numam-dpdk/drivers/net/mlx5/mlx5_txq.c

907 lines
24 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2015 6WIND S.A.
* Copyright 2015 Mellanox Technologies, Ltd
*/
#include <stddef.h>
#include <assert.h>
#include <errno.h>
#include <string.h>
#include <stdint.h>
#include <unistd.h>
#include <sys/mman.h>
/* Verbs header. */
/* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_ethdev_driver.h>
#include <rte_common.h>
#include "mlx5_utils.h"
#include "mlx5_defs.h"
#include "mlx5.h"
#include "mlx5_rxtx.h"
#include "mlx5_autoconf.h"
#include "mlx5_glue.h"
/**
* Allocate TX queue elements.
*
* @param txq_ctrl
* Pointer to TX queue structure.
*/
void
txq_alloc_elts(struct mlx5_txq_ctrl *txq_ctrl)
{
const unsigned int elts_n = 1 << txq_ctrl->txq.elts_n;
unsigned int i;
for (i = 0; (i != elts_n); ++i)
(*txq_ctrl->txq.elts)[i] = NULL;
DRV_LOG(DEBUG, "port %u Tx queue %u allocated and configured %u WRs",
PORT_ID(txq_ctrl->priv), txq_ctrl->idx, elts_n);
txq_ctrl->txq.elts_head = 0;
txq_ctrl->txq.elts_tail = 0;
txq_ctrl->txq.elts_comp = 0;
}
/**
* Free TX queue elements.
*
* @param txq_ctrl
* Pointer to TX queue structure.
*/
static void
txq_free_elts(struct mlx5_txq_ctrl *txq_ctrl)
{
const uint16_t elts_n = 1 << txq_ctrl->txq.elts_n;
const uint16_t elts_m = elts_n - 1;
uint16_t elts_head = txq_ctrl->txq.elts_head;
uint16_t elts_tail = txq_ctrl->txq.elts_tail;
struct rte_mbuf *(*elts)[elts_n] = txq_ctrl->txq.elts;
DRV_LOG(DEBUG, "port %u Tx queue %u freeing WRs",
PORT_ID(txq_ctrl->priv), txq_ctrl->idx);
txq_ctrl->txq.elts_head = 0;
txq_ctrl->txq.elts_tail = 0;
txq_ctrl->txq.elts_comp = 0;
while (elts_tail != elts_head) {
struct rte_mbuf *elt = (*elts)[elts_tail & elts_m];
assert(elt != NULL);
rte_pktmbuf_free_seg(elt);
#ifndef NDEBUG
/* Poisoning. */
memset(&(*elts)[elts_tail & elts_m],
0x77,
sizeof((*elts)[elts_tail & elts_m]));
#endif
++elts_tail;
}
}
/**
* Returns the per-port supported offloads.
*
* @param dev
* Pointer to Ethernet device.
*
* @return
* Supported Tx offloads.
*/
uint64_t
mlx5_get_tx_port_offloads(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
uint64_t offloads = (DEV_TX_OFFLOAD_MULTI_SEGS |
DEV_TX_OFFLOAD_VLAN_INSERT);
struct mlx5_dev_config *config = &priv->config;
if (config->hw_csum)
offloads |= (DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM);
if (config->tso)
offloads |= DEV_TX_OFFLOAD_TCP_TSO;
if (config->swp) {
if (config->hw_csum)
offloads |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM;
if (config->tso)
offloads |= (DEV_TX_OFFLOAD_IP_TNL_TSO |
DEV_TX_OFFLOAD_UDP_TNL_TSO);
}
if (config->tunnel_en) {
if (config->hw_csum)
offloads |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM;
if (config->tso)
offloads |= (DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
DEV_TX_OFFLOAD_GRE_TNL_TSO);
}
#ifdef HAVE_IBV_FLOW_DV_SUPPORT
if (config->dv_flow_en)
offloads |= DEV_TX_OFFLOAD_MATCH_METADATA;
#endif
return offloads;
}
/**
* DPDK callback to configure a TX queue.
*
* @param dev
* Pointer to Ethernet device structure.
