464 lines
10 KiB
C
464 lines
10 KiB
C
|
/*
|
||
|
* Copyright (c) 2009-2016 Solarflare Communications Inc.
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions are met:
|
||
|
*
|
||
|
* 1. Redistributions of source code must retain the above copyright notice,
|
||
|
* this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||
|
* this list of conditions and the following disclaimer in the documentation
|
||
|
* and/or other materials provided with the distribution.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
||
|
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
||
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
||
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
||
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*
|
||
|
* The views and conclusions contained in the software and documentation are
|
||
|
* those of the authors and should not be interpreted as representing official
|
||
|
* policies, either expressed or implied, of the FreeBSD Project.
|
||
|
*/
|
||
|
|
||
|
#include "efx.h"
|
||
|
#include "efx_impl.h"
|
||
|
|
||
|
|
||
|
#if EFSYS_OPT_VPD
|
||
|
|
||
|
#if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD
|
||
|
|
||
|
#include "ef10_tlv_layout.h"
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
ef10_vpd_init(
|
||
|
__in efx_nic_t *enp)
|
||
|
{
|
||
|
caddr_t svpd;
|
||
|
size_t svpd_size;
|
||
|
uint32_t pci_pf;
|
||
|
uint32_t tag;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
|
||
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
|
||
|
enp->en_family == EFX_FAMILY_MEDFORD);
|
||
|
|
||
|
if (enp->en_nic_cfg.enc_vpd_is_global) {
|
||
|
tag = TLV_TAG_GLOBAL_STATIC_VPD;
|
||
|
} else {
|
||
|
pci_pf = enp->en_nic_cfg.enc_pf;
|
||
|
tag = TLV_TAG_PF_STATIC_VPD(pci_pf);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The VPD interface exposes VPD resources from the combined static and
|
||
|
* dynamic VPD storage. As the static VPD configuration should *never*
|
||
|
* change, we can cache it.
|
||
|
*/
|
||
|
svpd = NULL;
|
||
|
svpd_size = 0;
|
||
|
rc = ef10_nvram_partn_read_tlv(enp,
|
||
|
NVRAM_PARTITION_TYPE_STATIC_CONFIG,
|
||
|
tag, &svpd, &svpd_size);
|
||
|
if (rc != 0) {
|
||
|
if (rc == EACCES) {
|
||
|
/* Unprivileged functions cannot access VPD */
|
||
|
goto out;
|
||
|
}
|
||
|
goto fail1;
|
||
|
}
|
||
|
|
||
|
if (svpd != NULL && svpd_size > 0) {
|
||
|
if ((rc = efx_vpd_hunk_verify(svpd, svpd_size, NULL)) != 0)
|
||
|
goto fail2;
|
||
|
}
|
||
|
|
||
|
enp->en_arch.ef10.ena_svpd = svpd;
|
||
|
enp->en_arch.ef10.ena_svpd_length = svpd_size;
|
||
|
|
||
|
out:
|
||
|
return (0);
|
||
|
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
|
||
|
EFSYS_KMEM_FREE(enp->en_esip, svpd_size, svpd);
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
ef10_vpd_size(
|
||
|
__in efx_nic_t *enp,
|
||
|
__out size_t *sizep)
|
||
|
{
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
|
||
|
enp->en_family == EFX_FAMILY_MEDFORD);
|
||
|
|
||
|
/*
|
||
|
* This function returns the total size the user should allocate
|
||
|
* for all VPD operations. We've already cached the static vpd,
|
||
|
* so we just need to return an upper bound on the dynamic vpd,
|
||
|
* which is the size of the DYNAMIC_CONFIG partition.
|
||
|
*/
|
||
|
if ((rc = efx_mcdi_nvram_info(enp, NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,
|
||
|
sizep, NULL, NULL, NULL)) != 0)
|
||
|
goto fail1;
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
ef10_vpd_read(
|
||
|
__in efx_nic_t *enp,
|
||
|
__out_bcount(size) caddr_t data,
|
||
|
__in size_t size)
|
||
|
{
|
||
|
caddr_t dvpd;
|
||
|
size_t dvpd_size;
|
||
|
uint32_t pci_pf;
|
||
|
uint32_t tag;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
|
||
|
enp->en_family == EFX_FAMILY_MEDFORD);
|
||
|
|
||
|
if (enp->en_nic_cfg.enc_vpd_is_global) {
|
||
|
tag = TLV_TAG_GLOBAL_DYNAMIC_VPD;
|
||
|
} else {
|
||
|
pci_pf = enp->en_nic_cfg.enc_pf;
|
||
|
tag = TLV_TAG_PF_DYNAMIC_VPD(pci_pf);
|
||
|
}
|
||
|
|
||
|
if ((rc = ef10_nvram_partn_read_tlv(enp,
|
||
|
NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,
|
||
|
tag, &dvpd, &dvpd_size)) != 0)
|
||
|
goto fail1;
|
||
|
|
||
|
if (dvpd_size > size) {
|
||
|
rc = ENOSPC;
|
||
|
goto fail2;
|
||
|
}
|
||
|
memcpy(data, dvpd, dvpd_size);
|
||
|
|
||
|
/* Pad data with all-1s, consistent with update operations */
|
||
|
memset(data + dvpd_size, 0xff, size - dvpd_size);
|
||
|
|
||
|
EFSYS_KMEM_FREE(enp->en_esip, dvpd_size, dvpd);
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
|
||
|
EFSYS_KMEM_FREE(enp->en_esip, dvpd_size, dvpd);
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
ef10_vpd_verify(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in_bcount(size) caddr_t data,
|
||
|
__in size_t size)
|
||
|
{
|
||
|
efx_vpd_tag_t stag;
|
||
|
efx_vpd_tag_t dtag;
|
||
|
efx_vpd_keyword_t skey;
|
||
|
efx_vpd_keyword_t dkey;
|
||
|
unsigned int scont;
|
||
|
unsigned int dcont;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
|
||
|
enp->en_family == EFX_FAMILY_MEDFORD);
|
||
|
|
||
|
/*
|
||
|
* Strictly you could take the view that dynamic vpd is optional.
