numam-dpdk/lib/librte_vhost/vhost_crypto.c

1612 lines
40 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017-2018 Intel Corporation
*/
#include <rte_malloc.h>
#include <rte_hash.h>
#include <rte_jhash.h>
#include <rte_mbuf.h>
#include <rte_cryptodev.h>
#include "rte_vhost_crypto.h"
#include "vhost.h"
#include "vhost_user.h"
#include "virtio_crypto.h"
#define INHDR_LEN (sizeof(struct virtio_crypto_inhdr))
#define IV_OFFSET (sizeof(struct rte_crypto_op) + \
sizeof(struct rte_crypto_sym_op))
#ifdef RTE_LIBRTE_VHOST_DEBUG
#define VC_LOG_ERR(fmt, args...) \
RTE_LOG(ERR, USER1, "[%s] %s() line %u: " fmt "\n", \
"Vhost-Crypto", __func__, __LINE__, ## args)
#define VC_LOG_INFO(fmt, args...) \
RTE_LOG(INFO, USER1, "[%s] %s() line %u: " fmt "\n", \
"Vhost-Crypto", __func__, __LINE__, ## args)
#define VC_LOG_DBG(fmt, args...) \
RTE_LOG(DEBUG, USER1, "[%s] %s() line %u: " fmt "\n", \
"Vhost-Crypto", __func__, __LINE__, ## args)
#else
#define VC_LOG_ERR(fmt, args...) \
RTE_LOG(ERR, USER1, "[VHOST-Crypto]: " fmt "\n", ## args)
#define VC_LOG_INFO(fmt, args...) \
RTE_LOG(INFO, USER1, "[VHOST-Crypto]: " fmt "\n", ## args)
#define VC_LOG_DBG(fmt, args...)
#endif
#define VIRTIO_CRYPTO_FEATURES ((1 << VIRTIO_F_NOTIFY_ON_EMPTY) | \
(1 << VIRTIO_RING_F_INDIRECT_DESC) | \
(1 << VIRTIO_RING_F_EVENT_IDX) | \
(1 << VIRTIO_CRYPTO_SERVICE_CIPHER) | \
(1 << VIRTIO_CRYPTO_SERVICE_MAC) | \
(1 << VIRTIO_NET_F_CTRL_VQ))
#define IOVA_TO_VVA(t, r, a, l, p) \
((t)(uintptr_t)vhost_iova_to_vva(r->dev, r->vq, a, l, p))
static int
cipher_algo_transform(uint32_t virtio_cipher_algo)
{
int ret;
switch (virtio_cipher_algo) {
case VIRTIO_CRYPTO_CIPHER_AES_CBC:
ret = RTE_CRYPTO_CIPHER_AES_CBC;
break;
case VIRTIO_CRYPTO_CIPHER_AES_CTR:
ret = RTE_CRYPTO_CIPHER_AES_CTR;
break;
case VIRTIO_CRYPTO_CIPHER_DES_ECB:
ret = -VIRTIO_CRYPTO_NOTSUPP;
break;
case VIRTIO_CRYPTO_CIPHER_DES_CBC:
ret = RTE_CRYPTO_CIPHER_DES_CBC;
break;
case VIRTIO_CRYPTO_CIPHER_3DES_ECB:
ret = RTE_CRYPTO_CIPHER_3DES_ECB;
break;
case VIRTIO_CRYPTO_CIPHER_3DES_CBC:
ret = RTE_CRYPTO_CIPHER_3DES_CBC;
break;
case VIRTIO_CRYPTO_CIPHER_3DES_CTR:
ret = RTE_CRYPTO_CIPHER_3DES_CTR;
break;
case VIRTIO_CRYPTO_CIPHER_KASUMI_F8:
ret = RTE_CRYPTO_CIPHER_KASUMI_F8;
break;
case VIRTIO_CRYPTO_CIPHER_SNOW3G_UEA2:
ret = RTE_CRYPTO_CIPHER_SNOW3G_UEA2;
break;
case VIRTIO_CRYPTO_CIPHER_AES_F8:
ret = RTE_CRYPTO_CIPHER_AES_F8;
break;
case VIRTIO_CRYPTO_CIPHER_AES_XTS:
ret = RTE_CRYPTO_CIPHER_AES_XTS;
break;
case VIRTIO_CRYPTO_CIPHER_ZUC_EEA3:
ret = RTE_CRYPTO_CIPHER_ZUC_EEA3;
break;
default:
ret = -VIRTIO_CRYPTO_BADMSG;
break;
}
return ret;
}
static int
auth_algo_transform(uint32_t virtio_auth_algo)
{
int ret;
switch (virtio_auth_algo) {
case VIRTIO_CRYPTO_NO_MAC:
ret = RTE_CRYPTO_AUTH_NULL;
break;
case VIRTIO_CRYPTO_MAC_HMAC_MD5:
ret = RTE_CRYPTO_AUTH_MD5_HMAC;
break;
case VIRTIO_CRYPTO_MAC_HMAC_SHA1:
ret = RTE_CRYPTO_AUTH_SHA1_HMAC;
break;
case VIRTIO_CRYPTO_MAC_HMAC_SHA_224:
ret = RTE_CRYPTO_AUTH_SHA224_HMAC;
break;
case VIRTIO_CRYPTO_MAC_HMAC_SHA_256:
ret = RTE_CRYPTO_AUTH_SHA256_HMAC;
break;
case VIRTIO_CRYPTO_MAC_HMAC_SHA_384:
ret = RTE_CRYPTO_AUTH_SHA384_HMAC;
break;
case VIRTIO_CRYPTO_MAC_HMAC_SHA_512:
ret = RTE_CRYPTO_AUTH_SHA512_HMAC;
break;
case VIRTIO_CRYPTO_MAC_CMAC_3DES:
ret = -VIRTIO_CRYPTO_NOTSUPP;
break;
case VIRTIO_CRYPTO_MAC_CMAC_AES:
ret = RTE_CRYPTO_AUTH_AES_CMAC;
break;
case VIRTIO_CRYPTO_MAC_KASUMI_F9:
ret = RTE_CRYPTO_AUTH_KASUMI_F9;
break;
case VIRTIO_CRYPTO_MAC_SNOW3G_UIA2:
ret = RTE_CRYPTO_AUTH_SNOW3G_UIA2;
break;
case VIRTIO_CRYPTO_MAC_GMAC_AES:
ret = RTE_CRYPTO_AUTH_AES_GMAC;
break;
case VIRTIO_CRYPTO_MAC_GMAC_TWOFISH:
ret = -VIRTIO_CRYPTO_NOTSUPP;
break;
case VIRTIO_CRYPTO_MAC_CBCMAC_AES:
ret = RTE_CRYPTO_AUTH_AES_CBC_MAC;
break;
case VIRTIO_CRYPTO_MAC_CBCMAC_KASUMI_F9:
ret = -VIRTIO_CRYPTO_NOTSUPP;
break;
case VIRTIO_CRYPTO_MAC_XCBC_AES:
ret = RTE_CRYPTO_AUTH_AES_XCBC_MAC;
break;
default:
ret = -VIRTIO_CRYPTO_BADMSG;
break;
}
return ret;
}
static int get_iv_len(enum rte_crypto_cipher_algorithm algo)
{
int len;
switch (algo) {
case RTE_CRYPTO_CIPHER_3DES_CBC:
len = 8;
break;
case RTE_CRYPTO_CIPHER_3DES_CTR:
len = 8;
break;
case RTE_CRYPTO_CIPHER_3DES_ECB:
len = 8;
break;
case RTE_CRYPTO_CIPHER_AES_CBC:
len = 16;
break;
/* TODO: add common algos */
default:
len = -1;
break;
}
return len;
}
/**
* vhost_crypto struct is used to maintain a number of virtio_cryptos and
* one DPDK crypto device that deals with all crypto workloads. It is declared
* here and defined in vhost_crypto.c
*/
struct vhost_crypto {
/** Used to lookup DPDK Cryptodev Session based on VIRTIO crypto
* session ID.
