||
|
/* 7: a == b, b == c, c == d, d != e */
|
||
|
.pnum = UINT64_C(0x0001000200030004),
|
||
|
.idx = 4,
|
||
|
.lpv = 3,
|
||
|
},
|
||
|
{
|
||
|
/* 8: a != b, b != c, c != d, d == e */
|
||
|
.pnum = UINT64_C(0x0002000100010001),
|
||
|
.idx = 3,
|
||
|
.lpv = 0,
|
||
|
},
|
||
|
{
|
||
|
/* 9: a == b, b != c, c != d, d == e */
|
||
|
.pnum = UINT64_C(0x0002000100010002),
|
||
|
.idx = 3,
|
||
|
.lpv = 1,
|
||
|
},
|
||
|
{
|
||
|
/* 0xa: a != b, b == c, c != d, d == e */
|
||
|
.pnum = UINT64_C(0x0002000100020001),
|
||
|
.idx = 3,
|
||
|
.lpv = 0,
|
||
|
},
|
||
|
{
|
||
|
/* 0xb: a == b, b == c, c != d, d == e */
|
||
|
.pnum = UINT64_C(0x0002000100020003),
|
||
|
.idx = 3,
|
||
|
.lpv = 2,
|
||
|
},
|
||
|
{
|
||
|
/* 0xc: a != b, b != c, c == d, d == e */
|
||
|
.pnum = UINT64_C(0x0002000300010001),
|
||
|
.idx = 2,
|
||
|
.lpv = 0,
|
||
|
},
|
||
|
{
|
||
|
/* 0xd: a == b, b != c, c == d, d == e */
|
||
|
.pnum = UINT64_C(0x0002000300010002),
|
||
|
.idx = 2,
|
||
|
.lpv = 1,
|
||
|
},
|
||
|
{
|
||
|
/* 0xe: a != b, b == c, c == d, d == e */
|
||
|
.pnum = UINT64_C(0x0002000300040001),
|
||
|
.idx = 1,
|
||
|
.lpv = 0,
|
||
|
},
|
||
|
{
|
||
|
/* 0xf: a == b, b == c, c == d, d == e */
|
||
|
.pnum = UINT64_C(0x0002000300040005),
|
||
|
.idx = 0,
|
||
|
.lpv = 4,
|
||
|
},
|
||
|
};
|
||
|
|
||
|
union {
|
||
|
uint16_t u16[FWDSTEP + 1];
|
||
|
uint64_t u64;
|
||
|
} *pnum = (void *)pn;
|
||
|
|
||
|
int32_t v;
|
||
|
|
||
|
dp1 = _mm_cmpeq_epi16(dp1, dp2);
|
||
|
dp1 = _mm_unpacklo_epi16(dp1, dp1);
|
||
|
v = _mm_movemask_ps((__m128)dp1);
|
||
|
|
||
|
/* update last port counter. */
|
||
|
lp[0] += gptbl[v].lpv;
|
||
|
|
||
|
/* if dest port value has changed. */
|
||
|
if (v != GRPMSK) {
|
||
|
lp = pnum->u16 + gptbl[v].idx;
|
||
|
lp[0] = 1;
|
||
|
pnum->u64 = gptbl[v].pnum;
|
||
|
}
|
||
|
|
||
|
return lp;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Process one packet:
|
||
|
* Update source and destination MAC addresses in the ethernet header.
|
||
|
* Perform RFC1812 checks and updates for IPV4 packets.
|
||
|
*/
|
||
|
static inline void
|
||
|
process_packet(struct rte_mbuf *pkt, uint16_t *dst_port)
|
||
|
{
|
||
|
struct ether_hdr *eth_hdr;
|
||
|
__m128i te, ve;
|
||
|
|
||
|
eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
|
||
|
|
||
|
te = _mm_loadu_si128((__m128i *)eth_hdr);
|
||
|
ve = val_eth[dst_port[0]];
|
||
|
|
||
|
rfc1812_process((struct ipv4_hdr *)(eth_hdr + 1), dst_port,
|
||
|
pkt->packet_type);
|
||
|
|
||
|
te = _mm_blend_epi16(te, ve, MASK_ETH);
|
||
|
_mm_storeu_si128((__m128i *)eth_hdr, te);
|
||
|
}
|
||
|
|
||
|
static inline __attribute__((always_inline)) void
|
||
|
send_packetsx4(struct lcore_conf *qconf, uint8_t port, struct rte_mbuf *m[],
|
||
|
uint32_t num)
|
||
|
{
|
||
|
uint32_t len, j, n;
|
||
|
|
||
|
len = qconf->tx_mbufs[port].len;
|
||
|
|
||
|
/*
|
||
|
* If TX buffer for that queue is empty, and we have enough packets,
|
||
|
* then send them straightway.
|
||
|
*/
|
||
|
if (num >= MAX_TX_BURST && len == 0) {
|
||
|
n = rte_eth_tx_burst(port, qconf->tx_queue_id[port], m, num);
|
||
|
if (unlikely(n < num)) {
|
||
|
do {
|
||
|
rte_pktmbuf_free(m[n]);
|
||
|
} while (++n < num);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Put packets into TX buffer for that queue.
