numam-dpdk/drivers/net/e1000/igb_pf.c

513 lines
14 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2016 Intel Corporation
*/
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdarg.h>
#include <inttypes.h>
#include <rte_bus_pci.h>
#include <rte_interrupts.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_eal.h>
#include <rte_ether.h>
#include <rte_ethdev_driver.h>
#include <rte_memcpy.h>
#include <rte_malloc.h>
#include <rte_random.h>
#include "base/e1000_defines.h"
#include "base/e1000_regs.h"
#include "base/e1000_hw.h"
#include "e1000_ethdev.h"
static inline uint16_t
dev_num_vf(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
return pci_dev->max_vfs;
}
static inline
int igb_vf_perm_addr_gen(struct rte_eth_dev *dev, uint16_t vf_num)
{
unsigned char vf_mac_addr[ETHER_ADDR_LEN];
struct e1000_vf_info *vfinfo =
*E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private);
uint16_t vfn;
for (vfn = 0; vfn < vf_num; vfn++) {
eth_random_addr(vf_mac_addr);
/* keep the random address as default */
memcpy(vfinfo[vfn].vf_mac_addresses, vf_mac_addr,
ETHER_ADDR_LEN);
}
return 0;
}
static inline int
igb_mb_intr_setup(struct rte_eth_dev *dev)
{
struct e1000_interrupt *intr =
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
intr->mask |= E1000_ICR_VMMB;
return 0;
}
void igb_pf_host_init(struct rte_eth_dev *eth_dev)
{
struct e1000_vf_info **vfinfo =
E1000_DEV_PRIVATE_TO_P_VFDATA(eth_dev->data->dev_private);
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
uint16_t vf_num;
uint8_t nb_queue;
RTE_ETH_DEV_SRIOV(eth_dev).active = 0;
if (0 == (vf_num = dev_num_vf(eth_dev)))
return;
if (hw->mac.type == e1000_i350)
nb_queue = 1;
else if(hw->mac.type == e1000_82576)
/* per datasheet, it should be 2, but 1 seems correct */
nb_queue = 1;
else
return;
*vfinfo = rte_zmalloc("vf_info", sizeof(struct e1000_vf_info) * vf_num, 0);
if (*vfinfo == NULL)
rte_panic("Cannot allocate memory for private VF data\n");
RTE_ETH_DEV_SRIOV(eth_dev).active = ETH_8_POOLS;
RTE_ETH_DEV_SRIOV(eth_dev).nb_q_per_pool = nb_queue;
RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx = vf_num;
RTE_ETH_DEV_SRIOV(eth_dev).def_pool_q_idx = (uint16_t)(vf_num * nb_queue);
igb_vf_perm_addr_gen(eth_dev, vf_num);
/* set mb interrupt mask */
igb_mb_intr_setup(eth_dev);
return;
}
void igb_pf_host_uninit(struct rte_eth_dev *dev)
{
struct e1000_vf_info **vfinfo;
uint16_t vf_num;
PMD_INIT_FUNC_TRACE();
vfinfo = E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private);
RTE_ETH_DEV_SRIOV(dev).active = 0;
RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 0;
RTE_ETH_DEV_SRIOV(dev).def_vmdq_idx = 0;
RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx = 0;
vf_num = dev_num_vf(dev);
if (vf_num == 0)
return;
rte_free(*vfinfo);
*vfinfo = NULL;
}
#define E1000_RAH_POOLSEL_SHIFT (18)
int igb_pf_host_configure(struct rte_eth_dev *eth_dev)
{
uint32_t vtctl;
uint16_t vf_num;
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
uint32_t vlanctrl;
int i;
uint32_t rah;
if (0 == (vf_num = dev_num_vf(eth_dev)))
return -1;
/* enable VMDq and set the default pool for PF */
vtctl = E1000_READ_REG(hw, E1000_VT_CTL);
vtctl &= ~E1000_VT_CTL_DEFAULT_POOL_MASK;
vtctl |= RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx
<< E1000_VT_CTL_DEFAULT_POOL_SHIFT;
vtctl |= E1000_VT_CTL_VM_REPL_EN;
E1000_WRITE_REG(hw, E1000_VT_CTL, vtctl);
/* Enable pools reserved to PF only */
E1000_WRITE_REG(hw, E1000_VFRE, (~0U) << vf_num);
E1000_WRITE_REG(hw, E1000_VFTE, (~0U) << vf_num);
/* PFDMA Tx General Switch Control Enables VMDQ loopback */
if (hw->mac.type == e1000_i350)
E1000_WRITE_REG(hw, E1000_TXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN);
else
E1000_WRITE_REG(hw, E1000_DTXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN);
/* clear VMDq map to perment rar 0 */
rah = E1000_READ_REG(hw, E1000_RAH(0));
rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT);
E1000_WRITE_REG(hw, E1000_RAH(0), rah);
/* clear VMDq map to scan rar 32 */
rah = E1000_READ_REG(hw, E1000_RAH(hw->mac.rar_entry_count));
rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT);
E1000_WRITE_REG(hw, E1000_RAH(hw->mac.rar_entry_count), rah);
/* set VMDq map to default PF pool */
rah = E1000_READ_REG(hw, E1000_RAH(0));
rah |= (0x1 << (RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx +
E1000_RAH_POOLSEL_SHIFT));
E1000_WRITE_REG(hw, E1000_RAH(0), rah);
/*
* enable vlan filtering and allow all vlan tags through
*/
vlanctrl = E1000_READ_REG(hw, E1000_RCTL);
vlanctrl |= E1000_RCTL_VFE ; /* enable vlan filters */
E1000_WRITE_REG(hw, E1000_RCTL, vlanctrl);
/* VFTA - enable all vlan filters */
for (i = 0; i < IGB_VFTA_SIZE; i++) {
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, 0xFFFFFFFF);
}
/* Enable/Disable MAC Anti-Spoofing */
e1000_vmdq_set_anti_spoofing_pf(hw, FALSE, vf_num);
return 0;
}
static void
set_rx_mode(struct rte_eth_dev *dev)
{
struct rte_eth_dev_data *dev_data = dev->data;
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t fctrl, vmolr = E1000_VMOLR_BAM | E1000_VMOLR_AUPE;
uint16_t vfn = dev_num_vf(dev);
/* Check for Promiscuous and All Multicast modes */
fctrl = E1000_READ_REG(hw, E1000_RCTL);
/* set all bits that we expect to always be set */
fctrl &= ~E1000_RCTL_SBP; /* disable store-bad-packets */
fctrl |= E1000_RCTL_BAM;
/* clear the bits we are changing the status of */
fctrl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
if (dev_data->promiscuous) {
fctrl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
} else {
if (dev_data->all_multicast) {
fctrl |= E1000_RCTL_MPE;
vmolr |= E1000_VMOLR_MPME;
} else {
vmolr |= E1000_VMOLR_ROMPE;
}
}
if ((hw->mac.type == e1000_82576) ||
(hw->mac.type == e1000_i350)) {
vmolr |= E1000_READ_REG(hw, E1000_VMOLR(vfn)) &
~(E1000_VMOLR_MPME | E1000_VMOLR_ROMPE |
E1000_VMOLR_ROPE);
E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr);
}
E1000_WRITE_REG(hw, E1000_RCTL, fctrl);
}
static inline void
igb_vf_reset_event(struct rte_eth_dev *dev, uint16_t vf)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vf_info *vfinfo =
*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
uint32_t vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf));
vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE |
E1000_VMOLR_BAM | E1000_VMOLR_AUPE);
E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr);
E1000_WRITE_REG(hw, E1000_VMVIR(vf), 0);
/* reset multicast table array for vf */
vfinfo[vf].num_vf_mc_hashes = 0;
/* reset rx mode */
set_rx_mode(dev);
}
static inline void