*/
struct rte_hash *session_map;
struct rte_mempool *mbuf_pool;
struct rte_mempool *sess_pool;
struct rte_mempool *sess_priv_pool;
struct rte_mempool *wb_pool;
/** DPDK cryptodev ID */
uint8_t cid;
uint16_t nb_qps;
uint64_t last_session_id;
uint64_t cache_session_id;
struct rte_cryptodev_sym_session *cache_session;
/** socket id for the device */
int socket_id;
struct virtio_net *dev;
uint8_t option;
} __rte_cache_aligned;
struct vhost_crypto_writeback_data {
uint8_t *src;
uint8_t *dst;
uint64_t len;
struct vhost_crypto_writeback_data *next;
};
struct vhost_crypto_data_req {
struct vring_desc *head;
struct virtio_net *dev;
struct virtio_crypto_inhdr *inhdr;
struct vhost_virtqueue *vq;
struct vhost_crypto_writeback_data *wb;
struct rte_mempool *wb_pool;
uint16_t desc_idx;
uint16_t len;
uint16_t zero_copy;
};
static int
transform_cipher_param(struct rte_crypto_sym_xform *xform,
VhostUserCryptoSessionParam *param)
{
int ret;
ret = cipher_algo_transform(param->cipher_algo);
if (unlikely(ret < 0))
return ret;
xform->type = RTE_CRYPTO_SYM_XFORM_CIPHER;
xform->cipher.algo = (enum rte_crypto_cipher_algorithm)ret;
xform->cipher.key.length = param->cipher_key_len;
if (xform->cipher.key.length > 0)
xform->cipher.key.data = param->cipher_key_buf;
if (param->dir == VIRTIO_CRYPTO_OP_ENCRYPT)
xform->cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
else if (param->dir == VIRTIO_CRYPTO_OP_DECRYPT)
xform->cipher.op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
else {
VC_LOG_DBG("Bad operation type");
return -VIRTIO_CRYPTO_BADMSG;
}
ret = get_iv_len(xform->cipher.algo);
if (unlikely(ret < 0))
return ret;
xform->cipher.iv.length = (uint16_t)ret;
xform->cipher.iv.offset = IV_OFFSET;
return 0;
}
static int
transform_chain_param(struct rte_crypto_sym_xform *xforms,
VhostUserCryptoSessionParam *param)
{
struct rte_crypto_sym_xform *xform_cipher, *xform_auth;
int ret;
switch (param->chaining_dir) {
case VIRTIO_CRYPTO_SYM_ALG_CHAIN_ORDER_HASH_THEN_CIPHER:
xform_auth = xforms;
xform_cipher = xforms->next;
xform_cipher->cipher.op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
xform_auth->auth.op = RTE_CRYPTO_AUTH_OP_VERIFY;
break;
case VIRTIO_CRYPTO_SYM_ALG_CHAIN_ORDER_CIPHER_THEN_HASH:
xform_cipher = xforms;
xform_auth = xforms->next;
xform_cipher->cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
xform_auth->auth.op = RTE_CRYPTO_AUTH_OP_GENERATE;
break;
default:
return -VIRTIO_CRYPTO_BADMSG;
}
/* cipher */
ret = cipher_algo_transform(param->cipher_algo);
if (unlikely(ret < 0))
return ret;
xform_cipher->type = RTE_CRYPTO_SYM_XFORM_CIPHER;
xform_cipher->cipher.algo = (enum rte_crypto_cipher_algorithm)ret;
xform_cipher->cipher.key.length = param->cipher_key_len;
xform_cipher->cipher.key.data = param->cipher_key_buf;
ret = get_iv_len(xform_cipher->cipher.algo);
if (unlikely(ret < 0))
return ret;
xform_cipher->cipher.iv.length = (uint16_t)ret;
xform_cipher->cipher.iv.offset = IV_OFFSET;
/* auth */
xform_auth->type = RTE_CRYPTO_SYM_XFORM_AUTH;
ret = auth_algo_transform(param->hash_algo);
if (unlikely(ret < 0))
return ret;
xform_auth->auth.algo = (enum rte_crypto_auth_algorithm)ret;
xform_auth->auth.digest_length = param->digest_len;
xform_auth->auth.key.length = param->auth_key_len;
xform_auth->auth.key.data = param->auth_key_buf;
return 0;
}
static void
vhost_crypto_create_sess(struct vhost_crypto *vcrypto,
VhostUserCryptoSessionParam *sess_param)
{
struct rte_crypto_sym_xform xform1 = {0}, xform2 = {0};
struct rte_cryptodev_sym_session *session;
int ret;
switch (sess_param->op_type) {
case VIRTIO_CRYPTO_SYM_OP_NONE:
case VIRTIO_CRYPTO_SYM_OP_CIPHER:
ret = transform_cipher_param(&xform1, sess_param);
if (unlikely(ret)) {
VC_LOG_ERR("Error transform session msg (%i)", ret);
sess_param->session_id = ret;
return;
}
break;
case VIRTIO_CRYPTO_SYM_OP_ALGORITHM_CHAINING:
if (unlikely(sess_param->hash_mode !=
VIRTIO_CRYPTO_SYM_HASH_MODE_AUTH)) {
sess_param->session_id = -VIRTIO_CRYPTO_NOTSUPP;
VC_LOG_ERR("Error transform session message (%i)",
-VIRTIO_CRYPTO_NOTSUPP);
return;
}
xform1.next = &xform2;
ret = transform_chain_param(&xform1, sess_param);
if (unlikely(ret)) {
VC_LOG_ERR("Error transform session message (%i)", ret);
sess_param->session_id = ret;
return;
}
break;
default:
VC_LOG_ERR("Algorithm not yet supported");
sess_param->session_id = -VIRTIO_CRYPTO_NOTSUPP;
return;
}
session = rte_cryptodev_sym_session_create(vcrypto->sess_pool);
if (!session) {
VC_LOG_ERR("Failed to create session");
sess_param->session_id = -VIRTIO_CRYPTO_ERR;
return;
}
if (rte_cryptodev_sym_session_init(vcrypto->cid, session, &xform1,
vcrypto->sess_priv_pool) < 0) {
VC_LOG_ERR("Failed to initialize session");
sess_param->session_id = -VIRTIO_CRYPTO_ERR;
return;
}
/* insert hash to map */
if (rte_hash_add_key_data(vcrypto->session_map,