* @param idx
* TX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param[in] conf
* Thresholds parameters.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket, const struct rte_eth_txconf *conf)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_data *txq = (*priv->txqs)[idx];
struct mlx5_txq_ctrl *txq_ctrl =
container_of(txq, struct mlx5_txq_ctrl, txq);
if (desc <= MLX5_TX_COMP_THRESH) {
DRV_LOG(WARNING,
"port %u number of descriptors requested for Tx queue"
" %u must be higher than MLX5_TX_COMP_THRESH, using %u"
" instead of %u",
dev->data->port_id, idx, MLX5_TX_COMP_THRESH + 1, desc);
desc = MLX5_TX_COMP_THRESH + 1;
}
if (!rte_is_power_of_2(desc)) {
desc = 1 << log2above(desc);
DRV_LOG(WARNING,
"port %u increased number of descriptors in Tx queue"
" %u to the next power of two (%d)",
dev->data->port_id, idx, desc);
}
DRV_LOG(DEBUG, "port %u configuring queue %u for %u descriptors",
dev->data->port_id, idx, desc);
if (idx >= priv->txqs_n) {
DRV_LOG(ERR, "port %u Tx queue index out of range (%u >= %u)",
dev->data->port_id, idx, priv->txqs_n);
rte_errno = EOVERFLOW;
return -rte_errno;
}
if (!mlx5_txq_releasable(dev, idx)) {
rte_errno = EBUSY;
DRV_LOG(ERR, "port %u unable to release queue index %u",
dev->data->port_id, idx);
return -rte_errno;
}
mlx5_txq_release(dev, idx);
txq_ctrl = mlx5_txq_new(dev, idx, desc, socket, conf);
if (!txq_ctrl) {
DRV_LOG(ERR, "port %u unable to allocate queue index %u",
dev->data->port_id, idx);
return -rte_errno;
}
DRV_LOG(DEBUG, "port %u adding Tx queue %u to list",
dev->data->port_id, idx);
(*priv->txqs)[idx] = &txq_ctrl->txq;
return 0;
}
/**
* DPDK callback to release a TX queue.
*
* @param dpdk_txq
* Generic TX queue pointer.
*/
void
mlx5_tx_queue_release(void *dpdk_txq)
{
struct mlx5_txq_data *txq = (struct mlx5_txq_data *)dpdk_txq;
struct mlx5_txq_ctrl *txq_ctrl;
struct mlx5_priv *priv;
unsigned int i;
if (txq == NULL)
return;
txq_ctrl = container_of(txq, struct mlx5_txq_ctrl, txq);
priv = txq_ctrl->priv;
for (i = 0; (i != priv->txqs_n); ++i)
if ((*priv->txqs)[i] == txq) {
mlx5_txq_release(ETH_DEV(priv), i);
DRV_LOG(DEBUG, "port %u removing Tx queue %u from list",
PORT_ID(priv), txq_ctrl->idx);
break;
}
}
/**
* Mmap TX UAR(HW doorbell) pages into reserved UAR address space.
* Both primary and secondary process do mmap to make UAR address
* aligned.
*
* @param[in] dev
* Pointer to Ethernet device.
* @param fd
* Verbs file descriptor to map UAR pages.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_tx_uar_remap(struct rte_eth_dev *dev, int fd)
{
struct mlx5_priv *priv = dev->data->dev_private;
unsigned int i, j;
uintptr_t pages[priv->txqs_n];
unsigned int pages_n = 0;
uintptr_t uar_va;
uintptr_t off;
void *addr;
void *ret;
struct mlx5_txq_data *txq;
struct mlx5_txq_ctrl *txq_ctrl;
int already_mapped;
size_t page_size = sysconf(_SC_PAGESIZE);
#ifndef RTE_ARCH_64
unsigned int lock_idx;
#endif
memset(pages, 0, priv->txqs_n * sizeof(uintptr_t));
/*
* As rdma-core, UARs are mapped in size of OS page size.
* Use aligned address to avoid duplicate mmap.
* Ref to libmlx5 function: mlx5_init_context()
*/
for (i = 0; i != priv->txqs_n; ++i) {
if (!(*priv->txqs)[i])
continue;
txq = (*priv->txqs)[i];
txq_ctrl = container_of(txq, struct mlx5_txq_ctrl, txq);
assert(txq_ctrl->idx == (uint16_t)i);
/* UAR addr form verbs used to find dup and offset in page. */
uar_va = (uintptr_t)txq_ctrl->bf_reg_orig;
off = uar_va & (page_size - 1); /* offset in page. */
uar_va = RTE_ALIGN_FLOOR(uar_va, page_size); /* page addr. */
already_mapped = 0;
for (j = 0; j != pages_n; ++j) {
if (pages[j] == uar_va) {
already_mapped = 1;
break;
}
}
/* new address in reserved UAR address space. */
addr = RTE_PTR_ADD(priv->uar_base,
uar_va & (uintptr_t)(MLX5_UAR_SIZE - 1));
if (!already_mapped) {
pages[pages_n++] = uar_va;
/* fixed mmap to specified address in reserved
* address space.
*/
ret = mmap(addr, page_size,
PROT_WRITE, MAP_FIXED | MAP_SHARED, fd,
txq_ctrl->uar_mmap_offset);
if (ret != addr) {
/* fixed mmap have to return same address */
DRV_LOG(ERR,
"port %u call to mmap failed on UAR"
" for txq %u",
dev->data->port_id, txq_ctrl->idx);
rte_errno = ENXIO;
return -rte_errno;
}
}
if (rte_eal_process_type() == RTE_PROC_PRIMARY) /* save once */
txq_ctrl->txq.bf_reg = RTE_PTR_ADD((void *)addr, off);
else
assert(txq_ctrl->txq.bf_reg ==
RTE_PTR_ADD((void *)addr, off));
#ifndef RTE_ARCH_64
/* Assign a UAR lock according to UAR page number */
lock_idx = (txq_ctrl->uar_mmap_offset / page_size) &
MLX5_UAR_PAGE_NUM_MASK;
txq->uar_lock = &priv->uar_lock[lock_idx];
#endif
}
return 0;
}
/**
* Check if the burst function is using eMPW.
