numam-dpdk/lib/ip_frag/rte_ipv6_fragmentation.c

196 lines
5.2 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stddef.h>
#include <errno.h>
#include <rte_memcpy.h>
#include "ip_frag_common.h"
/**
* @file
* RTE IPv6 Fragmentation
*
* Implementation of IPv6 fragmentation.
*
*/
static inline void
__fill_ipv6hdr_frag(struct rte_ipv6_hdr *dst,
const struct rte_ipv6_hdr *src, uint16_t len, uint16_t fofs,
uint32_t mf)
{
struct ipv6_extension_fragment *fh;
rte_memcpy(dst, src, sizeof(*dst));
dst->payload_len = rte_cpu_to_be_16(len);
dst->proto = IPPROTO_FRAGMENT;
fh = (struct ipv6_extension_fragment *) ++dst;
fh->next_header = src->proto;
fh->reserved = 0;
fh->frag_data = rte_cpu_to_be_16(RTE_IPV6_SET_FRAG_DATA(fofs, mf));
fh->id = 0;
}
static inline void
__free_fragments(struct rte_mbuf *mb[], uint32_t num)
{
uint32_t i;
for (i = 0; i < num; i++)
rte_pktmbuf_free(mb[i]);
}
/**
* IPv6 fragmentation.
*
* This function implements the fragmentation of IPv6 packets.
*
* @param pkt_in
* The input packet.
* @param pkts_out
* Array storing the output fragments.
* @param mtu_size
* Size in bytes of the Maximum Transfer Unit (MTU) for the outgoing IPv6
* datagrams. This value includes the size of the IPv6 header.
* @param pool_direct
* MBUF pool used for allocating direct buffers for the output fragments.
* @param pool_indirect
* MBUF pool used for allocating indirect buffers for the output fragments.
* @return
* Upon successful completion - number of output fragments placed
* in the pkts_out array.
* Otherwise - (-1) * <errno>.
*/
int32_t
rte_ipv6_fragment_packet(struct rte_mbuf *pkt_in,
struct rte_mbuf **pkts_out,
uint16_t nb_pkts_out,
uint16_t mtu_size,
struct rte_mempool *pool_direct,
struct rte_mempool *pool_indirect)
{
struct rte_mbuf *in_seg = NULL;
struct rte_ipv6_hdr *in_hdr;
uint32_t out_pkt_pos, in_seg_data_pos;
uint32_t more_in_segs;
uint16_t fragment_offset, frag_size;
uint64_t frag_bytes_remaining;
/*
* Formal parameter checking.
*/
if (unlikely(pkt_in == NULL) || unlikely(pkts_out == NULL) ||
unlikely(nb_pkts_out == 0) ||
unlikely(pool_direct == NULL) || unlikely(pool_indirect == NULL) ||
unlikely(mtu_size < RTE_IPV6_MIN_MTU))
return -EINVAL;
/*
* Ensure the IP payload length of all fragments (except the
* the last fragment) are a multiple of 8 bytes per RFC2460.
*/
frag_size = mtu_size - sizeof(struct rte_ipv6_hdr) -
sizeof(struct ipv6_extension_fragment);
frag_size = RTE_ALIGN_FLOOR(frag_size, RTE_IPV6_EHDR_FO_ALIGN);
/* Check that pkts_out is big enough to hold all fragments */
if (unlikely (frag_size * nb_pkts_out <
(uint16_t)(pkt_in->pkt_len - sizeof(struct rte_ipv6_hdr))))
return -EINVAL;
in_hdr = rte_pktmbuf_mtod(pkt_in, struct rte_ipv6_hdr *);
in_seg = pkt_in;
in_seg_data_pos = sizeof(struct rte_ipv6_hdr);
out_pkt_pos = 0;
fragment_offset = 0;
more_in_segs = 1;
while (likely(more_in_segs)) {
struct rte_mbuf *out_pkt = NULL, *out_seg_prev = NULL;
uint32_t more_out_segs;
struct rte_ipv6_hdr *out_hdr;
/* Allocate direct buffer */
out_pkt = rte_pktmbuf_alloc(pool_direct);
if (unlikely(out_pkt == NULL)) {
__free_fragments(pkts_out, out_pkt_pos);
return -ENOMEM;
}
/* Reserve space for the IP header that will be built later */
out_pkt->data_len = sizeof(struct rte_ipv6_hdr) +
sizeof(struct ipv6_extension_fragment);
out_pkt->pkt_len = sizeof(struct rte_ipv6_hdr) +
sizeof(struct ipv6_extension_fragment);
frag_bytes_remaining = frag_size;
out_seg_prev = out_pkt;
more_out_segs = 1;
while (likely(more_out_segs && more_in_segs)) {
struct rte_mbuf *out_seg = NULL;
uint32_t len;
/* Allocate indirect buffer */
out_seg = rte_pktmbuf_alloc(pool_indirect);
if (unlikely(out_seg == NULL)) {
rte_pktmbuf_free(out_pkt);
__free_fragments(pkts_out, out_pkt_pos);
return -ENOMEM;
}
out_seg_prev->next = out_seg;
out_seg_prev = out_seg;
/* Prepare indirect buffer */
rte_pktmbuf_attach(out_seg, in_seg);
len = frag_bytes_remaining;
if (len > (in_seg->data_len - in_seg_data_pos)) {
len = in_seg->data_len - in_seg_data_pos;
}
out_seg->data_off = in_seg->data_off + in_seg_data_pos;
out_seg->data_len = (uint16_t)len;
out_pkt->pkt_len = (uint16_t)(len +
out_pkt->pkt_len);
out_pkt->nb_segs += 1;
in_seg_data_pos += len;
frag_bytes_remaining -= len;
/* Current output packet (i.e. fragment) done ? */
if (unlikely(frag_bytes_remaining == 0))
more_out_segs = 0;
/* Current input segment done ? */
if (unlikely(in_seg_data_pos == in_seg->data_len)) {
in_seg = in_seg->next;
in_seg_data_pos = 0;
if (unlikely(in_seg == NULL)) {
more_in_segs = 0;
}
}
}
/* Build the IP header */
out_hdr = rte_pktmbuf_mtod(out_pkt, struct rte_ipv6_hdr *);
__fill_ipv6hdr_frag(out_hdr, in_hdr,
(uint16_t) out_pkt->pkt_len - sizeof(struct rte_ipv6_hdr),
fragment_offset, more_in_segs);
fragment_offset = (uint16_t)(fragment_offset +
out_pkt->pkt_len - sizeof(struct rte_ipv6_hdr)
- sizeof(struct ipv6_extension_fragment));
/* Write the fragment to the output list */
pkts_out[out_pkt_pos] = out_pkt;
out_pkt_pos ++;
}
return out_pkt_pos;
}