&vcrypto->last_session_id, session) < 0) {
VC_LOG_ERR("Failed to insert session to hash table");
if (rte_cryptodev_sym_session_clear(vcrypto->cid, session) < 0)
VC_LOG_ERR("Failed to clear session");
else {
if (rte_cryptodev_sym_session_free(session) < 0)
VC_LOG_ERR("Failed to free session");
}
sess_param->session_id = -VIRTIO_CRYPTO_ERR;
return;
}
VC_LOG_INFO("Session %"PRIu64" created for vdev %i.",
vcrypto->last_session_id, vcrypto->dev->vid);
sess_param->session_id = vcrypto->last_session_id;
vcrypto->last_session_id++;
}
static int
vhost_crypto_close_sess(struct vhost_crypto *vcrypto, uint64_t session_id)
{
struct rte_cryptodev_sym_session *session;
uint64_t sess_id = session_id;
int ret;
ret = rte_hash_lookup_data(vcrypto->session_map, &sess_id,
(void **)&session);
if (unlikely(ret < 0)) {
VC_LOG_ERR("Failed to delete session %"PRIu64".", session_id);
return -VIRTIO_CRYPTO_INVSESS;
}
if (rte_cryptodev_sym_session_clear(vcrypto->cid, session) < 0) {
VC_LOG_DBG("Failed to clear session");
return -VIRTIO_CRYPTO_ERR;
}
if (rte_cryptodev_sym_session_free(session) < 0) {
VC_LOG_DBG("Failed to free session");
return -VIRTIO_CRYPTO_ERR;
}
if (rte_hash_del_key(vcrypto->session_map, &sess_id) < 0) {
VC_LOG_DBG("Failed to delete session from hash table.");
return -VIRTIO_CRYPTO_ERR;
}
VC_LOG_INFO("Session %"PRIu64" deleted for vdev %i.", sess_id,
vcrypto->dev->vid);
return 0;
}
static enum vh_result
vhost_crypto_msg_post_handler(int vid, void *msg)
{
struct virtio_net *dev = get_device(vid);
struct vhost_crypto *vcrypto;
VhostUserMsg *vmsg = msg;
enum vh_result ret = VH_RESULT_OK;
if (dev == NULL) {
VC_LOG_ERR("Invalid vid %i", vid);
return VH_RESULT_ERR;
}
vcrypto = dev->extern_data;
if (vcrypto == NULL) {
VC_LOG_ERR("Cannot find required data, is it initialized?");
return VH_RESULT_ERR;
}
if (vmsg->request.master == VHOST_USER_CRYPTO_CREATE_SESS) {
vhost_crypto_create_sess(vcrypto,
&vmsg->payload.crypto_session);
vmsg->fd_num = 0;
ret = VH_RESULT_REPLY;
} else if (vmsg->request.master == VHOST_USER_CRYPTO_CLOSE_SESS) {
if (vhost_crypto_close_sess(vcrypto, vmsg->payload.u64))
ret = VH_RESULT_ERR;
}
return ret;
}
static __rte_always_inline struct vring_desc *
find_write_desc(struct vring_desc *head, struct vring_desc *desc)
{
if (desc->flags & VRING_DESC_F_WRITE)
return desc;
while (desc->flags & VRING_DESC_F_NEXT) {
desc = &head[desc->next];
if (desc->flags & VRING_DESC_F_WRITE)
return desc;
}
return NULL;
}
static struct virtio_crypto_inhdr *
reach_inhdr(struct vhost_crypto_data_req *vc_req, struct vring_desc *desc)
{
uint64_t dlen;
struct virtio_crypto_inhdr *inhdr;
while (desc->flags & VRING_DESC_F_NEXT)
desc = &vc_req->head[desc->next];
dlen = desc->len;
inhdr = IOVA_TO_VVA(struct virtio_crypto_inhdr *, vc_req, desc->addr,
&dlen, VHOST_ACCESS_WO);
if (unlikely(!inhdr || dlen != desc->len))
return NULL;
return inhdr;
}
static __rte_always_inline int
move_desc(struct vring_desc *head, struct vring_desc **cur_desc,
uint32_t size)
{
struct vring_desc *desc = *cur_desc;
int left = size;
rte_prefetch0(&head[desc->next]);
left -= desc->len;
while ((desc->flags & VRING_DESC_F_NEXT) && left > 0) {
desc = &head[desc->next];
rte_prefetch0(&head[desc->next]);
left -= desc->len;
}
if (unlikely(left > 0))
return -1;
*cur_desc = &head[desc->next];
return 0;
}
static __rte_always_inline void *
get_data_ptr(struct vhost_crypto_data_req *vc_req, struct vring_desc *cur_desc,
uint8_t perm)
{
void *data;
uint64_t dlen = cur_desc->len;
data = IOVA_TO_VVA(void *, vc_req, cur_desc->addr, &dlen, perm);
if (unlikely(!data || dlen != cur_desc->len)) {
VC_LOG_ERR("Failed to map object");
return NULL;
}
return data;
}
static int
copy_data(void *dst_data, struct vhost_crypto_data_req *vc_req,
struct vring_desc **cur_desc, uint32_t size)
{
struct vring_desc *desc = *cur_desc;
uint64_t remain, addr, dlen, len;
uint32_t to_copy;
uint8_t *data = dst_data;
uint8_t *src;
int left = size;
rte_prefetch0(&vc_req->head[desc->next]);
to_copy = RTE_MIN(desc->len, (uint32_t)left);
dlen = to_copy;
src = IOVA_TO_VVA(uint8_t *, vc_req, desc->addr, &dlen,
VHOST_ACCESS_RO);
if (unlikely(!src || !dlen))
return -1;
rte_memcpy((uint8_t *)data, src, dlen);
data += dlen;
if (unlikely(dlen < to_copy)) {
remain = to_copy - dlen;
addr = desc->addr + dlen;
while (remain) {
len = remain;
src = IOVA_TO_VVA(uint8_t *, vc_req, addr, &len,
VHOST_ACCESS_RO);
if (unlikely(!src || !len)) {
VC_LOG_ERR("Failed to map descriptor");
return -1;
}
rte_memcpy(data, src, len);
addr += len;
remain -= len;
data += len;
}
}
left -= to_copy;
while ((desc->flags & VRING_DESC_F_NEXT) && left > 0) {
desc = &vc_req->head[desc->next];
rte_prefetch0(&vc_req->head[desc->next]);
to_copy = RTE_MIN(desc->len, (uint32_t)left);
dlen = desc->len;
src = IOVA_TO_VVA(uint8_t *, vc_req, desc->addr, &dlen,