*
* @param tx_pkt_burst
* Tx burst function pointer.
*
* @return
* 1 if the burst function is using eMPW, 0 otherwise.
*/
static int
is_empw_burst_func(eth_tx_burst_t tx_pkt_burst)
{
if (tx_pkt_burst == mlx5_tx_burst_raw_vec ||
tx_pkt_burst == mlx5_tx_burst_vec ||
tx_pkt_burst == mlx5_tx_burst_empw)
return 1;
return 0;
}
/**
* Create the Tx queue Verbs object.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* Queue index in DPDK Rx queue array
*
* @return
* The Verbs object initialised, NULL otherwise and rte_errno is set.
*/
struct mlx5_txq_ibv *
mlx5_txq_ibv_new(struct rte_eth_dev *dev, uint16_t idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_data *txq_data = (*priv->txqs)[idx];
struct mlx5_txq_ctrl *txq_ctrl =
container_of(txq_data, struct mlx5_txq_ctrl, txq);
struct mlx5_txq_ibv tmpl;
struct mlx5_txq_ibv *txq_ibv;
union {
struct ibv_qp_init_attr_ex init;
struct ibv_cq_init_attr_ex cq;
struct ibv_qp_attr mod;
struct ibv_cq_ex cq_attr;
} attr;
unsigned int cqe_n;
struct mlx5dv_qp qp = { .comp_mask = MLX5DV_QP_MASK_UAR_MMAP_OFFSET };
struct mlx5dv_cq cq_info;
struct mlx5dv_obj obj;
const int desc = 1 << txq_data->elts_n;
eth_tx_burst_t tx_pkt_burst = mlx5_select_tx_function(dev);
int ret = 0;
assert(txq_data);
priv->verbs_alloc_ctx.type = MLX5_VERBS_ALLOC_TYPE_TX_QUEUE;
priv->verbs_alloc_ctx.obj = txq_ctrl;
if (mlx5_getenv_int("MLX5_ENABLE_CQE_COMPRESSION")) {
DRV_LOG(ERR,
"port %u MLX5_ENABLE_CQE_COMPRESSION must never be set",
dev->data->port_id);
rte_errno = EINVAL;
return NULL;
}
memset(&tmpl, 0, sizeof(struct mlx5_txq_ibv));
attr.cq = (struct ibv_cq_init_attr_ex){
.comp_mask = 0,
};
cqe_n = ((desc / MLX5_TX_COMP_THRESH) - 1) ?
((desc / MLX5_TX_COMP_THRESH) - 1) : 1;
if (is_empw_burst_func(tx_pkt_burst))
cqe_n += MLX5_TX_COMP_THRESH_INLINE_DIV;
tmpl.cq = mlx5_glue->create_cq(priv->sh->ctx, cqe_n, NULL, NULL, 0);
if (tmpl.cq == NULL) {
DRV_LOG(ERR, "port %u Tx queue %u CQ creation failure",
dev->data->port_id, idx);
rte_errno = errno;
goto error;
}
attr.init = (struct ibv_qp_init_attr_ex){
/* CQ to be associated with the send queue. */
.send_cq = tmpl.cq,
/* CQ to be associated with the receive queue. */
.recv_cq = tmpl.cq,
.cap = {
/* Max number of outstanding WRs. */
.max_send_wr =
((priv->sh->device_attr.orig_attr.max_qp_wr <
desc) ?
priv->sh->device_attr.orig_attr.max_qp_wr :
desc),
/*
* Max number of scatter/gather elements in a WR,
* must be 1 to prevent libmlx5 from trying to affect
* too much memory. TX gather is not impacted by the
* device_attr.max_sge limit and will still work
* properly.
*/
.max_send_sge = 1,
},
.qp_type = IBV_QPT_RAW_PACKET,
/*
* Do *NOT* enable this, completions events are managed per
* Tx burst.
