numam-dpdk/lib/Makefile

130 lines
6.2 KiB
Makefile
Raw Normal View History

# BSD LICENSE
#
# Copyright(c) 2010-2017 Intel Corporation. All rights reserved.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# * Neither the name of Intel Corporation nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
include $(RTE_SDK)/mk/rte.vars.mk
DIRS-y += librte_compat
DIRS-$(CONFIG_RTE_LIBRTE_EAL) += librte_eal
DIRS-$(CONFIG_RTE_LIBRTE_PCI) += librte_pci
DEPDIRS-librte_pci := librte_eal
DIRS-$(CONFIG_RTE_LIBRTE_RING) += librte_ring
DEPDIRS-librte_ring := librte_eal
DIRS-$(CONFIG_RTE_LIBRTE_MEMPOOL) += librte_mempool
DEPDIRS-librte_mempool := librte_eal librte_ring
DIRS-$(CONFIG_RTE_LIBRTE_MBUF) += librte_mbuf
DEPDIRS-librte_mbuf := librte_eal librte_mempool
DIRS-$(CONFIG_RTE_LIBRTE_TIMER) += librte_timer
DEPDIRS-librte_timer := librte_eal
DIRS-$(CONFIG_RTE_LIBRTE_CFGFILE) += librte_cfgfile
DIRS-$(CONFIG_RTE_LIBRTE_CMDLINE) += librte_cmdline
DEPDIRS-librte_cmdline := librte_eal
DIRS-$(CONFIG_RTE_LIBRTE_ETHER) += librte_ether
DEPDIRS-librte_ether := librte_net librte_eal librte_mempool librte_ring
DEPDIRS-librte_ether += librte_mbuf
DIRS-$(CONFIG_RTE_LIBRTE_CRYPTODEV) += librte_cryptodev
DEPDIRS-librte_cryptodev := librte_eal librte_mempool librte_ring librte_mbuf
DEPDIRS-librte_cryptodev += librte_kvargs
DIRS-$(CONFIG_RTE_LIBRTE_SECURITY) += librte_security
DEPDIRS-librte_security := librte_eal librte_mempool librte_ring librte_mbuf
DEPDIRS-librte_security += librte_ether
DEPDIRS-librte_security += librte_cryptodev
DIRS-$(CONFIG_RTE_LIBRTE_EVENTDEV) += librte_eventdev
DEPDIRS-librte_eventdev := librte_eal librte_ring librte_ether librte_hash
DIRS-$(CONFIG_RTE_LIBRTE_VHOST) += librte_vhost
DEPDIRS-librte_vhost := librte_eal librte_mempool librte_mbuf librte_ether
DIRS-$(CONFIG_RTE_LIBRTE_HASH) += librte_hash
DEPDIRS-librte_hash := librte_eal librte_ring
DIRS-$(CONFIG_RTE_LIBRTE_EFD) += librte_efd
DEPDIRS-librte_efd := librte_eal librte_ring librte_hash
DIRS-$(CONFIG_RTE_LIBRTE_LPM) += librte_lpm
DEPDIRS-librte_lpm := librte_eal
DIRS-$(CONFIG_RTE_LIBRTE_ACL) += librte_acl
DEPDIRS-librte_acl := librte_eal
DIRS-$(CONFIG_RTE_LIBRTE_MEMBER) += librte_member
DEPDIRS-librte_member := librte_eal librte_hash
DIRS-$(CONFIG_RTE_LIBRTE_NET) += librte_net
DEPDIRS-librte_net := librte_mbuf librte_eal
DIRS-$(CONFIG_RTE_LIBRTE_IP_FRAG) += librte_ip_frag
DEPDIRS-librte_ip_frag := librte_eal librte_mempool librte_mbuf librte_ether
DEPDIRS-librte_ip_frag += librte_hash
lib/gro: add Generic Receive Offload API framework Generic Receive Offload (GRO) is a widely used SW-based offloading technique to reduce per-packet processing overhead. It gains performance by reassembling small packets into large ones. This patchset is to support GRO in DPDK. To support GRO, this patch implements a GRO API framework. To enable more flexibility to applications, DPDK GRO is implemented as a user library. Applications explicitly use the GRO library to merge small packets into large ones. DPDK GRO provides two reassembly modes. One is called lightweight mode, the other is called heavyweight mode. If applications want to merge packets in a simple way and the number of packets is relatively small, they can use the lightweight mode. If applications need more fine-grained controls, they can choose the heavyweight mode. rte_gro_reassemble_burst is the main reassembly API which is used in lightweight mode and processes N packets at a time. For