numam-dpdk/drivers/net/ipn3ke/ipn3ke_ethdev.c

681 lines
17 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2019 Intel Corporation
*/
#include <stdint.h>
#include <rte_bus_pci.h>
#include <rte_ethdev.h>
#include <rte_pci.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_sched.h>
#include <rte_ethdev_driver.h>
#include <rte_io.h>
#include <rte_rawdev.h>
#include <rte_rawdev_pmd.h>
#include <rte_bus_ifpga.h>
#include <ifpga_common.h>
#include <ifpga_logs.h>
#include "ipn3ke_rawdev_api.h"
#include "ipn3ke_flow.h"
#include "ipn3ke_logs.h"
#include "ipn3ke_ethdev.h"
int ipn3ke_afu_logtype;
static const struct rte_afu_uuid afu_uuid_ipn3ke_map[] = {
{ MAP_UUID_10G_LOW, MAP_UUID_10G_HIGH },
{ IPN3KE_UUID_10G_LOW, IPN3KE_UUID_10G_HIGH },
{ IPN3KE_UUID_VBNG_LOW, IPN3KE_UUID_VBNG_HIGH},
{ IPN3KE_UUID_25G_LOW, IPN3KE_UUID_25G_HIGH },
{ 0, 0 /* sentinel */ },
};
static int
ipn3ke_indirect_read(struct ipn3ke_hw *hw, uint32_t *rd_data,
uint32_t addr, uint32_t dev_sel, uint32_t eth_group_sel)
{
uint32_t i, try_cnt;
uint64_t indirect_value;
volatile void *indirect_addrs;
uint64_t target_addr;
uint64_t read_data = 0;
if (eth_group_sel != 0 && eth_group_sel != 1)
return -1;
target_addr = addr | dev_sel << 17;
indirect_value = RCMD | target_addr << 32;
indirect_addrs = hw->eth_group_bar[eth_group_sel] + 0x10;
rte_delay_us(10);
rte_write64((rte_cpu_to_le_64(indirect_value)), indirect_addrs);
i = 0;
try_cnt = 10;
indirect_addrs = hw->eth_group_bar[eth_group_sel] +
0x18;
do {
read_data = rte_read64(indirect_addrs);
if ((read_data >> 32) == 1)
break;
i++;
} while (i <= try_cnt);
if (i > try_cnt)
return -1;
*rd_data = rte_le_to_cpu_32(read_data);
return 0;
}
static int
ipn3ke_indirect_write(struct ipn3ke_hw *hw, uint32_t wr_data,
uint32_t addr, uint32_t dev_sel, uint32_t eth_group_sel)
{
volatile void *indirect_addrs;
uint64_t indirect_value;
uint64_t target_addr;
if (eth_group_sel != 0 && eth_group_sel != 1)
return -1;
target_addr = addr | dev_sel << 17;
indirect_value = WCMD | target_addr << 32 | wr_data;
indirect_addrs = hw->eth_group_bar[eth_group_sel] + 0x10;
rte_write64((rte_cpu_to_le_64(indirect_value)), indirect_addrs);
return 0;
}
static int
ipn3ke_indirect_mac_read(struct ipn3ke_hw *hw, uint32_t *rd_data,
uint32_t addr, uint32_t mac_num, uint32_t eth_group_sel)
{
uint32_t dev_sel;
if (mac_num >= hw->port_num)
return -1;
mac_num &= 0x7;
dev_sel = mac_num * 2 + 3;
return ipn3ke_indirect_read(hw, rd_data, addr, dev_sel, eth_group_sel);
}
static int
ipn3ke_indirect_mac_write(struct ipn3ke_hw *hw, uint32_t wr_data,
uint32_t addr, uint32_t mac_num, uint32_t eth_group_sel)
{
uint32_t dev_sel;
if (mac_num >= hw->port_num)