*/
.sq_sig_all = 0,
.pd = priv->sh->pd,
.comp_mask = IBV_QP_INIT_ATTR_PD,
};
if (txq_data->max_inline)
attr.init.cap.max_inline_data = txq_ctrl->max_inline_data;
if (txq_data->tso_en) {
attr.init.max_tso_header = txq_ctrl->max_tso_header;
attr.init.comp_mask |= IBV_QP_INIT_ATTR_MAX_TSO_HEADER;
}
tmpl.qp = mlx5_glue->create_qp_ex(priv->sh->ctx, &attr.init);
if (tmpl.qp == NULL) {
DRV_LOG(ERR, "port %u Tx queue %u QP creation failure",
dev->data->port_id, idx);
rte_errno = errno;
goto error;
}
attr.mod = (struct ibv_qp_attr){
/* Move the QP to this state. */
.qp_state = IBV_QPS_INIT,
/* IB device port number. */
.port_num = (uint8_t)priv->ibv_port,
};
ret = mlx5_glue->modify_qp(tmpl.qp, &attr.mod,
(IBV_QP_STATE | IBV_QP_PORT));
if (ret) {
DRV_LOG(ERR,
"port %u Tx queue %u QP state to IBV_QPS_INIT failed",
dev->data->port_id, idx);
rte_errno = errno;
goto error;
}
attr.mod = (struct ibv_qp_attr){
.qp_state = IBV_QPS_RTR
};
ret = mlx5_glue->modify_qp(tmpl.qp, &attr.mod, IBV_QP_STATE);
if (ret) {
DRV_LOG(ERR,
"port %u Tx queue %u QP state to IBV_QPS_RTR failed",
dev->data->port_id, idx);
rte_errno = errno;
goto error;
}
attr.mod.qp_state = IBV_QPS_RTS;
ret = mlx5_glue->modify_qp(tmpl.qp, &attr.mod, IBV_QP_STATE);
if (ret) {
DRV_LOG(ERR,
"port %u Tx queue %u QP state to IBV_QPS_RTS failed",
dev->data->port_id, idx);
rte_errno = errno;
goto error;
}
txq_ibv = rte_calloc_socket(__func__, 1, sizeof(struct mlx5_txq_ibv), 0,
txq_ctrl->socket);
if (!txq_ibv) {
DRV_LOG(ERR, "port %u Tx queue %u cannot allocate memory",
dev->data->port_id, idx);
rte_errno = ENOMEM;
goto error;
}
obj.cq.in = tmpl.cq;
obj.cq.out = &cq_info;
obj.qp.in = tmpl.qp;
obj.qp.out = &qp;
ret = mlx5_glue->dv_init_obj(&obj, MLX5DV_OBJ_CQ | MLX5DV_OBJ_QP);
if (ret != 0) {
rte_errno = errno;
goto error;
}
if (cq_info.cqe_size != RTE_CACHE_LINE_SIZE) {
DRV_LOG(ERR,
"port %u wrong MLX5_CQE_SIZE environment variable"
" value: it should be set to %u",
dev->data->port_id, RTE_CACHE_LINE_SIZE);
rte_errno = EINVAL;
goto error;
}
txq_data->cqe_n = log2above(cq_info.cqe_cnt);
txq_data->qp_num_8s = tmpl.qp->qp_num << 8;
txq_data->wqes = qp.sq.buf;
txq_data->wqe_n = log2above(qp.sq.wqe_cnt);
txq_data->qp_db = &qp.dbrec[MLX5_SND_DBR];
txq_ctrl->bf_reg_orig = qp.bf.reg;
txq_data->cq_db = cq_info.dbrec;
txq_data->cqes =
(volatile struct mlx5_cqe (*)[])
(uintptr_t)cq_info.buf;
txq_data->cq_ci = 0;
#ifndef NDEBUG
txq_data->cq_pi = 0;
#endif
txq_data->wqe_ci = 0;
txq_data->wqe_pi = 0;
txq_ibv->qp = tmpl.qp;
txq_ibv->cq = tmpl.cq;
rte_atomic32_inc(&txq_ibv->refcnt);
if (qp.comp_mask & MLX5DV_QP_MASK_UAR_MMAP_OFFSET) {
txq_ctrl->uar_mmap_offset = qp.uar_mmap_offset;
DRV_LOG(DEBUG, "port %u: uar_mmap_offset 0x%lx",
dev->data->port_id, txq_ctrl->uar_mmap_offset);
} else {
DRV_LOG(ERR,
"port %u failed to retrieve UAR info, invalid"
" libmlx5.so",
dev->data->port_id);
rte_errno = EINVAL;
goto error;
}
LIST_INSERT_HEAD(&priv->txqsibv, txq_ibv, next);
txq_ibv->txq_ctrl = txq_ctrl;
priv->verbs_alloc_ctx.type = MLX5_VERBS_ALLOC_TYPE_NONE;
return txq_ibv;
error:
ret = rte_errno; /* Save rte_errno before cleanup. */
if (tmpl.cq)
claim_zero(mlx5_glue->destroy_cq(tmpl.cq));
if (tmpl.qp)
claim_zero(mlx5_glue->destroy_qp(tmpl.qp));
priv->verbs_alloc_ctx.type = MLX5_VERBS_ALLOC_TYPE_NONE;
rte_errno = ret; /* Restore rte_errno. */
return NULL;
}
/**
* Get an Tx queue Verbs object.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* Queue index in DPDK Rx queue array
*
* @return
* The Verbs object if it exists.