|
||
|
*/
|
||
|
|
||
|
n = len + num;
|
||
|
n = (n > MAX_PKT_BURST) ? MAX_PKT_BURST - len : num;
|
||
|
|
||
|
j = 0;
|
||
|
switch (n % FWDSTEP) {
|
||
|
while (j < n) {
|
||
|
case 0:
|
||
|
qconf->tx_mbufs[port].m_table[len + j] = m[j];
|
||
|
j++;
|
||
|
case 3:
|
||
|
qconf->tx_mbufs[port].m_table[len + j] = m[j];
|
||
|
j++;
|
||
|
case 2:
|
||
|
qconf->tx_mbufs[port].m_table[len + j] = m[j];
|
||
|
j++;
|
||
|
case 1:
|
||
|
qconf->tx_mbufs[port].m_table[len + j] = m[j];
|
||
|
j++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
len += n;
|
||
|
|
||
|
/* enough pkts to be sent */
|
||
|
if (unlikely(len == MAX_PKT_BURST)) {
|
||
|
|
||
|
send_burst(qconf, MAX_PKT_BURST, port);
|
||
|
|
||
|
/* copy rest of the packets into the TX buffer. */
|
||
|
len = num - n;
|
||
|
j = 0;
|
||
|
switch (len % FWDSTEP) {
|
||
|
while (j < len) {
|
||
|
case 0:
|
||
|
qconf->tx_mbufs[port].m_table[j] = m[n + j];
|
||
|
j++;
|
||
|
case 3:
|
||
|
qconf->tx_mbufs[port].m_table[j] = m[n + j];
|
||
|
j++;
|
||
|
case 2:
|
||
|
qconf->tx_mbufs[port].m_table[j] = m[n + j];
|
||
|
j++;
|
||
|
case 1:
|
||
|
qconf->tx_mbufs[port].m_table[j] = m[n + j];
|
||
|
j++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
qconf->tx_mbufs[port].len = len;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Send packets burst from pkts_burst to the ports in dst_port array
|
||
|
*/
|
||
|
static inline __attribute__((always_inline)) void
|
||
|
send_packets_multi(struct lcore_conf *qconf, struct rte_mbuf **pkts_burst,
|
||
|
uint16_t dst_port[MAX_PKT_BURST], int nb_rx)
|
||
|
{
|
||
|
int32_t k;
|
||
|
int j = 0;
|
||
|
uint16_t dlp;
|
||
|
uint16_t *lp;
|
||
|
uint16_t pnum[MAX_PKT_BURST + 1];
|
||
|
|
||
|
/*
|
||
|
* Finish packet processing and group consecutive
|
||
|
* packets with the same destination port.
|
||
|
*/
|
||
|
k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
|
||
|
if (k != 0) {
|
||
|
__m128i dp1, dp2;
|
||
|
|
||
|
lp = pnum;
|
||
|
lp[0] = 1;
|
||
|
|
||
|
processx4_step3(pkts_burst, dst_port);
|
||
|
|
||
|
/* dp1: <d[0], d[1], d[2], d[3], ... > */
|
||
|
dp1 = _mm_loadu_si128((__m128i *)dst_port);
|
||
|
|
||
|
for (j = FWDSTEP; j != k; j += FWDSTEP) {
|
||
|
processx4_step3(&pkts_burst[j], &dst_port[j]);
|
||
|
|
||
|
/*
|
||
|
* dp2:
|
||
|
* <d[j-3], d[j-2], d[j-1], d[j], ... >
|
||
|
*/
|
||
|
dp2 = _mm_loadu_si128((__m128i *)
|
||
|
&dst_port[j - FWDSTEP + 1]);
|
||
|
lp = port_groupx4(&pnum[j - FWDSTEP], lp, dp1, dp2);
|
||
|
|
||
|
/*
|
||
|
* dp1:
|
||
|
* <d[j], d[j+1], d[j+2], d[j+3], ... >
|
||
|
*/
|
||
|
dp1 = _mm_srli_si128(dp2, (FWDSTEP - 1) *
|
||
|
sizeof(dst_port[0]));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* dp2: <d[j-3], d[j-2], d[j-1], d[j-1], ... >
|
||
|
*/
|
||
|
dp2 = _mm_shufflelo_epi16(dp1, 0xf9);
|
||
|
lp = port_groupx4(&pnum[j - FWDSTEP], lp, dp1, dp2);
|
||
|
|
||
|
/*
|
||
|
* remove values added by the last repeated
|
||
|
* dst port.
|
||
|
*/
|
||
|
lp[0]--;
|
||
|
dlp = dst_port[j - 1];
|
||
|
} else {
|
||
|
/* set dlp and lp to the never used values. */
|
||
|
dlp = BAD_PORT - 1;
|
||
|
lp = pnum + MAX_PKT_BURST;
|
||
|
}
|
||
|
|
||
|
/* Process up to last 3 packets one by one. */
|
||
|
switch (nb_rx % FWDSTEP) {
|
||
|
case 3:
|
||
|
process_packet(pkts_burst[j], dst_port + j);
|
||
|
GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
|
||
|
j++;
|
||
|
case 2:
|
||
|
process_packet(pkts_burst[j], dst_port + j);
|
||
|
GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
|
||
|
j++;
|
||
|
case 1:
|
||
|
process_packet(pkts_burst[j], dst_port + j);
|
||
|
GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
|
||
|
j++;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Send packets out, through destination port.
|
||
|
* Consecutive packets with the same destination port
|
||
|
* are already grouped together.
|
||
|
* If destination port for the packet equals BAD_PORT,
|
||
|
* then free the packet without sending it out.
|
||
|
*/
|
||
|
for (j = 0; j < nb_rx; j += k) {
|
||
|
|
||
|
int32_t m;
|
||
|
uint16_t pn;
|
||
|
|
||
|
pn = dst_port[j];
|
||
|
k = pnum[j];
|
||
|
|
||
|
if (likely(pn != BAD_PORT))
|
||
|
send_packetsx4(qconf, pn, pkts_burst + j, k);
|
||
|
else
|
||
|
for (m = j; m != j + k; m++)
|
||
|
rte_pktmbuf_free(pkts_burst[m]);
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* _L3FWD_COMMON_H_ */
|