return -1;
mac_num &= 0x7;
dev_sel = mac_num * 2 + 3;
return ipn3ke_indirect_write(hw, wr_data, addr, dev_sel, eth_group_sel);
}
static void
ipn3ke_hw_cap_init(struct ipn3ke_hw *hw)
{
hw->hw_cap.version_number = IPN3KE_MASK_READ_REG(hw,
(IPN3KE_HW_BASE + 0), 0, 0xFFFF);
hw->hw_cap.capability_registers_block_offset = IPN3KE_MASK_READ_REG(hw,
(IPN3KE_HW_BASE + 0x8), 0, 0xFFFFFFFF);
hw->hw_cap.status_registers_block_offset = IPN3KE_MASK_READ_REG(hw,
(IPN3KE_HW_BASE + 0x10), 0, 0xFFFFFFFF);
hw->hw_cap.control_registers_block_offset = IPN3KE_MASK_READ_REG(hw,
(IPN3KE_HW_BASE + 0x18), 0, 0xFFFFFFFF);
hw->hw_cap.classify_offset = IPN3KE_MASK_READ_REG(hw,
(IPN3KE_HW_BASE + 0x20), 0, 0xFFFFFFFF);
hw->hw_cap.classy_size = IPN3KE_MASK_READ_REG(hw,
(IPN3KE_HW_BASE + 0x24), 0, 0xFFFF);
hw->hw_cap.policer_offset = IPN3KE_MASK_READ_REG(hw,
(IPN3KE_HW_BASE + 0x28), 0, 0xFFFFFFFF);
hw->hw_cap.policer_entry_size = IPN3KE_MASK_READ_REG(hw,
(IPN3KE_HW_BASE + 0x2C), 0, 0xFFFF);
hw->hw_cap.rss_key_array_offset = IPN3KE_MASK_READ_REG(hw,
(IPN3KE_HW_BASE + 0x30), 0, 0xFFFFFFFF);
hw->hw_cap.rss_key_entry_size = IPN3KE_MASK_READ_REG(hw,
(IPN3KE_HW_BASE + 0x34), 0, 0xFFFF);
hw->hw_cap.rss_indirection_table_array_offset = IPN3KE_MASK_READ_REG(hw,
(IPN3KE_HW_BASE + 0x38), 0, 0xFFFFFFFF);
hw->hw_cap.rss_indirection_table_entry_size = IPN3KE_MASK_READ_REG(hw,
(IPN3KE_HW_BASE + 0x3C), 0, 0xFFFF);
hw->hw_cap.dmac_map_offset = IPN3KE_MASK_READ_REG(hw,
(IPN3KE_HW_BASE + 0x40), 0, 0xFFFFFFFF);
hw->hw_cap.dmac_map_size = IPN3KE_MASK_READ_REG(hw,
(IPN3KE_HW_BASE + 0x44), 0, 0xFFFF);
hw->hw_cap.qm_offset = IPN3KE_MASK_READ_REG(hw,
(IPN3KE_HW_BASE + 0x48), 0, 0xFFFFFFFF);
hw->hw_cap.qm_size = IPN3KE_MASK_READ_REG(hw,
(IPN3KE_HW_BASE + 0x4C), 0, 0xFFFF);
hw->hw_cap.ccb_offset = IPN3KE_MASK_READ_REG(hw,
(IPN3KE_HW_BASE + 0x50), 0, 0xFFFFFFFF);
hw->hw_cap.ccb_entry_size = IPN3KE_MASK_READ_REG(hw,
(IPN3KE_HW_BASE + 0x54), 0, 0xFFFF);
hw->hw_cap.qos_offset = IPN3KE_MASK_READ_REG(hw,
(IPN3KE_HW_BASE + 0x58), 0, 0xFFFFFFFF);
hw->hw_cap.qos_size = IPN3KE_MASK_READ_REG(hw,
(IPN3KE_HW_BASE + 0x5C), 0, 0xFFFF);
hw->hw_cap.num_rx_flow = IPN3KE_MASK_READ_REG(hw,
IPN3KE_CAPABILITY_REGISTERS_BLOCK_OFFSET,
0, 0xFFFF);
hw->hw_cap.num_rss_blocks = IPN3KE_MASK_READ_REG(hw,
IPN3KE_CAPABILITY_REGISTERS_BLOCK_OFFSET,
4, 0xFFFF);
hw->hw_cap.num_dmac_map = IPN3KE_MASK_READ_REG(hw,
IPN3KE_CAPABILITY_REGISTERS_BLOCK_OFFSET,
8, 0xFFFF);
hw->hw_cap.num_tx_flow = IPN3KE_MASK_READ_REG(hw,
IPN3KE_CAPABILITY_REGISTERS_BLOCK_OFFSET,
0xC, 0xFFFF);
hw->hw_cap.num_smac_map = IPN3KE_MASK_READ_REG(hw,
IPN3KE_CAPABILITY_REGISTERS_BLOCK_OFFSET,
0x10, 0xFFFF);
hw->hw_cap.link_speed_mbps = IPN3KE_MASK_READ_REG(hw,