*/
struct mlx5_txq_ibv *
mlx5_txq_ibv_get(struct rte_eth_dev *dev, uint16_t idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_ctrl *txq_ctrl;
if (idx >= priv->txqs_n)
return NULL;
if (!(*priv->txqs)[idx])
return NULL;
txq_ctrl = container_of((*priv->txqs)[idx], struct mlx5_txq_ctrl, txq);
if (txq_ctrl->ibv)
rte_atomic32_inc(&txq_ctrl->ibv->refcnt);
return txq_ctrl->ibv;
}
/**
* Release an Tx verbs queue object.
*
* @param txq_ibv
* Verbs Tx queue object.
*
* @return
* 1 while a reference on it exists, 0 when freed.
*/
int
mlx5_txq_ibv_release(struct mlx5_txq_ibv *txq_ibv)
{
assert(txq_ibv);
if (rte_atomic32_dec_and_test(&txq_ibv->refcnt)) {
claim_zero(mlx5_glue->destroy_qp(txq_ibv->qp));
claim_zero(mlx5_glue->destroy_cq(txq_ibv->cq));
LIST_REMOVE(txq_ibv, next);
rte_free(txq_ibv);
return 0;
}
return 1;
}
/**
* Return true if a single reference exists on the object.
*
* @param txq_ibv
* Verbs Tx queue object.
*/
int
mlx5_txq_ibv_releasable(struct mlx5_txq_ibv *txq_ibv)
{
assert(txq_ibv);
return (rte_atomic32_read(&txq_ibv->refcnt) == 1);
}
/**
* Verify the Verbs Tx queue list is empty
*
* @param dev
* Pointer to Ethernet device.
*
* @return
* The number of object not released.
*/
int
mlx5_txq_ibv_verify(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
int ret = 0;
struct mlx5_txq_ibv *txq_ibv;
LIST_FOREACH(txq_ibv, &priv->txqsibv, next) {
DRV_LOG(DEBUG, "port %u Verbs Tx queue %u still referenced",
dev->data->port_id, txq_ibv->txq_ctrl->idx);
++ret;
}
return ret;
}
/**
* Set Tx queue parameters from device configuration.
*
* @param txq_ctrl
* Pointer to Tx queue control structure.
*/
static void
txq_set_params(struct mlx5_txq_ctrl *txq_ctrl)
{
struct mlx5_priv *priv = txq_ctrl->priv;
struct mlx5_dev_config *config = &priv->config;
const unsigned int max_tso_inline =
((MLX5_MAX_TSO_HEADER + (RTE_CACHE_LINE_SIZE - 1)) /
RTE_CACHE_LINE_SIZE);
unsigned int txq_inline;
unsigned int txqs_inline;
unsigned int inline_max_packet_sz;
eth_tx_burst_t tx_pkt_burst =
mlx5_select_tx_function(ETH_DEV(priv));
int is_empw_func = is_empw_burst_func(tx_pkt_burst);
int tso = !!(txq_ctrl->txq.offloads & (DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
DEV_TX_OFFLOAD_GRE_TNL_TSO |
DEV_TX_OFFLOAD_IP_TNL_TSO |
DEV_TX_OFFLOAD_UDP_TNL_TSO));
txq_inline = (config->txq_inline == MLX5_ARG_UNSET) ?
0 : config->txq_inline;
txqs_inline = (config->txqs_inline == MLX5_ARG_UNSET) ?
0 : config->txqs_inline;
inline_max_packet_sz =
(config->inline_max_packet_sz == MLX5_ARG_UNSET) ?
0 : config->inline_max_packet_sz;
if (is_empw_func) {
if (config->txq_inline == MLX5_ARG_UNSET)
txq_inline = MLX5_WQE_SIZE_MAX - MLX5_WQE_SIZE;
if (config->txqs_inline == MLX5_ARG_UNSET)
txqs_inline = MLX5_EMPW_MIN_TXQS;
if (config->inline_max_packet_sz == MLX5_ARG_UNSET)
inline_max_packet_sz = MLX5_EMPW_MAX_INLINE_LEN;
txq_ctrl->txq.mpw_hdr_dseg = config->mpw_hdr_dseg;
txq_ctrl->txq.inline_max_packet_sz = inline_max_packet_sz;
}
if (txq_inline && priv->txqs_n >= txqs_inline) {
unsigned int ds_cnt;
txq_ctrl->txq.max_inline =
((txq_inline + (RTE_CACHE_LINE_SIZE - 1)) /
RTE_CACHE_LINE_SIZE);
if (is_empw_func) {
/* To minimize the size of data set, avoid requesting
* too large WQ.
*/
txq_ctrl->max_inline_data =
((RTE_MIN(txq_inline,
inline_max_packet_sz) +
(RTE_CACHE_LINE_SIZE - 1)) /
RTE_CACHE_LINE_SIZE) * RTE_CACHE_LINE_SIZE;
} else {
txq_ctrl->max_inline_data =
txq_ctrl->txq.max_inline * RTE_CACHE_LINE_SIZE;
}
/*
* Check if the inline size is too large in a way which
* can make the WQE DS to overflow.