VHOST_ACCESS_RO);
if (unlikely(!src || !dlen)) {
VC_LOG_ERR("Failed to map descriptor");
return -1;
}
rte_memcpy(data, src, dlen);
data += dlen;
if (unlikely(dlen < to_copy)) {
remain = to_copy - dlen;
addr = desc->addr + dlen;
while (remain) {
len = remain;
src = IOVA_TO_VVA(uint8_t *, vc_req, addr, &len,
VHOST_ACCESS_RO);
if (unlikely(!src || !len)) {
VC_LOG_ERR("Failed to map descriptor");
return -1;
}
rte_memcpy(data, src, len);
addr += len;
remain -= len;
data += len;
}
}
left -= to_copy;
}
if (unlikely(left > 0)) {
VC_LOG_ERR("Incorrect virtio descriptor");
return -1;
}
*cur_desc = &vc_req->head[desc->next];
return 0;
}
static void
write_back_data(struct vhost_crypto_data_req *vc_req)
{
struct vhost_crypto_writeback_data *wb_data = vc_req->wb, *wb_last;
while (wb_data) {
rte_prefetch0(wb_data->next);
rte_memcpy(wb_data->dst, wb_data->src, wb_data->len);
wb_last = wb_data;
wb_data = wb_data->next;
rte_mempool_put(vc_req->wb_pool, wb_last);
}
}
static void
free_wb_data(struct vhost_crypto_writeback_data *wb_data,
struct rte_mempool *mp)
{
while (wb_data->next != NULL)
free_wb_data(wb_data->next, mp);
rte_mempool_put(mp, wb_data);
}
/**
* The function will allocate a vhost_crypto_writeback_data linked list
* containing the source and destination data pointers for the write back
* operation after dequeued from Cryptodev PMD queues.
*
* @param vc_req
* The vhost crypto data request pointer
* @param cur_desc
* The pointer of the current in use descriptor pointer. The content of
* cur_desc is expected to be updated after the function execution.
* @param end_wb_data
* The last write back data element to be returned. It is used only in cipher
* and hash chain operations.
* @param src
* The source data pointer
* @param offset
* The offset to both source and destination data. For source data the offset
* is the number of bytes between src and start point of cipher operation. For
* destination data the offset is the number of bytes from *cur_desc->addr
* to the point where the src will be written to.
* @param write_back_len
* The size of the write back length.
* @return
* The pointer to the start of the write back data linked list.
*/
static struct vhost_crypto_writeback_data *
prepare_write_back_data(struct vhost_crypto_data_req *vc_req,
struct vring_desc **cur_desc,
struct vhost_crypto_writeback_data **end_wb_data,
uint8_t *src,
uint32_t offset,
uint64_t write_back_len)
{
struct vhost_crypto_writeback_data *wb_data, *head;
struct vring_desc *desc = *cur_desc;
uint64_t dlen;
uint8_t *dst;
int ret;
ret = rte_mempool_get(vc_req->wb_pool, (void **)&head);
if (unlikely(ret < 0)) {
VC_LOG_ERR("no memory");
goto error_exit;
}
wb_data = head;
if (likely(desc->len > offset)) {
wb_data->src = src + offset;
dlen = desc->len;
dst = IOVA_TO_VVA(uint8_t *, vc_req, desc->addr,
&dlen, VHOST_ACCESS_RW) + offset;
if (unlikely(!dst || dlen != desc->len)) {
VC_LOG_ERR("Failed to map descriptor");
goto error_exit;
}
wb_data->dst = dst;
wb_data->len = desc->len - offset;
write_back_len -= wb_data->len;
src += offset + wb_data->len;
offset = 0;
if (unlikely(write_back_len)) {
ret = rte_mempool_get(vc_req->wb_pool,
(void **)&(wb_data->next));
if (unlikely(ret < 0)) {
VC_LOG_ERR("no memory");
goto error_exit;
}
wb_data = wb_data->next;
} else
wb_data->next = NULL;
} else
offset -= desc->len;
while (write_back_len) {
desc = &vc_req->head[desc->next];
if (unlikely(!(desc->flags & VRING_DESC_F_WRITE))) {
VC_LOG_ERR("incorrect descriptor");
goto error_exit;
}
if (desc->len <= offset) {
offset -= desc->len;
continue;
}
dlen = desc->len;
dst = IOVA_TO_VVA(uint8_t *, vc_req, desc->addr, &dlen,
VHOST_ACCESS_RW) + offset;
if (unlikely(dst == NULL || dlen != desc->len)) {
VC_LOG_ERR("Failed to map descriptor");
goto error_exit;
}
wb_data->src = src;
wb_data->dst = dst;
wb_data->len = RTE_MIN(desc->len - offset, write_back_len);
write_back_len -= wb_data->len;
src += wb_data->len;
offset = 0;
if (write_back_len) {
ret = rte_mempool_get(vc_req->wb_pool,
(void **)&(wb_data->next));
if (unlikely(ret < 0)) {
VC_LOG_ERR("no memory");
goto error_exit;
}
wb_data = wb_data->next;
} else
wb_data->next = NULL;
}
*cur_desc = &vc_req->head[desc->next];
*end_wb_data = wb_data;
return head;
error_exit:
if (head)
free_wb_data(head, vc_req->wb_pool);
return NULL;
}
static uint8_t
prepare_sym_cipher_op(struct vhost_crypto *vcrypto, struct rte_crypto_op *op,
struct vhost_crypto_data_req *vc_req,
struct virtio_crypto_cipher_data_req *cipher,
struct vring_desc *cur_desc)
{
struct vring_desc *desc = cur_desc;
struct vhost_crypto_writeback_data *ewb = NULL;
struct rte_mbuf *m_src = op->sym->m_src, *m_dst = op->sym->m_dst;
uint8_t *iv_data = rte_crypto_op_ctod_offset(op, uint8_t *, IV_OFFSET);
uint8_t ret = 0;
/* prepare */
/* iv */