applications, performing GRO in lightweight mode is simple. They just need to invoke rte_gro_reassemble_burst. Applications can get GROed packets as soon as rte_gro_reassemble_burst returns. rte_gro_reassemble is the main reassembly API which is used in heavyweight mode and tries to merge N inputted packets with the packets in GRO reassembly tables. For applications, performing GRO in heavyweight mode is relatively complicated. Before performing GRO, applications need to create a GRO context object, which keeps reassembly tables of desired GRO types, by rte_gro_ctx_create. Then applications can use rte_gro_reassemble to merge packets. The GROed packets are in the reassembly tables of the GRO context object. If applications want to get them, applications need to manually flush them by flush API. Signed-off-by: Jiayu Hu <jiayu.hu@intel.com> Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 13:46:44 +08:00
DIRS-$(CONFIG_RTE_LIBRTE_GRO) += librte_gro
DEPDIRS-librte_gro := librte_eal librte_mbuf librte_ether librte_net
2015-02-24 17:33:23 +01:00
DIRS-$(CONFIG_RTE_LIBRTE_JOBSTATS) += librte_jobstats
DEPDIRS-librte_jobstats := librte_eal
DIRS-$(CONFIG_RTE_LIBRTE_METRICS) += librte_metrics
DEPDIRS-librte_metrics := librte_eal
DIRS-$(CONFIG_RTE_LIBRTE_BITRATE) += librte_bitratestats
DEPDIRS-librte_bitratestats := librte_eal librte_metrics librte_ether
DIRS-$(CONFIG_RTE_LIBRTE_LATENCY_STATS) += librte_latencystats
DEPDIRS-librte_latencystats := librte_eal librte_metrics librte_ether librte_mbuf
DIRS-$(CONFIG_RTE_LIBRTE_POWER) += librte_power
DEPDIRS-librte_power := librte_eal
DIRS-$(CONFIG_RTE_LIBRTE_METER) += librte_meter
DEPDIRS-librte_meter := librte_eal
DIRS-$(CONFIG_RTE_LIBRTE_FLOW_CLASSIFY) += librte_flow_classify
DEPDIRS-librte_flow_classify := librte_net librte_table librte_acl
DIRS-$(CONFIG_RTE_LIBRTE_SCHED) += librte_sched
DEPDIRS-librte_sched := librte_eal librte_mempool librte_mbuf librte_net
DEPDIRS-librte_sched += librte_timer
DIRS-$(CONFIG_RTE_LIBRTE_KVARGS) += librte_kvargs
DEPDIRS-librte_kvargs := librte_eal
DIRS-$(CONFIG_RTE_LIBRTE_DISTRIBUTOR) += librte_distributor
DEPDIRS-librte_distributor := librte_eal librte_mbuf librte_ether
DIRS-$(CONFIG_RTE_LIBRTE_PORT) += librte_port
DEPDIRS-librte_port := librte_eal librte_mempool librte_mbuf librte_ether
DEPDIRS-librte_port += librte_ip_frag librte_sched
ifeq ($(CONFIG_RTE_LIBRTE_KNI),y)
DEPDIRS-librte_port += librte_kni
endif
DIRS-$(CONFIG_RTE_LIBRTE_TABLE) += librte_table
DEPDIRS-librte_table := librte_eal librte_mempool librte_mbuf
DEPDIRS-librte_table += librte_port librte_lpm librte_hash
ifeq ($(CONFIG_RTE_LIBRTE_ACL),y)
DEPDIRS-librte_table += librte_acl
endif
DIRS-$(CONFIG_RTE_LIBRTE_PIPELINE) += librte_pipeline
DEPDIRS-librte_pipeline := librte_eal librte_mempool librte_mbuf
DEPDIRS-librte_pipeline += librte_table librte_port
DIRS-$(CONFIG_RTE_LIBRTE_REORDER) += librte_reorder
DEPDIRS-librte_reorder := librte_eal librte_mempool librte_mbuf