IPN3KE_STATUS_REGISTERS_BLOCK_OFFSET,
0, 0xFFFFF);
}
static int
ipn3ke_vbng_init_done(struct ipn3ke_hw *hw)
{
uint32_t timeout = 10000;
while (timeout > 0) {
if (IPN3KE_READ_REG(hw, IPN3KE_VBNG_INIT_STS)
== IPN3KE_VBNG_INIT_DONE)
break;
rte_delay_us(1000);
timeout--;
}
if (!timeout) {
IPN3KE_AFU_PMD_ERR("IPN3KE vBNG INIT timeout.\n");
return -1;
}
return 0;
}
static int
ipn3ke_hw_init(struct rte_afu_device *afu_dev,
struct ipn3ke_hw *hw)
{
struct rte_rawdev *rawdev;
int ret;
int i;
uint64_t port_num, mac_type, index;
rawdev = afu_dev->rawdev;
hw->afu_id.uuid.uuid_low = afu_dev->id.uuid.uuid_low;
hw->afu_id.uuid.uuid_high = afu_dev->id.uuid.uuid_high;
hw->afu_id.port = afu_dev->id.port;
hw->hw_addr = (uint8_t *)(afu_dev->mem_resource[0].addr);
hw->f_mac_read = ipn3ke_indirect_mac_read;
hw->f_mac_write = ipn3ke_indirect_mac_write;
hw->rawdev = rawdev;
rawdev->dev_ops->attr_get(rawdev,
"LineSideBARIndex", &index);
hw->eth_group_bar[0] = (uint8_t *)(afu_dev->mem_resource[index].addr);
rawdev->dev_ops->attr_get(rawdev,
"NICSideBARIndex", &index);
hw->eth_group_bar[1] = (uint8_t *)(afu_dev->mem_resource[index].addr);
rawdev->dev_ops->attr_get(rawdev,
"LineSideLinkPortNum", &port_num);
hw->retimer.port_num = (int)port_num;
hw->port_num = hw->retimer.port_num;
rawdev->dev_ops->attr_get(rawdev,
"LineSideMACType", &mac_type);
hw->retimer.mac_type = (int)mac_type;
IPN3KE_AFU_PMD_DEBUG("UPL_version is 0x%x\n", IPN3KE_READ_REG(hw, 0));
if (afu_dev->id.uuid.uuid_low == IPN3KE_UUID_VBNG_LOW &&
afu_dev->id.uuid.uuid_high == IPN3KE_UUID_VBNG_HIGH) {
/* After power on, wait until init done */
if (ipn3ke_vbng_init_done(hw))
return -1;
ipn3ke_hw_cap_init(hw);
/* Reset vBNG IP */
IPN3KE_WRITE_REG(hw, IPN3KE_CTRL_RESET, 1);
rte_delay_us(10);
IPN3KE_WRITE_REG(hw, IPN3KE_CTRL_RESET, 0);
/* After reset, wait until init done */
if (ipn3ke_vbng_init_done(hw))
return -1;
}
if (hw->retimer.mac_type == IFPGA_RAWDEV_RETIMER_MAC_TYPE_10GE_XFI) {
/* Enable inter connect channel */
for (i = 0; i < hw->port_num; i++) {
/* Enable the TX path */
ipn3ke_xmac_tx_enable(hw, i, 1);
/* Disables source address override */
ipn3ke_xmac_smac_ovd_dis(hw, i, 1);
/* Enable the RX path */
ipn3ke_xmac_rx_enable(hw, i, 1);
/* Clear all TX statistics counters */
ipn3ke_xmac_tx_clr_stcs(hw, i, 1);
/* Clear all RX statistics counters */
ipn3ke_xmac_rx_clr_stcs(hw, i, 1);
}
}
ret = rte_eth_switch_domain_alloc(&hw->switch_domain_id);
if (ret)
IPN3KE_AFU_PMD_WARN("failed to allocate switch domain for device %d",
ret);
hw->tm_hw_enable = 0;
hw->flow_hw_enable = 0;
if (afu_dev->id.uuid.uuid_low == IPN3KE_UUID_VBNG_LOW &&