igb_vf_reset_msg(struct rte_eth_dev *dev, uint16_t vf)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t reg;
/* enable transmit and receive for vf */
reg = E1000_READ_REG(hw, E1000_VFTE);
reg |= (reg | (1 << vf));
E1000_WRITE_REG(hw, E1000_VFTE, reg);
reg = E1000_READ_REG(hw, E1000_VFRE);
reg |= (reg | (1 << vf));
E1000_WRITE_REG(hw, E1000_VFRE, reg);
igb_vf_reset_event(dev, vf);
}
static int
igb_vf_reset(struct rte_eth_dev *dev, uint16_t vf, uint32_t *msgbuf)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vf_info *vfinfo =
*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
unsigned char *vf_mac = vfinfo[vf].vf_mac_addresses;
int rar_entry = hw->mac.rar_entry_count - (vf + 1);
uint8_t *new_mac = (uint8_t *)(&msgbuf[1]);
uint32_t rah;
igb_vf_reset_msg(dev, vf);
hw->mac.ops.rar_set(hw, vf_mac, rar_entry);
rah = E1000_READ_REG(hw, E1000_RAH(rar_entry));
rah |= (0x1 << (vf + E1000_RAH_POOLSEL_SHIFT));
E1000_WRITE_REG(hw, E1000_RAH(rar_entry), rah);
/* reply to reset with ack and vf mac address */
msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
rte_memcpy(new_mac, vf_mac, ETHER_ADDR_LEN);
e1000_write_mbx(hw, msgbuf, 3, vf);
return 0;
}
static int
igb_vf_set_mac_addr(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vf_info *vfinfo =
*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
int rar_entry = hw->mac.rar_entry_count - (vf + 1);
uint8_t *new_mac = (uint8_t *)(&msgbuf[1]);
int rah;
if (is_unicast_ether_addr((struct ether_addr *)new_mac)) {
if (!is_zero_ether_addr((struct ether_addr *)new_mac))
rte_memcpy(vfinfo[vf].vf_mac_addresses, new_mac,
sizeof(vfinfo[vf].vf_mac_addresses));
hw->mac.ops.rar_set(hw, new_mac, rar_entry);
rah = E1000_READ_REG(hw, E1000_RAH(rar_entry));
rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + vf));
E1000_WRITE_REG(hw, E1000_RAH(rar_entry), rah);
return 0;
}
return -1;
}
static int
igb_vf_set_multicast(struct rte_eth_dev *dev, __rte_unused uint32_t vf, uint32_t *msgbuf)
{
int i;
uint32_t vector_bit;
uint32_t vector_reg;
uint32_t mta_reg;
int entries = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >>
E1000_VT_MSGINFO_SHIFT;
uint16_t *hash_list = (uint16_t *)&msgbuf[1];
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vf_info *vfinfo =
*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
/* only so many hash values supported */
entries = RTE_MIN(entries, E1000_MAX_VF_MC_ENTRIES);
/*
* salt away the number of multi cast addresses assigned
* to this VF for later use to restore when the PF multi cast
* list changes
*/
vfinfo->num_vf_mc_hashes = (uint16_t)entries;
/*
* VFs are limited to using the MTA hash table for their multicast
* addresses
*/
for (i = 0; i < entries; i++) {
vfinfo->vf_mc_hashes[i] = hash_list[i];
}
for (i = 0; i < vfinfo->num_vf_mc_hashes; i++) {
vector_reg = (vfinfo->vf_mc_hashes[i] >> 5) & 0x7F;
vector_bit = vfinfo->vf_mc_hashes[i] & 0x1F;
mta_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, vector_reg);
mta_reg |= (1 << vector_bit);
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, vector_reg, mta_reg);
}
return 0;
}
static int
igb_vf_set_vlan(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
{
int add, vid;
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vf_info *vfinfo =