if (unlikely(copy_data(iv_data, vc_req, &desc,
cipher->para.iv_len) < 0)) {
ret = VIRTIO_CRYPTO_BADMSG;
goto error_exit;
}
m_src->data_len = cipher->para.src_data_len;
switch (vcrypto->option) {
case RTE_VHOST_CRYPTO_ZERO_COPY_ENABLE:
m_src->buf_iova = gpa_to_hpa(vcrypto->dev, desc->addr,
cipher->para.src_data_len);
m_src->buf_addr = get_data_ptr(vc_req, desc, VHOST_ACCESS_RO);
if (unlikely(m_src->buf_iova == 0 ||
m_src->buf_addr == NULL)) {
VC_LOG_ERR("zero_copy may fail due to cross page data");
ret = VIRTIO_CRYPTO_ERR;
goto error_exit;
}
if (unlikely(move_desc(vc_req->head, &desc,
cipher->para.src_data_len) < 0)) {
VC_LOG_ERR("Incorrect descriptor");
ret = VIRTIO_CRYPTO_ERR;
goto error_exit;
}
break;
case RTE_VHOST_CRYPTO_ZERO_COPY_DISABLE:
vc_req->wb_pool = vcrypto->wb_pool;
if (unlikely(cipher->para.src_data_len >
RTE_MBUF_DEFAULT_BUF_SIZE)) {
VC_LOG_ERR("Not enough space to do data copy");
ret = VIRTIO_CRYPTO_ERR;
goto error_exit;
}
if (unlikely(copy_data(rte_pktmbuf_mtod(m_src, uint8_t *),
vc_req, &desc, cipher->para.src_data_len)
< 0)) {
ret = VIRTIO_CRYPTO_BADMSG;
goto error_exit;
}
break;
default:
ret = VIRTIO_CRYPTO_BADMSG;
goto error_exit;
}
/* dst */
desc = find_write_desc(vc_req->head, desc);
if (unlikely(!desc)) {
VC_LOG_ERR("Cannot find write location");
ret = VIRTIO_CRYPTO_BADMSG;
goto error_exit;
}
switch (vcrypto->option) {
case RTE_VHOST_CRYPTO_ZERO_COPY_ENABLE:
m_dst->buf_iova = gpa_to_hpa(vcrypto->dev,
desc->addr, cipher->para.dst_data_len);
m_dst->buf_addr = get_data_ptr(vc_req, desc, VHOST_ACCESS_RW);
if (unlikely(m_dst->buf_iova == 0 || m_dst->buf_addr == NULL)) {
VC_LOG_ERR("zero_copy may fail due to cross page data");
ret = VIRTIO_CRYPTO_ERR;
goto error_exit;
}
if (unlikely(move_desc(vc_req->head, &desc,
cipher->para.dst_data_len) < 0)) {
VC_LOG_ERR("Incorrect descriptor");
ret = VIRTIO_CRYPTO_ERR;
goto error_exit;
}
m_dst->data_len = cipher->para.dst_data_len;
break;
case RTE_VHOST_CRYPTO_ZERO_COPY_DISABLE:
vc_req->wb = prepare_write_back_data(vc_req, &desc, &ewb,
rte_pktmbuf_mtod(m_src, uint8_t *), 0,
cipher->para.dst_data_len);
if (unlikely(vc_req->wb == NULL)) {
ret = VIRTIO_CRYPTO_ERR;
goto error_exit;
}
break;
default:
ret = VIRTIO_CRYPTO_BADMSG;
goto error_exit;
}
/* src data */
op->type = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
op->sess_type = RTE_CRYPTO_OP_WITH_SESSION;
op->sym->cipher.data.offset = 0;
op->sym->cipher.data.length = cipher->para.src_data_len;
vc_req->inhdr = get_data_ptr(vc_req, desc, VHOST_ACCESS_WO);
if (unlikely(vc_req->inhdr == NULL)) {
ret = VIRTIO_CRYPTO_BADMSG;
goto error_exit;
}
vc_req->inhdr->status = VIRTIO_CRYPTO_OK;
vc_req->len = cipher->para.dst_data_len + INHDR_LEN;
return 0;
error_exit:
if (vc_req->wb)
free_wb_data(vc_req->wb, vc_req->wb_pool);
vc_req->len = INHDR_LEN;
return ret;
}
static uint8_t
prepare_sym_chain_op(struct vhost_crypto *vcrypto, struct rte_crypto_op *op,
struct vhost_crypto_data_req *vc_req,
struct virtio_crypto_alg_chain_data_req *chain,
struct vring_desc *cur_desc)
{
struct vring_desc *desc = cur_desc, *digest_desc;
struct vhost_crypto_writeback_data *ewb = NULL, *ewb2 = NULL;
struct rte_mbuf *m_src = op->sym->m_src, *m_dst = op->sym->m_dst;
uint8_t *iv_data = rte_crypto_op_ctod_offset(op, uint8_t *, IV_OFFSET);
uint32_t digest_offset;
void *digest_addr;
uint8_t ret = 0;
/* prepare */
/* iv */
if (unlikely(copy_data(iv_data, vc_req, &desc,
chain->para.iv_len) < 0)) {
ret = VIRTIO_CRYPTO_BADMSG;
goto error_exit;
}
m_src->data_len = chain->para.src_data_len;
switch (vcrypto->option) {
case RTE_VHOST_CRYPTO_ZERO_COPY_ENABLE:
m_dst->data_len = chain->para.dst_data_len;
m_src->buf_iova = gpa_to_hpa(vcrypto->dev, desc->addr,
chain->para.src_data_len);
m_src->buf_addr = get_data_ptr(vc_req, desc, VHOST_ACCESS_RO);
if (unlikely(m_src->buf_iova == 0 || m_src->buf_addr == NULL)) {
VC_LOG_ERR("zero_copy may fail due to cross page data");
ret = VIRTIO_CRYPTO_ERR;
goto error_exit;
}
if (unlikely(move_desc(vc_req->head, &desc,
chain->para.src_data_len) < 0)) {
VC_LOG_ERR("Incorrect descriptor");
ret = VIRTIO_CRYPTO_ERR;
goto error_exit;
}
break;
case RTE_VHOST_CRYPTO_ZERO_COPY_DISABLE:
vc_req->wb_pool = vcrypto->wb_pool;
if (unlikely(chain->para.src_data_len >
RTE_MBUF_DEFAULT_BUF_SIZE)) {
VC_LOG_ERR("Not enough space to do data copy");
ret = VIRTIO_CRYPTO_ERR;
goto error_exit;
}
if (unlikely(copy_data(rte_pktmbuf_mtod(m_src, uint8_t *),
vc_req, &desc, chain->para.src_data_len)) < 0) {
ret = VIRTIO_CRYPTO_BADMSG;
goto error_exit;
}
break;
default:
ret = VIRTIO_CRYPTO_BADMSG;
goto error_exit;
}
/* dst */
desc = find_write_desc(vc_req->head, desc);
if (unlikely(!desc)) {
VC_LOG_ERR("Cannot find write location");
ret = VIRTIO_CRYPTO_BADMSG;
goto error_exit;
}
switch (vcrypto->option) {
case RTE_VHOST_CRYPTO_ZERO_COPY_ENABLE:
m_dst->buf_iova = gpa_to_hpa(vcrypto->dev,
desc->addr, chain->para.dst_data_len);
m_dst->buf_addr = get_data_ptr(vc_req, desc, VHOST_ACCESS_RW);
if (unlikely(m_dst->buf_iova == 0 || m_dst->buf_addr == NULL)) {
VC_LOG_ERR("zero_copy may fail due to cross page data");
ret = VIRTIO_CRYPTO_ERR;
goto error_exit;
}
if (unlikely(move_desc(vc_req->head, &desc,
chain->para.dst_data_len) < 0)) {
VC_LOG_ERR("Incorrect descriptor");
ret = VIRTIO_CRYPTO_ERR;
goto error_exit;
}
op->sym->auth.digest.phys_addr = gpa_to_hpa(vcrypto->dev,
desc->addr, chain->para.hash_result_len);
op->sym->auth.digest.data = get_data_ptr(vc_req, desc,
VHOST_ACCESS_RW);
if (unlikely(op->sym->auth.digest.phys_addr == 0)) {
VC_LOG_ERR("zero_copy may fail due to cross page data");
ret = VIRTIO_CRYPTO_ERR;
goto error_exit;
}
if (unlikely(move_desc(vc_req->head, &desc,
chain->para.hash_result_len) < 0)) {
VC_LOG_ERR("Incorrect descriptor");
ret = VIRTIO_CRYPTO_ERR;
goto error_exit;
}
break;
case RTE_VHOST_CRYPTO_ZERO_COPY_DISABLE:
vc_req->wb = prepare_write_back_data(vc_req, &desc, &ewb,
rte_pktmbuf_mtod(m_src, uint8_t *),
chain->para.cipher_start_src_offset,
chain->para.dst_data_len -
chain->para.cipher_start_src_offset);
if (unlikely(vc_req->wb == NULL)) {
ret = VIRTIO_CRYPTO_ERR;
goto error_exit;
}
digest_offset = m_src->data_len;
digest_addr = rte_pktmbuf_mtod_offset(m_src, void *,
digest_offset);
digest_desc = desc;
/** create a wb_data for digest */
ewb->next = prepare_write_back_data(vc_req, &desc, &ewb2,
digest_addr, 0, chain->para.hash_result_len);
if (unlikely(ewb->next == NULL)) {
ret = VIRTIO_CRYPTO_ERR;
goto error_exit;
}
if (unlikely(copy_data(digest_addr, vc_req, &digest_desc,
chain->para.hash_result_len)) < 0) {
ret = VIRTIO_CRYPTO_BADMSG;
goto error_exit;
}
op->sym->auth.digest.data = digest_addr;
op->sym->auth.digest.phys_addr = rte_pktmbuf_iova_offset(m_src,
digest_offset);
break;
default:
ret = VIRTIO_CRYPTO_BADMSG;
goto error_exit;
}
/* record inhdr */
vc_req->inhdr = get_data_ptr(vc_req, desc, VHOST_ACCESS_WO);
if (unlikely(vc_req->inhdr == NULL)) {
ret = VIRTIO_CRYPTO_BADMSG;
goto error_exit;
}
vc_req->inhdr->status = VIRTIO_CRYPTO_OK;
op->type = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
op->sess_type = RTE_CRYPTO_OP_WITH_SESSION;
op->sym->cipher.data.offset = chain->para.cipher_start_src_offset;
op->sym->cipher.data.length = chain->para.src_data_len -
chain->para.cipher_start_src_offset;
op->sym->auth.data.offset = chain->para.hash_start_src_offset;
op->sym->auth.data.length = chain->para.len_to_hash;
vc_req->len = chain->para.dst_data_len + chain->para.hash_result_len +
INHDR_LEN;
return 0;
error_exit:
if (vc_req->wb)
free_wb_data(vc_req->wb, vc_req->wb_pool);
vc_req->len = INHDR_LEN;
return ret;
}
/**
* Process on descriptor
*/
static __rte_always_inline int
vhost_crypto_process_one_req(struct vhost_crypto *vcrypto,
struct vhost_virtqueue *vq, struct rte_crypto_op *op,
struct vring_desc *head, uint16_t desc_idx)
{
struct vhost_crypto_data_req *vc_req = rte_mbuf_to_priv(op->sym->m_src);
struct rte_cryptodev_sym_session *session;
struct virtio_crypto_op_data_req *req, tmp_req;
struct virtio_crypto_inhdr *inhdr;
struct vring_desc *desc = NULL;
uint64_t session_id;
uint64_t dlen;
int err = 0;
vc_req->desc_idx = desc_idx;
vc_req->dev = vcrypto->dev;
vc_req->vq = vq;
if (likely(head->flags & VRING_DESC_F_INDIRECT)) {
dlen = head->len;
desc = IOVA_TO_VVA(struct vring_desc *, vc_req, head->addr,
&dlen, VHOST_ACCESS_RO);
if (unlikely(!desc || dlen != head->len))
return -1;
desc_idx = 0;
head = desc;
} else {
desc = head;
}
vc_req->head = head;
vc_req->zero_copy = vcrypto->option;
req = get_data_ptr(vc_req, desc, VHOST_ACCESS_RO);
if (unlikely(req == NULL)) {
switch (vcrypto->option) {
case RTE_VHOST_CRYPTO_ZERO_COPY_ENABLE:
err = VIRTIO_CRYPTO_BADMSG;
VC_LOG_ERR("Invalid descriptor");
goto error_exit;
case RTE_VHOST_CRYPTO_ZERO_COPY_DISABLE:
req = &tmp_req;
if (unlikely(copy_data(req, vc_req, &desc, sizeof(*req))
< 0)) {
err = VIRTIO_CRYPTO_BADMSG;
VC_LOG_ERR("Invalid descriptor");
goto error_exit;
}
break;
default:
err = VIRTIO_CRYPTO_ERR;
VC_LOG_ERR("Invalid option");
goto error_exit;
}
} else {
if (unlikely(move_desc(vc_req->head, &desc,
sizeof(*req)) < 0)) {
VC_LOG_ERR("Incorrect descriptor");
goto error_exit;
}
}
switch (req->header.opcode) {
case VIRTIO_CRYPTO_CIPHER_ENCRYPT:
case VIRTIO_CRYPTO_CIPHER_DECRYPT:
session_id = req->header.session_id;
/* one branch to avoid unnecessary table lookup */
if (vcrypto->cache_session_id != session_id) {
err = rte_hash_lookup_data(vcrypto->session_map,
&session_id, (void **)&session);
if (unlikely(err < 0)) {
err = VIRTIO_CRYPTO_ERR;
VC_LOG_ERR("Failed to find session %"PRIu64,
session_id);
goto error_exit;
}
vcrypto->cache_session = session;
vcrypto->cache_session_id = session_id;