afu_dev->id.uuid.uuid_high == IPN3KE_UUID_VBNG_HIGH) {
ret = ipn3ke_hw_tm_init(hw);
if (ret)
return ret;
hw->tm_hw_enable = 1;
ret = ipn3ke_flow_init(hw);
if (ret)
return ret;
hw->flow_hw_enable = 1;
}
hw->acc_tm = 0;
hw->acc_flow = 0;
return 0;
}
static void
ipn3ke_hw_uninit(struct ipn3ke_hw *hw)
{
int i;
if (hw->retimer.mac_type == IFPGA_RAWDEV_RETIMER_MAC_TYPE_10GE_XFI) {
for (i = 0; i < hw->port_num; i++) {
/* Disable the TX path */
ipn3ke_xmac_tx_disable(hw, i, 1);
/* Disable the RX path */
ipn3ke_xmac_rx_disable(hw, i, 1);
/* Clear all TX statistics counters */
ipn3ke_xmac_tx_clr_stcs(hw, i, 1);
/* Clear all RX statistics counters */
ipn3ke_xmac_rx_clr_stcs(hw, i, 1);
}
}
}
static int ipn3ke_vswitch_probe(struct rte_afu_device *afu_dev)
{
char name[RTE_ETH_NAME_MAX_LEN];
struct ipn3ke_hw *hw;
int i, retval;
/* check if the AFU device has been probed already */
/* allocate shared mcp_vswitch structure */
if (!afu_dev->shared.data) {
snprintf(name, sizeof(name), "net_%s_hw",
afu_dev->device.name);
hw = rte_zmalloc_socket(name,
sizeof(struct ipn3ke_hw),
RTE_CACHE_LINE_SIZE,
afu_dev->device.numa_node);
if (!hw) {
IPN3KE_AFU_PMD_ERR("failed to allocate hardwart data");
retval = -ENOMEM;
return -ENOMEM;
}
afu_dev->shared.data = hw;
rte_spinlock_init(&afu_dev->shared.lock);
} else {
hw = afu_dev->shared.data;
}
retval = ipn3ke_hw_init(afu_dev, hw);
if (retval)
return retval;
/* probe representor ports */
for (i = 0; i < hw->port_num; i++) {
struct ipn3ke_rpst rpst = {
.port_id = i,
.switch_domain_id = hw->switch_domain_id,
.hw = hw
};
/* representor port net_bdf_port */
snprintf(name, sizeof(name), "net_%s_representor_%d",
afu_dev->device.name, i);
retval = rte_eth_dev_create(&afu_dev->device, name,
sizeof(struct ipn3ke_rpst), NULL, NULL,
ipn3ke_rpst_init, &rpst);
if (retval)
IPN3KE_AFU_PMD_ERR("failed to create ipn3ke representor %s.",
name);
}
return 0;
}
static int ipn3ke_vswitch_remove(struct rte_afu_device *afu_dev)
{
char name[RTE_ETH_NAME_MAX_LEN];
struct ipn3ke_hw *hw;
struct rte_eth_dev *ethdev;
int i, ret;
hw = afu_dev->shared.data;
/* remove representor ports */
for (i = 0; i < hw->port_num; i++) {
/* representor port net_bdf_port */
snprintf(name, sizeof(name), "net_%s_representor_%d",
afu_dev->device.name, i);
ethdev = rte_eth_dev_allocated(afu_dev->device.name);
if (!ethdev)
return -ENODEV;
rte_eth_dev_destroy(ethdev, ipn3ke_rpst_uninit);
}
ret = rte_eth_switch_domain_free(hw->switch_domain_id);
if (ret)
IPN3KE_AFU_PMD_WARN("failed to free switch domain: %d", ret);
/* hw uninit*/
ipn3ke_hw_uninit(hw);
return 0;
}
static struct rte_afu_driver afu_ipn3ke_driver = {
.id_table = afu_uuid_ipn3ke_map,
.probe = ipn3ke_vswitch_probe,