pdump: add new library for packet capture The librte_pdump library provides a framework for packet capturing in dpdk. The library provides set of APIs to initialize the packet capture framework, to enable or disable the packet capture, and to uninitialize it. The librte_pdump library works on a client/server model. The server is responsible for enabling or disabling the packet capture and the clients are responsible for requesting the enabling or disabling of the packet capture. Enabling APIs are supported with port, queue, ring and mempool parameters. Applications should pass on this information to get the packets from the dpdk ports. For enabling requests from applications, library creates the client request containing the mempool, ring, port and queue information and sends the request to the server. After receiving the request, server registers the Rx and Tx callbacks for all the port and queues. After the callbacks registration, registered callbacks will get the Rx and Tx packets. Packets then will be copied to the new mbufs that are allocated from the user passed mempool. These new mbufs then will be enqueued to the application passed ring. Applications need to dequeue the mbufs from the rings and direct them to the devices like pcap vdev for viewing the packets outside of the dpdk using the packet capture tools. For disabling requests, library creates the client request containing the port and queue information and sends the request to the server. After receiving the request, server removes the Rx and Tx callback for all the port and queues. Signed-off-by: Reshma Pattan <reshma.pattan@intel.com> Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
2016-06-15 15:06:22 +01:00
DIRS-$(CONFIG_RTE_LIBRTE_PDUMP) += librte_pdump
DEPDIRS-librte_pdump := librte_eal librte_mempool librte_mbuf librte_ether
gso: add Generic Segmentation Offload API framework Generic Segmentation Offload (GSO) is a SW technique to split large packets into small ones. Akin to TSO, GSO enables applications to operate on large packets, thus reducing per-packet processing overhead. To enable more flexibility to applications, DPDK GSO is implemented as a standalone library. Applications explicitly use the GSO library to segment packets. To segment a packet requires two steps. The first is to set proper flags to mbuf->ol_flags, where the flags are the same as that of TSO. The second is to call the segmentation API, rte_gso_segment(). This patch introduces the GSO API framework to DPDK. rte_gso_segment() splits an input packet into small ones in each invocation. The GSO library refers to these small packets generated by rte_gso_segment() as GSO segments. Each of the newly-created GSO segments is organized as a two-segment MBUF, where the first segment is a standard MBUF, which stores a copy of packet header, and the second is an indirect MBUF which points to a section of data in the input packet. rte_gso_segment() reduces the refcnt of the input packet by 1. Therefore, when all GSO segments are freed, the input packet is freed automatically. Additionally, since each GSO segment has multiple MBUFs (i.e. 2 MBUFs), the driver of the interface which the GSO segments are sent to should support to transmit multi-segment packets. The GSO framework clears the PKT_TX_TCP_SEG flag for both the input packet, and all produced GSO segments in the event of success, since segmentation in hardware is no longer required at that point. Signed-off-by: Jiayu Hu <jiayu.hu@intel.com> Signed-off-by: Mark Kavanagh <mark.b.kavanagh@intel.com> Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
2017-10-07 22:56:39 +08:00
DIRS-$(CONFIG_RTE_LIBRTE_GSO) += librte_gso
DEPDIRS-librte_gso := librte_eal librte_mbuf librte_ether librte_net
DEPDIRS-librte_gso += librte_mempool
ifeq ($(CONFIG_RTE_EXEC_ENV_LINUXAPP),y)
DIRS-$(CONFIG_RTE_LIBRTE_KNI) += librte_kni
endif
DEPDIRS-librte_kni := librte_eal librte_mempool librte_mbuf librte_ether
include $(RTE_SDK)/mk/rte.subdir.mk