}
session = vcrypto->cache_session;
err = rte_crypto_op_attach_sym_session(op, session);
if (unlikely(err < 0)) {
err = VIRTIO_CRYPTO_ERR;
VC_LOG_ERR("Failed to attach session to op");
goto error_exit;
}
switch (req->u.sym_req.op_type) {
case VIRTIO_CRYPTO_SYM_OP_NONE:
err = VIRTIO_CRYPTO_NOTSUPP;
break;
case VIRTIO_CRYPTO_SYM_OP_CIPHER:
err = prepare_sym_cipher_op(vcrypto, op, vc_req,
&req->u.sym_req.u.cipher, desc);
break;
case VIRTIO_CRYPTO_SYM_OP_ALGORITHM_CHAINING:
err = prepare_sym_chain_op(vcrypto, op, vc_req,
&req->u.sym_req.u.chain, desc);
break;
}
if (unlikely(err != 0)) {
VC_LOG_ERR("Failed to process sym request");
goto error_exit;
}
break;
default:
VC_LOG_ERR("Unsupported symmetric crypto request type %u",
req->header.opcode);
goto error_exit;
}
return 0;
error_exit:
inhdr = reach_inhdr(vc_req, desc);
if (likely(inhdr != NULL))
inhdr->status = (uint8_t)err;
return -1;
}
static __rte_always_inline struct vhost_virtqueue *
vhost_crypto_finalize_one_request(struct rte_crypto_op *op,
struct vhost_virtqueue *old_vq)
{
struct rte_mbuf *m_src = op->sym->m_src;
struct rte_mbuf *m_dst = op->sym->m_dst;
struct vhost_crypto_data_req *vc_req = rte_mbuf_to_priv(m_src);
uint16_t desc_idx;
if (unlikely(!vc_req)) {
VC_LOG_ERR("Failed to retrieve vc_req");
return NULL;
}
if (old_vq && (vc_req->vq != old_vq))
return vc_req->vq;
desc_idx = vc_req->desc_idx;
if (unlikely(op->status != RTE_CRYPTO_OP_STATUS_SUCCESS))
vc_req->inhdr->status = VIRTIO_CRYPTO_ERR;
else {
if (vc_req->zero_copy == 0)
write_back_data(vc_req);
}
vc_req->vq->used->ring[desc_idx].id = desc_idx;
vc_req->vq->used->ring[desc_idx].len = vc_req->len;
rte_mempool_put(m_src->pool, (void *)m_src);
if (m_dst)
rte_mempool_put(m_dst->pool, (void *)m_dst);
return vc_req->vq;
}
static __rte_always_inline uint16_t
vhost_crypto_complete_one_vm_requests(struct rte_crypto_op **ops,
uint16_t nb_ops, int *callfd)
{
uint16_t processed = 1;
struct vhost_virtqueue *vq, *tmp_vq;
if (unlikely(nb_ops == 0))
return 0;
vq = vhost_crypto_finalize_one_request(ops[0], NULL);
if (unlikely(vq == NULL))
return 0;
tmp_vq = vq;
while ((processed < nb_ops)) {
tmp_vq = vhost_crypto_finalize_one_request(ops[processed],
tmp_vq);
if (unlikely(vq != tmp_vq))
break;
processed++;
}
*callfd = vq->callfd;
*(volatile uint16_t *)&vq->used->idx += processed;
return processed;
}
int __rte_experimental
rte_vhost_crypto_create(int vid, uint8_t cryptodev_id,
struct rte_mempool *sess_pool,
struct rte_mempool *sess_priv_pool,
int socket_id)
{
struct virtio_net *dev = get_device(vid);
struct rte_hash_parameters params = {0};
struct vhost_crypto *vcrypto;
char name[128];
int ret;
if (!dev) {
VC_LOG_ERR("Invalid vid %i", vid);
return -EINVAL;
}
ret = rte_vhost_driver_set_features(dev->ifname,
VIRTIO_CRYPTO_FEATURES);
if (ret < 0) {
VC_LOG_ERR("Error setting features");
return -1;
}
vcrypto = rte_zmalloc_socket(NULL, sizeof(*vcrypto),
RTE_CACHE_LINE_SIZE, socket_id);
if (!vcrypto) {
VC_LOG_ERR("Insufficient memory");
return -ENOMEM;
}
vcrypto->sess_pool = sess_pool;
vcrypto->sess_priv_pool = sess_priv_pool;
vcrypto->cid = cryptodev_id;
vcrypto->cache_session_id = UINT64_MAX;
vcrypto->last_session_id = 1;
vcrypto->dev = dev;
vcrypto->option = RTE_VHOST_CRYPTO_ZERO_COPY_DISABLE;
snprintf(name, 127, "HASH_VHOST_CRYPT_%u", (uint32_t)vid);
params.name = name;
params.entries = VHOST_CRYPTO_SESSION_MAP_ENTRIES;
params.hash_func = rte_jhash;
params.key_len = sizeof(uint64_t);
params.socket_id = socket_id;
vcrypto->session_map = rte_hash_create(&params);
if (!vcrypto->session_map) {
VC_LOG_ERR("Failed to creath session map");
ret = -ENOMEM;
goto error_exit;
}
snprintf(name, 127, "MBUF_POOL_VM_%u", (uint32_t)vid);
vcrypto->mbuf_pool = rte_pktmbuf_pool_create(name,
VHOST_CRYPTO_MBUF_POOL_SIZE, 512,
sizeof(struct vhost_crypto_data_req),
RTE_MBUF_DEFAULT_DATAROOM * 2 + RTE_PKTMBUF_HEADROOM,
rte_socket_id());
if (!vcrypto->mbuf_pool) {
VC_LOG_ERR("Failed to creath mbuf pool");
ret = -ENOMEM;
goto error_exit;
}
snprintf(name, 127, "WB_POOL_VM_%u", (uint32_t)vid);
vcrypto->wb_pool = rte_mempool_create(name,
VHOST_CRYPTO_MBUF_POOL_SIZE,
sizeof(struct vhost_crypto_writeback_data),
128, 0, NULL, NULL, NULL, NULL,
rte_socket_id(), 0);
if (!vcrypto->wb_pool) {
VC_LOG_ERR("Failed to creath mempool");
ret = -ENOMEM;
goto error_exit;
}
dev->extern_data = vcrypto;
dev->extern_ops.pre_msg_handle = NULL;
dev->extern_ops.post_msg_handle = vhost_crypto_msg_post_handler;
return 0;
error_exit:
if (vcrypto->session_map)
rte_hash_free(vcrypto->session_map);
if (vcrypto->mbuf_pool)
rte_mempool_free(vcrypto->mbuf_pool);
rte_free(vcrypto);
return ret;
}
int __rte_experimental
rte_vhost_crypto_free(int vid)
{
struct virtio_net *dev = get_device(vid);
struct vhost_crypto *vcrypto;
if (unlikely(dev == NULL)) {
VC_LOG_ERR("Invalid vid %i", vid);