|
||
|
* Instead, to conform more closely to the read/verify/reinit()
|
||
|
* paradigm, we require dynamic vpd. ef10_vpd_reinit() will
|
||
|
* reinitialize it as required.
|
||
|
*/
|
||
|
if ((rc = efx_vpd_hunk_verify(data, size, NULL)) != 0)
|
||
|
goto fail1;
|
||
|
|
||
|
/*
|
||
|
* Verify that there is no duplication between the static and
|
||
|
* dynamic cfg sectors.
|
||
|
*/
|
||
|
if (enp->en_arch.ef10.ena_svpd_length == 0)
|
||
|
goto done;
|
||
|
|
||
|
dcont = 0;
|
||
|
_NOTE(CONSTANTCONDITION)
|
||
|
while (1) {
|
||
|
if ((rc = efx_vpd_hunk_next(data, size, &dtag,
|
||
|
&dkey, NULL, NULL, &dcont)) != 0)
|
||
|
goto fail2;
|
||
|
if (dcont == 0)
|
||
|
break;
|
||
|
|
||
|
/*
|
||
|
* Skip the RV keyword. It should be present in both the static
|
||
|
* and dynamic cfg sectors.
|
||
|
*/
|
||
|
if (dtag == EFX_VPD_RO && dkey == EFX_VPD_KEYWORD('R', 'V'))
|
||
|
continue;
|
||
|
|
||
|
scont = 0;
|
||
|
_NOTE(CONSTANTCONDITION)
|
||
|
while (1) {
|
||
|
if ((rc = efx_vpd_hunk_next(
|
||
|
enp->en_arch.ef10.ena_svpd,
|
||
|
enp->en_arch.ef10.ena_svpd_length, &stag, &skey,
|
||
|
NULL, NULL, &scont)) != 0)
|
||
|
goto fail3;
|
||
|
if (scont == 0)
|
||
|
break;
|
||
|
|
||
|
if (stag == dtag && skey == dkey) {
|
||
|
rc = EEXIST;
|
||
|
goto fail4;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
done:
|
||
|
return (0);
|
||
|
|
||
|
fail4:
|
||
|
EFSYS_PROBE(fail4);
|
||
|
fail3:
|
||
|
EFSYS_PROBE(fail3);
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
ef10_vpd_reinit(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in_bcount(size) caddr_t data,
|
||
|
__in size_t size)
|
||
|
{
|
||
|
boolean_t wantpid;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
/*
|
||
|
* Only create an ID string if the dynamic cfg doesn't have one
|
||
|
*/
|
||
|
if (enp->en_arch.ef10.ena_svpd_length == 0)
|
||
|
wantpid = B_TRUE;
|
||
|
else {
|
||
|
unsigned int offset;
|
||
|
uint8_t length;
|
||
|
|
||
|
rc = efx_vpd_hunk_get(enp->en_arch.ef10.ena_svpd,
|
||
|
enp->en_arch.ef10.ena_svpd_length,
|
||
|
EFX_VPD_ID, 0, &offset, &length);
|
||
|
if (rc == 0)
|
||
|
wantpid = B_FALSE;
|
||
|
else if (rc == ENOENT)
|
||
|
wantpid = B_TRUE;
|
||
|
else
|
||
|
goto fail1;
|
||
|
}
|
||
|
|
||
|
if ((rc = efx_vpd_hunk_reinit(data, size, wantpid)) != 0)
|
||
|
goto fail2;
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
ef10_vpd_get(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in_bcount(size) caddr_t data,
|
||
|
__in size_t size,
|
||
|
__inout efx_vpd_value_t *evvp)
|
||
|
{
|
||
|
unsigned int offset;
|
||
|
uint8_t length;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
|
||
|
enp->en_family == EFX_FAMILY_MEDFORD);
|
||
|
|
||
|
/* Attempt to satisfy the request from svpd first */
|
||
|
if (enp->en_arch.ef10.ena_svpd_length > 0) {
|
||
|
if ((rc = efx_vpd_hunk_get(enp->en_arch.ef10.ena_svpd,
|
||
|
enp->en_arch.ef10.ena_svpd_length, evvp->evv_tag,
|
||
|
evvp->evv_keyword, &offset, &length)) == 0) {
|
||
|
evvp->evv_length = length;
|
||
|
memcpy(evvp->evv_value,
|
||
|
enp->en_arch.ef10.ena_svpd + offset, length);
|
||
|
return (0);
|
||
|