.remove = ipn3ke_vswitch_remove,
};
RTE_PMD_REGISTER_AFU(net_ipn3ke_afu, afu_ipn3ke_driver);
static const char * const valid_args[] = {
#define IPN3KE_AFU_NAME "afu"
IPN3KE_AFU_NAME,
#define IPN3KE_FPGA_ACCELERATION_LIST "fpga_acc"
IPN3KE_FPGA_ACCELERATION_LIST,
#define IPN3KE_I40E_PF_LIST "i40e_pf"
IPN3KE_I40E_PF_LIST,
NULL
};
static int
ipn3ke_cfg_parse_acc_list(const char *afu_name,
const char *acc_list_name)
{
struct rte_afu_device *afu_dev;
struct ipn3ke_hw *hw;
const char *p_source;
char *p_start;
char name[RTE_ETH_NAME_MAX_LEN];
afu_dev = rte_ifpga_find_afu_by_name(afu_name);
if (!afu_dev)
return -1;
hw = afu_dev->shared.data;
if (!hw)
return -1;
p_source = acc_list_name;
while (*p_source) {
while ((*p_source == '{') || (*p_source == '|'))
p_source++;
p_start = name;
while ((*p_source != '|') && (*p_source != '}'))
*p_start++ = *p_source++;
*p_start = 0;
if (!strcmp(name, "tm") && hw->tm_hw_enable)
hw->acc_tm = 1;
if (!strcmp(name, "flow") && hw->flow_hw_enable)
hw->acc_flow = 1;
if (*p_source == '}')
return 0;
}
return 0;
}
static int
ipn3ke_cfg_parse_i40e_pf_ethdev(const char *afu_name,
const char *pf_name)
{
struct rte_eth_dev *i40e_eth, *rpst_eth;
struct rte_afu_device *afu_dev;
struct ipn3ke_rpst *rpst;
struct ipn3ke_hw *hw;
const char *p_source;
char *p_start;
char name[RTE_ETH_NAME_MAX_LEN];
uint16_t port_id;
int i;
int ret = -1;
afu_dev = rte_ifpga_find_afu_by_name(afu_name);
if (!afu_dev)
return -1;
hw = afu_dev->shared.data;
if (!hw)
return -1;
p_source = pf_name;
for (i = 0; i < hw->port_num; i++) {
snprintf(name, sizeof(name), "net_%s_representor_%d",
afu_name, i);
ret = rte_eth_dev_get_port_by_name(name, &port_id);
if (ret)
return -1;
rpst_eth = &rte_eth_devices[port_id];
rpst = IPN3KE_DEV_PRIVATE_TO_RPST(rpst_eth);
while ((*p_source == '{') || (*p_source == '|'))
p_source++;
p_start = name;
while ((*p_source != '|') && (*p_source != '}'))
*p_start++ = *p_source++;
*p_start = 0;
ret = rte_eth_dev_get_port_by_name(name, &port_id);
if (ret)
return -1;
i40e_eth = &rte_eth_devices[port_id];
rpst->i40e_pf_eth = i40e_eth;
rpst->i40e_pf_eth_port_id = port_id;
if ((*p_source == '}') || !(*p_source))
break;
}
return 0;
}
static int
ipn3ke_cfg_probe(struct rte_vdev_device *dev)
{
struct rte_devargs *devargs;
struct rte_kvargs *kvlist = NULL;
char *afu_name = NULL;
char *acc_name = NULL;
char *pf_name = NULL;
int afu_name_en = 0;
int acc_list_en = 0;
int pf_list_en = 0;
int ret = -1;
devargs = dev->device.devargs;
kvlist = rte_kvargs_parse(devargs->args, valid_args);
if (!kvlist) {
IPN3KE_AFU_PMD_ERR("error when parsing param");
goto end;
}
if (rte_kvargs_count(kvlist, IPN3KE_AFU_NAME) == 1) {