return -EINVAL;
}
vcrypto = dev->extern_data;
if (unlikely(vcrypto == NULL)) {
VC_LOG_ERR("Cannot find required data, is it initialized?");
return -ENOENT;
}
rte_hash_free(vcrypto->session_map);
rte_mempool_free(vcrypto->mbuf_pool);
rte_mempool_free(vcrypto->wb_pool);
rte_free(vcrypto);
dev->extern_data = NULL;
dev->extern_ops.pre_msg_handle = NULL;
dev->extern_ops.post_msg_handle = NULL;
return 0;
}
int __rte_experimental
rte_vhost_crypto_set_zero_copy(int vid, enum rte_vhost_crypto_zero_copy option)
{
struct virtio_net *dev = get_device(vid);
struct vhost_crypto *vcrypto;
if (unlikely(dev == NULL)) {
VC_LOG_ERR("Invalid vid %i", vid);
return -EINVAL;
}
if (unlikely((uint32_t)option >=
RTE_VHOST_CRYPTO_MAX_ZERO_COPY_OPTIONS)) {
VC_LOG_ERR("Invalid option %i", option);
return -EINVAL;
}
vcrypto = (struct vhost_crypto *)dev->extern_data;
if (unlikely(vcrypto == NULL)) {
VC_LOG_ERR("Cannot find required data, is it initialized?");
return -ENOENT;
}
if (vcrypto->option == (uint8_t)option)
return 0;
if (!(rte_mempool_full(vcrypto->mbuf_pool)) ||
!(rte_mempool_full(vcrypto->wb_pool))) {
VC_LOG_ERR("Cannot update zero copy as mempool is not full");
return -EINVAL;
}
if (option == RTE_VHOST_CRYPTO_ZERO_COPY_DISABLE) {
char name[128];
snprintf(name, 127, "WB_POOL_VM_%u", (uint32_t)vid);
vcrypto->wb_pool = rte_mempool_create(name,
VHOST_CRYPTO_MBUF_POOL_SIZE,
sizeof(struct vhost_crypto_writeback_data),
128, 0, NULL, NULL, NULL, NULL,
rte_socket_id(), 0);
if (!vcrypto->wb_pool) {
VC_LOG_ERR("Failed to creath mbuf pool");
return -ENOMEM;
}
} else {
rte_mempool_free(vcrypto->wb_pool);
vcrypto->wb_pool = NULL;
}
vcrypto->option = (uint8_t)option;
return 0;
}
uint16_t __rte_experimental
rte_vhost_crypto_fetch_requests(int vid, uint32_t qid,
struct rte_crypto_op **ops, uint16_t nb_ops)
{
struct rte_mbuf *mbufs[VHOST_CRYPTO_MAX_BURST_SIZE * 2];
struct virtio_net *dev = get_device(vid);
struct vhost_crypto *vcrypto;
struct vhost_virtqueue *vq;
uint16_t avail_idx;
uint16_t start_idx;
uint16_t count;
uint16_t i = 0;
if (unlikely(dev == NULL)) {
VC_LOG_ERR("Invalid vid %i", vid);
return -EINVAL;
}
if (unlikely(qid >= VHOST_MAX_QUEUE_PAIRS)) {
VC_LOG_ERR("Invalid qid %u", qid);
return -EINVAL;
}
vcrypto = (struct vhost_crypto *)dev->extern_data;
if (unlikely(vcrypto == NULL)) {
VC_LOG_ERR("Cannot find required data, is it initialized?");
return -ENOENT;
}
vq = dev->virtqueue[qid];
avail_idx = *((volatile uint16_t *)&vq->avail->idx);
start_idx = vq->last_used_idx;
count = avail_idx - start_idx;
count = RTE_MIN(count, VHOST_CRYPTO_MAX_BURST_SIZE);
count = RTE_MIN(count, nb_ops);
if (unlikely(count == 0))
return 0;
/* for zero copy, we need 2 empty mbufs for src and dst, otherwise
* we need only 1 mbuf as src and dst
*/
switch (vcrypto->option) {
case RTE_VHOST_CRYPTO_ZERO_COPY_ENABLE:
if (unlikely(rte_mempool_get_bulk(vcrypto->mbuf_pool,
(void **)mbufs, count * 2) < 0)) {
VC_LOG_ERR("Insufficient memory");
return -ENOMEM;
}
for (i = 0; i < count; i++) {
uint16_t used_idx = (start_idx + i) & (vq->size - 1);
uint16_t desc_idx = vq->avail->ring[used_idx];
struct vring_desc *head = &vq->desc[desc_idx];
struct rte_crypto_op *op = ops[i];
op->sym->m_src = mbufs[i * 2];
op->sym->m_dst = mbufs[i * 2 + 1];
op->sym->m_src->data_off = 0;
op->sym->m_dst->data_off = 0;
if (unlikely(vhost_crypto_process_one_req(vcrypto, vq,
op, head, desc_idx)) < 0)
break;
}
if (unlikely(i < count))
rte_mempool_put_bulk(vcrypto->mbuf_pool,
(void **)&mbufs[i * 2],
(count - i) * 2);
break;
case RTE_VHOST_CRYPTO_ZERO_COPY_DISABLE:
if (unlikely(rte_mempool_get_bulk(vcrypto->mbuf_pool,
(void **)mbufs, count) < 0)) {
VC_LOG_ERR("Insufficient memory");
return -ENOMEM;
}
for (i = 0; i < count; i++) {
uint16_t used_idx = (start_idx + i) & (vq->size - 1);
uint16_t desc_idx = vq->avail->ring[used_idx];
struct vring_desc *head = &vq->desc[desc_idx];
struct rte_crypto_op *op = ops[i];
op->sym->m_src = mbufs[i];
op->sym->m_dst = NULL;
op->sym->m_src->data_off = 0;
if (unlikely(vhost_crypto_process_one_req(vcrypto, vq,
op, head, desc_idx)) < 0)
break;
}
if (unlikely(i < count))
rte_mempool_put_bulk(vcrypto->mbuf_pool,
(void **)&mbufs[i],
count - i);
break;
}
vq->last_used_idx += i;
return i;
}
uint16_t __rte_experimental
rte_vhost_crypto_finalize_requests(struct rte_crypto_op **ops,
uint16_t nb_ops, int *callfds, uint16_t *nb_callfds)
{
struct rte_crypto_op **tmp_ops = ops;
uint16_t count = 0, left = nb_ops;
int callfd;
uint16_t idx = 0;
while (left) {
count = vhost_crypto_complete_one_vm_requests(tmp_ops, left,
&callfd);
if (unlikely(count == 0))
break;
tmp_ops = &tmp_ops[count];
left -= count;
callfds[idx++] = callfd;
if (unlikely(idx >= VIRTIO_CRYPTO_MAX_NUM_BURST_VQS)) {
VC_LOG_ERR("Too many vqs");
break;
}
}
*nb_callfds = idx;
return nb_ops - left;
}