* Considering in calculation:
* WQE CTRL (1 DS)
* WQE ETH (1 DS)
* Inline part (N DS)
*/
ds_cnt = 2 + (txq_ctrl->txq.max_inline / MLX5_WQE_DWORD_SIZE);
if (ds_cnt > MLX5_DSEG_MAX) {
unsigned int max_inline = (MLX5_DSEG_MAX - 2) *
MLX5_WQE_DWORD_SIZE;
max_inline = max_inline - (max_inline %
RTE_CACHE_LINE_SIZE);
DRV_LOG(WARNING,
"port %u txq inline is too large (%d) setting"
" it to the maximum possible: %d\n",
PORT_ID(priv), txq_inline, max_inline);
txq_ctrl->txq.max_inline = max_inline /
RTE_CACHE_LINE_SIZE;
}
}
if (tso) {
txq_ctrl->max_tso_header = max_tso_inline * RTE_CACHE_LINE_SIZE;
txq_ctrl->txq.max_inline = RTE_MAX(txq_ctrl->txq.max_inline,
max_tso_inline);
txq_ctrl->txq.tso_en = 1;
}
txq_ctrl->txq.tunnel_en = config->tunnel_en | config->swp;
txq_ctrl->txq.swp_en = ((DEV_TX_OFFLOAD_IP_TNL_TSO |
DEV_TX_OFFLOAD_UDP_TNL_TSO |
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) &
txq_ctrl->txq.offloads) && config->swp;
}
/**
* Create a DPDK Tx queue.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* TX queue index.
* @param desc
* Number of descriptors to configure in queue.
* @param socket
* NUMA socket on which memory must be allocated.
* @param[in] conf
* Thresholds parameters.
*
* @return
* A DPDK queue object on success, NULL otherwise and rte_errno is set.
*/
struct mlx5_txq_ctrl *
mlx5_txq_new(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket, const struct rte_eth_txconf *conf)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_ctrl *tmpl;
tmpl = rte_calloc_socket("TXQ", 1,
sizeof(*tmpl) +
desc * sizeof(struct rte_mbuf *),
0, socket);
if (!tmpl) {
rte_errno = ENOMEM;
return NULL;
}
net/mlx5: add new memory region support This is the new design of Memory Region (MR) for mlx PMD, in order to: - Accommodate the new memory hotplug model. - Support non-contiguous Mempool. There are multiple layers for MR search. L0 is to look up the last-hit entry which is pointed by mr_ctrl->mru (Most Recently Used). If L0 misses, L1 is to look up the address in a fixed-sized array by linear search. L0/L1 is in an inline function - mlx5_mr_lookup_cache(). If L1 misses, the bottom-half function is called to look up the address from the bigger local cache of the queue. This is L2 - mlx5_mr_addr2mr_bh() and it is not an inline function. Data structure for L2 is the Binary Tree. If L2 misses, the search falls into the slowest path which takes locks in order to access global device cache (priv->mr.cache) which is also a B-tree and caches the original MR list (priv->mr.mr_list) of the device. Unless the global cache is overflowed, it is all-inclusive of the MR list. This is L3 - mlx5_mr_lookup_dev(). The size of the L3 cache table is limited and can't be expanded on the fly due to deadlock. Refer to the comments in the code for the details - mr_lookup_dev(). If L3 is overflowed, the list will have to be searched directly bypassing the cache although it is slower. If L3 misses, a new MR for the address should be created - mlx5_mr_create(). When it creates a new MR, it tries to register adjacent memsegs as much as possible which are virtually contiguous around the address. This must take two locks - memory_hotplug_lock and priv->mr.rwlock. Due to memory_hotplug_lock, there can't be any allocation/free of memory inside. In the free callback of the memory hotplug event, freed space is searched from the MR list and corresponding bits are cleared from the bitmap of MRs. This can fragment a MR and the MR will have multiple search entries in the caches. Once there's a change by the event, the global cache must be rebuilt and all the per-queue caches will be flushed as well. If memory is frequently freed in run-time, that may cause jitter on dataplane processing in the worst case by incurring MR cache flush and rebuild. But, it would be the least probable scenario. To guarantee the most optimal performance, it is highly recommended to use an EAL option - '--socket-mem'. Then, the reserved memory will be pinned and won't be freed dynamically. And it is also recommended to configure per-lcore cache of Mempool. Even though there're many MRs for a device or MRs are highly fragmented, the cache of Mempool will be much helpful to reduce misses on per-queue caches anyway. '--legacy-mem' is also supported. Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
2018-05-09 11:09:04 +00:00
if (mlx5_mr_btree_init(&tmpl->txq.mr_ctrl.cache_bh,
MLX5_MR_BTREE_CACHE_N, socket)) {
/* rte_errno is already set. */
goto error;
}
/* Save pointer of global generation number to check memory event. */
tmpl->txq.mr_ctrl.dev_gen_ptr = &priv->mr.dev_gen;
assert(desc > MLX5_TX_COMP_THRESH);