if (rte_kvargs_process(kvlist, IPN3KE_AFU_NAME,
&rte_ifpga_get_string_arg,
&afu_name) < 0) {
IPN3KE_AFU_PMD_ERR("error to parse %s",
IPN3KE_AFU_NAME);
goto end;
} else {
afu_name_en = 1;
}
}
if (rte_kvargs_count(kvlist, IPN3KE_FPGA_ACCELERATION_LIST) == 1) {
if (rte_kvargs_process(kvlist, IPN3KE_FPGA_ACCELERATION_LIST,
&rte_ifpga_get_string_arg,
&acc_name) < 0) {
IPN3KE_AFU_PMD_ERR("error to parse %s",
IPN3KE_FPGA_ACCELERATION_LIST);
goto end;
} else {
acc_list_en = 1;
}
}
if (rte_kvargs_count(kvlist, IPN3KE_I40E_PF_LIST) == 1) {
if (rte_kvargs_process(kvlist, IPN3KE_I40E_PF_LIST,
&rte_ifpga_get_string_arg,
&pf_name) < 0) {
IPN3KE_AFU_PMD_ERR("error to parse %s",
IPN3KE_I40E_PF_LIST);
goto end;
} else {
pf_list_en = 1;
}
}
if (!afu_name_en) {
IPN3KE_AFU_PMD_ERR("arg %s is mandatory for ipn3ke",
IPN3KE_AFU_NAME);
goto end;
}
if (!pf_list_en) {
IPN3KE_AFU_PMD_ERR("arg %s is mandatory for ipn3ke",
IPN3KE_I40E_PF_LIST);
goto end;
}
if (acc_list_en) {
ret = ipn3ke_cfg_parse_acc_list(afu_name, acc_name);
if (ret) {
IPN3KE_AFU_PMD_ERR("arg %s parse error for ipn3ke",
IPN3KE_FPGA_ACCELERATION_LIST);
goto end;
}
} else {
IPN3KE_AFU_PMD_INFO("arg %s is optional for ipn3ke, using i40e acc",
IPN3KE_FPGA_ACCELERATION_LIST);
}
ret = ipn3ke_cfg_parse_i40e_pf_ethdev(afu_name, pf_name);
if (ret)
goto end;
end:
if (kvlist)
rte_kvargs_free(kvlist);
if (afu_name)
free(afu_name);
if (acc_name)
free(acc_name);
return ret;
}
static int
ipn3ke_cfg_remove(struct rte_vdev_device *dev)
{
struct rte_devargs *devargs;
struct rte_kvargs *kvlist = NULL;
char *afu_name = NULL;
struct rte_afu_device *afu_dev;
int ret = -1;
devargs = dev->device.devargs;
kvlist = rte_kvargs_parse(devargs->args, valid_args);
if (!kvlist) {
IPN3KE_AFU_PMD_ERR("error when parsing param");
goto end;
}
if (rte_kvargs_count(kvlist, IPN3KE_AFU_NAME) == 1) {
if (rte_kvargs_process(kvlist, IPN3KE_AFU_NAME,
&rte_ifpga_get_string_arg,
&afu_name) < 0) {
IPN3KE_AFU_PMD_ERR("error to parse %s",
IPN3KE_AFU_NAME);
} else {
afu_dev = rte_ifpga_find_afu_by_name(afu_name);
if (!afu_dev)
goto end;
ret = ipn3ke_vswitch_remove(afu_dev);
}
} else {
IPN3KE_AFU_PMD_ERR("Remove ipn3ke_cfg %p error", dev);
}
end:
if (kvlist)
rte_kvargs_free(kvlist);
return ret;
}
static struct rte_vdev_driver ipn3ke_cfg_driver = {
.probe = ipn3ke_cfg_probe,
.remove = ipn3ke_cfg_remove,
};
RTE_PMD_REGISTER_VDEV(ipn3ke_cfg, ipn3ke_cfg_driver);
RTE_PMD_REGISTER_PARAM_STRING(ipn3ke_cfg,
"afu=<string> "
"fpga_acc=<string>"
"i40e_pf=<string>");
RTE_INIT(ipn3ke_afu_init_log)
{
ipn3ke_afu_logtype = rte_log_register("pmd.afu.ipn3ke");
if (ipn3ke_afu_logtype >= 0)
rte_log_set_level(ipn3ke_afu_logtype, RTE_LOG_NOTICE);
}