} else if (rc != ENOENT)
|
||
|
goto fail1;
|
||
|
}
|
||
|
|
||
|
/* And then from the provided data buffer */
|
||
|
if ((rc = efx_vpd_hunk_get(data, size, evvp->evv_tag,
|
||
|
evvp->evv_keyword, &offset, &length)) != 0) {
|
||
|
if (rc == ENOENT)
|
||
|
return (rc);
|
||
|
goto fail2;
|
||
|
}
|
||
|
|
||
|
evvp->evv_length = length;
|
||
|
memcpy(evvp->evv_value, data + offset, length);
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
ef10_vpd_set(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in_bcount(size) caddr_t data,
|
||
|
__in size_t size,
|
||
|
__in efx_vpd_value_t *evvp)
|
||
|
{
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
|
||
|
enp->en_family == EFX_FAMILY_MEDFORD);
|
||
|
|
||
|
/* If the provided (tag,keyword) exists in svpd, then it is readonly */
|
||
|
if (enp->en_arch.ef10.ena_svpd_length > 0) {
|
||
|
unsigned int offset;
|
||
|
uint8_t length;
|
||
|
|
||
|
if ((rc = efx_vpd_hunk_get(enp->en_arch.ef10.ena_svpd,
|
||
|
enp->en_arch.ef10.ena_svpd_length, evvp->evv_tag,
|
||
|
evvp->evv_keyword, &offset, &length)) == 0) {
|
||
|
rc = EACCES;
|
||
|
goto fail1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ((rc = efx_vpd_hunk_set(data, size, evvp)) != 0)
|
||
|
goto fail2;
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
ef10_vpd_next(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in_bcount(size) caddr_t data,
|
||
|
__in size_t size,
|
||
|
__out efx_vpd_value_t *evvp,
|
||
|
__inout unsigned int *contp)
|
||
|
{
|
||
|
_NOTE(ARGUNUSED(enp, data, size, evvp, contp))
|
||
|
|
||
|
return (ENOTSUP);
|
||
|
}
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
ef10_vpd_write(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in_bcount(size) caddr_t data,
|
||
|
__in size_t size)
|
||
|
{
|
||
|
size_t vpd_length;
|
||
|
uint32_t pci_pf;
|
||
|
uint32_t tag;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
|
||
|
enp->en_family == EFX_FAMILY_MEDFORD);
|
||
|
|
||
|
if (enp->en_nic_cfg.enc_vpd_is_global) {
|
||
|
tag = TLV_TAG_GLOBAL_DYNAMIC_VPD;
|
||
|
} else {
|
||
|
pci_pf = enp->en_nic_cfg.enc_pf;
|
||
|
tag = TLV_TAG_PF_DYNAMIC_VPD(pci_pf);
|
||
|
}
|
||
|
|
||
|
/* Determine total length of new dynamic VPD */
|
||
|
if ((rc = efx_vpd_hunk_length(data, size, &vpd_length)) != 0)
|
||
|
goto fail1;
|
||
|
|
||
|
/* Store new dynamic VPD in all segments in DYNAMIC_CONFIG partition */
|
||
|
if ((rc = ef10_nvram_partn_write_segment_tlv(enp,
|
||
|
NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,
|
||
|
tag, data, vpd_length, B_TRUE)) != 0) {
|
||
|
goto fail2;
|
||
|
}
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
ef10_vpd_fini(
|
||
|
__in efx_nic_t *enp)
|
||
|
{
|
||
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
|
||
|
enp->en_family == EFX_FAMILY_MEDFORD);
|
||
|
|
||
|
if (enp->en_arch.ef10.ena_svpd_length > 0) {
|
||
|
EFSYS_KMEM_FREE(enp->en_esip, enp->en_arch.ef10.ena_svpd_length,
|
||
|
enp->en_arch.ef10.ena_svpd);
|
||
|
|
||
|
enp->en_arch.ef10.ena_svpd = NULL;
|
||
|
enp->en_arch.ef10.ena_svpd_length = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */
|
||
|
|
||
|
#endif /* EFSYS_OPT_VPD */
|