ethdev: new Rx/Tx offloads API This patch check if a input requested offloading is valid or not. Any reuqested offloading must be supported in the device capabilities. Any offloading is disabled by default if it is not set in the parameter dev_conf->[rt]xmode.offloads to rte_eth_dev_configure() and [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If any offloading is enabled in rte_eth_dev_configure() by application, it is enabled on all queues no matter whether it is per-queue or per-port type and no matter whether it is set or cleared in [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup(). If a per-queue offloading hasn't be enabled in rte_eth_dev_configure(), it can be enabled or disabled for individual queue in ret_eth_[rt]x_queue_setup(). A new added offloading is the one which hasn't been enabled in rte_eth_dev_configure() and is reuqested to be enabled in rte_eth_[rt]x_queue_setup(), it must be per-queue type, otherwise trigger an error log. The underlying PMD must be aware that the requested offloadings to PMD specific queue_setup() function only carries those new added offloadings of per-queue type. This patch can make above such checking in a common way in rte_ethdev layer to avoid same checking in underlying PMD. This patch assumes that all PMDs in 18.05-rc2 have already converted to offload API defined in 17.11 . It also assumes that all PMDs can return correct offloading capabilities in rte_eth_dev_infos_get(). In the beginning of [rt]x_queue_setup() of underlying PMD, add offloads = [rt]xconf->offloads | dev->data->dev_conf.[rt]xmode.offloads; to keep same as offload API defined in 17.11 to avoid upper application broken due to offload API change. PMD can use the info that input [rt]xconf->offloads only carry the new added per-queue offloads to do some optimization or some code change on base of this patch. Signed-off-by: Wei Dai <wei.dai@intel.com> Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com> Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
2018-05-10 11:56:55 +00:00
tmpl->txq.offloads = conf->offloads |
dev->data->dev_conf.txmode.offloads;
tmpl->priv = priv;
tmpl->socket = socket;
tmpl->txq.elts_n = log2above(desc);
tmpl->idx = idx;
txq_set_params(tmpl);
DRV_LOG(DEBUG, "port %u device_attr.max_qp_wr is %d",
dev->data->port_id, priv->sh->device_attr.orig_attr.max_qp_wr);
DRV_LOG(DEBUG, "port %u device_attr.max_sge is %d",
dev->data->port_id, priv->sh->device_attr.orig_attr.max_sge);
tmpl->txq.elts =
(struct rte_mbuf *(*)[1 << tmpl->txq.elts_n])(tmpl + 1);
tmpl->txq.stats.idx = idx;
rte_atomic32_inc(&tmpl->refcnt);
LIST_INSERT_HEAD(&priv->txqsctrl, tmpl, next);
return tmpl;
net/mlx5: add new memory region support This is the new design of Memory Region (MR) for mlx PMD, in order to: - Accommodate the new memory hotplug model. - Support non-contiguous Mempool. There are multiple layers for MR search. L0 is to look up the last-hit entry which is pointed by mr_ctrl->mru (Most Recently Used). If L0 misses, L1 is to look up the address in a fixed-sized array by linear search. L0/L1 is in an inline function - mlx5_mr_lookup_cache(). If L1 misses, the bottom-half function is called to look up the address from the bigger local cache of the queue. This is L2 - mlx5_mr_addr2mr_bh() and it is not an inline function. Data structure for L2 is the Binary Tree. If L2 misses, the search falls into the slowest path which takes locks in order to access global device cache (priv->mr.cache) which is also a B-tree and caches the original MR list (priv->mr.mr_list) of the device. Unless the global cache is overflowed, it is all-inclusive of the MR list. This is L3 - mlx5_mr_lookup_dev(). The size of the L3 cache table is limited and can't be expanded on the fly due to deadlock. Refer to the comments in the code for the details - mr_lookup_dev(). If L3 is overflowed, the list will have to be searched directly bypassing the cache although it is slower. If L3 misses, a new MR for the address should be created - mlx5_mr_create(). When it creates a new MR, it tries to register adjacent memsegs as much as possible which are virtually contiguous around the address. This must take two locks - memory_hotplug_lock and priv->mr.rwlock. Due to memory_hotplug_lock, there can't be any allocation/free of memory inside. In the free callback of the memory hotplug event, freed space is searched from the MR list and corresponding bits are cleared from the bitmap of MRs. This can fragment a MR and the MR will have multiple search entries in the caches. Once there's a change by the event, the global cache must be rebuilt and all the per-queue caches will be flushed as well. If memory is frequently freed in run-time, that may cause jitter on dataplane processing in the worst case by incurring MR cache flush and rebuild. But, it would be the least probable scenario. To guarantee the most optimal performance, it is highly recommended to use an EAL option - '--socket-mem'. Then, the reserved memory will be pinned and won't be freed dynamically. And it is also recommended to configure per-lcore cache of Mempool. Even though there're many MRs for a device or MRs are highly fragmented, the cache of Mempool will be much helpful to reduce misses on per-queue caches anyway. '--legacy-mem' is also supported. Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
2018-05-09 11:09:04 +00:00
error:
rte_free(tmpl);
return NULL;
}
/**
* Get a Tx queue.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* TX queue index.