*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
uint32_t vid_idx, vid_bit, vfta;
add = (msgbuf[0] & E1000_VT_MSGINFO_MASK)
>> E1000_VT_MSGINFO_SHIFT;
vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
if (add)
vfinfo[vf].vlan_count++;
else if (vfinfo[vf].vlan_count)
vfinfo[vf].vlan_count--;
vid_idx = (uint32_t)((vid >> E1000_VFTA_ENTRY_SHIFT) &
E1000_VFTA_ENTRY_MASK);
vid_bit = (uint32_t)(1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
if (add)
vfta |= vid_bit;
else
vfta &= ~vid_bit;
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
E1000_WRITE_FLUSH(hw);
return 0;
}
static int
igb_vf_set_rlpml(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint16_t rlpml = msgbuf[1] & E1000_VMOLR_RLPML_MASK;
uint32_t max_frame = rlpml + ETHER_HDR_LEN + ETHER_CRC_LEN;
uint32_t vmolr;
if ((max_frame < ETHER_MIN_LEN) || (max_frame > ETHER_MAX_JUMBO_FRAME_LEN))
return -1;
vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf));
vmolr &= ~E1000_VMOLR_RLPML_MASK;
vmolr |= rlpml;
/* Enable Long Packet support */
vmolr |= E1000_VMOLR_LPE;
E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr);
E1000_WRITE_FLUSH(hw);
return 0;
}
static int
igb_rcv_msg_from_vf(struct rte_eth_dev *dev, uint16_t vf)
{
uint16_t mbx_size = E1000_VFMAILBOX_SIZE;
uint32_t msgbuf[E1000_VFMAILBOX_SIZE];
int32_t retval;
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
retval = e1000_read_mbx(hw, msgbuf, mbx_size, vf);
if (retval) {
PMD_INIT_LOG(ERR, "Error mbx recv msg from VF %d", vf);
return retval;
}
/* do nothing with the message already processed */
if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
return retval;
/* flush the ack before we write any messages back */
E1000_WRITE_FLUSH(hw);
/* perform VF reset */
if (msgbuf[0] == E1000_VF_RESET) {
return igb_vf_reset(dev, vf, msgbuf);
}
/* check & process VF to PF mailbox message */
switch ((msgbuf[0] & 0xFFFF)) {
case E1000_VF_SET_MAC_ADDR:
retval = igb_vf_set_mac_addr(dev, vf, msgbuf);
break;
case E1000_VF_SET_MULTICAST:
retval = igb_vf_set_multicast(dev, vf, msgbuf);
break;
case E1000_VF_SET_LPE:
retval = igb_vf_set_rlpml(dev, vf, msgbuf);
break;
case E1000_VF_SET_VLAN:
retval = igb_vf_set_vlan(dev, vf, msgbuf);
break;
default:
PMD_INIT_LOG(DEBUG, "Unhandled Msg %8.8x",
(unsigned) msgbuf[0]);
retval = E1000_ERR_MBX;
break;
}
/* response the VF according to the message process result */
if (retval)
msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
else
msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
e1000_write_mbx(hw, msgbuf, 1, vf);
return retval;
}
static inline void
igb_rcv_ack_from_vf(struct rte_eth_dev *dev, uint16_t vf)
{
uint32_t msg = E1000_VT_MSGTYPE_NACK;
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
e1000_write_mbx(hw, &msg, 1, vf);
}
void igb_pf_mbx_process(struct rte_eth_dev *eth_dev)
{
uint16_t vf;
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
for (vf = 0; vf < dev_num_vf(eth_dev); vf++) {
/* check & process vf function level reset */
if (!e1000_check_for_rst(hw, vf))
igb_vf_reset_event(eth_dev, vf);
/* check & process vf mailbox messages */
if (!e1000_check_for_msg(hw, vf))
igb_rcv_msg_from_vf(eth_dev, vf);
/* check & process acks from vf */
if (!e1000_check_for_ack(hw, vf))
igb_rcv_ack_from_vf(eth_dev, vf);
}
}