*
* @return
* A pointer to the queue if it exists.
*/
struct mlx5_txq_ctrl *
mlx5_txq_get(struct rte_eth_dev *dev, uint16_t idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_ctrl *ctrl = NULL;
if ((*priv->txqs)[idx]) {
ctrl = container_of((*priv->txqs)[idx], struct mlx5_txq_ctrl,
txq);
mlx5_txq_ibv_get(dev, idx);
rte_atomic32_inc(&ctrl->refcnt);
}
return ctrl;
}
/**
* Release a Tx queue.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* TX queue index.
*
* @return
* 1 while a reference on it exists, 0 when freed.
*/
int
mlx5_txq_release(struct rte_eth_dev *dev, uint16_t idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_ctrl *txq;
size_t page_size = sysconf(_SC_PAGESIZE);
if (!(*priv->txqs)[idx])
return 0;
txq = container_of((*priv->txqs)[idx], struct mlx5_txq_ctrl, txq);
if (txq->ibv && !mlx5_txq_ibv_release(txq->ibv))
txq->ibv = NULL;
if (priv->uar_base)
munmap((void *)RTE_ALIGN_FLOOR((uintptr_t)txq->txq.bf_reg,
page_size), page_size);
if (rte_atomic32_dec_and_test(&txq->refcnt)) {
txq_free_elts(txq);
net/mlx5: add new memory region support This is the new design of Memory Region (MR) for mlx PMD, in order to: - Accommodate the new memory hotplug model. - Support non-contiguous Mempool. There are multiple layers for MR search. L0 is to look up the last-hit entry which is pointed by mr_ctrl->mru (Most Recently Used). If L0 misses, L1 is to look up the address in a fixed-sized array by linear search. L0/L1 is in an inline function - mlx5_mr_lookup_cache(). If L1 misses, the bottom-half function is called to look up the address from the bigger local cache of the queue. This is L2 - mlx5_mr_addr2mr_bh() and it is not an inline function. Data structure for L2 is the Binary Tree. If L2 misses, the search falls into the slowest path which takes locks in order to access global device cache (priv->mr.cache) which is also a B-tree and caches the original MR list (priv->mr.mr_list) of the device. Unless the global cache is overflowed, it is all-inclusive of the MR list. This is L3 - mlx5_mr_lookup_dev(). The size of the L3 cache table is limited and can't be expanded on the fly due to deadlock. Refer to the comments in the code for the details - mr_lookup_dev(). If L3 is overflowed, the list will have to be searched directly bypassing the cache although it is slower. If L3 misses, a new MR for the address should be created - mlx5_mr_create(). When it creates a new MR, it tries to register adjacent memsegs as much as possible which are virtually contiguous around the address. This must take two locks - memory_hotplug_lock and priv->mr.rwlock. Due to memory_hotplug_lock, there can't be any allocation/free of memory inside. In the free callback of the memory hotplug event, freed space is searched from the MR list and corresponding bits are cleared from the bitmap of MRs. This can fragment a MR and the MR will have multiple search entries in the caches. Once there's a change by the event, the global cache must be rebuilt and all the per-queue caches will be flushed as well. If memory is frequently freed in run-time, that may cause jitter on dataplane processing in the worst case by incurring MR cache flush and rebuild. But, it would be the least probable scenario. To guarantee the most optimal performance, it is highly recommended to use an EAL option - '--socket-mem'. Then, the reserved memory will be pinned and won't be freed dynamically. And it is also recommended to configure per-lcore cache of Mempool. Even though there're many MRs for a device or MRs are highly fragmented, the cache of Mempool will be much helpful to reduce misses on per-queue caches anyway. '--legacy-mem' is also supported. Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
2018-05-09 11:09:04 +00:00
mlx5_mr_btree_free(&txq->txq.mr_ctrl.cache_bh);
LIST_REMOVE(txq, next);
rte_free(txq);
(*priv->txqs)[idx] = NULL;
return 0;
}
return 1;
}
/**
* Verify if the queue can be released.
*
* @param dev
* Pointer to Ethernet device.
* @param idx
* TX queue index.
*
* @return
* 1 if the queue can be released.
*/
int
mlx5_txq_releasable(struct rte_eth_dev *dev, uint16_t idx)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_ctrl *txq;
if (!(*priv->txqs)[idx])
return -1;
txq = container_of((*priv->txqs)[idx], struct mlx5_txq_ctrl, txq);
return (rte_atomic32_read(&txq->refcnt) == 1);
}
/**
* Verify the Tx Queue list is empty
*
* @param dev
* Pointer to Ethernet device.
*
* @return
* The number of object not released.
*/
int
mlx5_txq_verify(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_txq_ctrl *txq;
int ret = 0;
LIST_FOREACH(txq, &priv->txqsctrl, next) {
DRV_LOG(DEBUG, "port %u Tx queue %u still referenced",
dev->data->port_id, txq->idx);
++ret;
}
return ret;
}