2018-01-29 13:11:34 +00:00
|
|
|
/* SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
* Copyright 2017 6WIND S.A.
|
2018-03-20 19:20:35 +00:00
|
|
|
* Copyright 2017 Mellanox Technologies, Ltd
|
2017-07-18 12:48:14 +00:00
|
|
|
*/
|
|
|
|
|
2019-03-18 16:05:27 +00:00
|
|
|
#include <stdbool.h>
|
|
|
|
|
2017-07-18 12:48:14 +00:00
|
|
|
#include <rte_alarm.h>
|
|
|
|
#include <rte_malloc.h>
|
2018-01-22 00:16:22 +00:00
|
|
|
#include <rte_ethdev_driver.h>
|
2017-07-18 12:48:14 +00:00
|
|
|
#include <rte_ethdev_vdev.h>
|
|
|
|
#include <rte_devargs.h>
|
|
|
|
#include <rte_kvargs.h>
|
2017-11-07 06:54:21 +00:00
|
|
|
#include <rte_bus_vdev.h>
|
2017-07-18 12:48:14 +00:00
|
|
|
|
|
|
|
#include "failsafe_private.h"
|
|
|
|
|
|
|
|
const char pmd_failsafe_driver_name[] = FAILSAFE_DRIVER_NAME;
|
|
|
|
static const struct rte_eth_link eth_link = {
|
|
|
|
.link_speed = ETH_SPEED_NUM_10G,
|
|
|
|
.link_duplex = ETH_LINK_FULL_DUPLEX,
|
|
|
|
.link_status = ETH_LINK_UP,
|
2018-01-05 17:38:55 +00:00
|
|
|
.link_autoneg = ETH_LINK_AUTONEG,
|
2017-07-18 12:48:14 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
static int
|
|
|
|
fs_sub_device_alloc(struct rte_eth_dev *dev,
|
|
|
|
const char *params)
|
|
|
|
{
|
|
|
|
uint8_t nb_subs;
|
|
|
|
int ret;
|
2017-12-19 17:14:29 +00:00
|
|
|
int i;
|
2019-03-18 16:05:27 +00:00
|
|
|
struct sub_device *sdev;
|
|
|
|
uint8_t sdev_iterator;
|
2017-07-18 12:48:14 +00:00
|
|
|
|
|
|
|
ret = failsafe_args_count_subdevice(dev, params);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
if (PRIV(dev)->subs_tail > FAILSAFE_MAX_ETHPORTS) {
|
|
|
|
ERROR("Cannot allocate more than %d ports",
|
|
|
|
FAILSAFE_MAX_ETHPORTS);
|
|
|
|
return -ENOSPC;
|
|
|
|
}
|
|
|
|
nb_subs = PRIV(dev)->subs_tail;
|
|
|
|
PRIV(dev)->subs = rte_zmalloc(NULL,
|
|
|
|
sizeof(struct sub_device) * nb_subs,
|
|
|
|
RTE_CACHE_LINE_SIZE);
|
|
|
|
if (PRIV(dev)->subs == NULL) {
|
|
|
|
ERROR("Could not allocate sub_devices");
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
2017-12-19 17:14:29 +00:00
|
|
|
/* Initiate static sub devices linked list. */
|
|
|
|
for (i = 1; i < nb_subs; i++)
|
|
|
|
PRIV(dev)->subs[i - 1].next = PRIV(dev)->subs + i;
|
|
|
|
PRIV(dev)->subs[i - 1].next = PRIV(dev)->subs;
|
2019-03-18 16:05:27 +00:00
|
|
|
|
|
|
|
FOREACH_SUBDEV(sdev, sdev_iterator, dev) {
|
|
|
|
sdev->sdev_port_id = RTE_MAX_ETHPORTS;
|
|
|
|
}
|
2017-07-18 12:48:14 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-07-18 12:48:15 +00:00
|
|
|
static void fs_hotplug_alarm(void *arg);
|
|
|
|
|
|
|
|
int
|
|
|
|
failsafe_hotplug_alarm_install(struct rte_eth_dev *dev)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (dev == NULL)
|
|
|
|
return -EINVAL;
|
|
|
|
if (PRIV(dev)->pending_alarm)
|
|
|
|
return 0;
|
2018-10-28 23:57:39 +00:00
|
|
|
ret = rte_eal_alarm_set(failsafe_hotplug_poll * 1000,
|
2017-07-18 12:48:15 +00:00
|
|
|
fs_hotplug_alarm,
|
|
|
|
dev);
|
|
|
|
if (ret) {
|
|
|
|
ERROR("Could not set up plug-in event detection");
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
PRIV(dev)->pending_alarm = 1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
failsafe_hotplug_alarm_cancel(struct rte_eth_dev *dev)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
|
2018-02-12 20:51:40 +00:00
|
|
|
rte_errno = 0;
|
|
|
|
rte_eal_alarm_cancel(fs_hotplug_alarm, dev);
|
|
|
|
if (rte_errno) {
|
|
|
|
ERROR("rte_eal_alarm_cancel failed (errno: %s)",
|
|
|
|
strerror(rte_errno));
|
|
|
|
ret = -rte_errno;
|
|
|
|
} else {
|
|
|
|
PRIV(dev)->pending_alarm = 0;
|
2017-07-18 12:48:15 +00:00
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
fs_hotplug_alarm(void *arg)
|
|
|
|
{
|
|
|
|
struct rte_eth_dev *dev = arg;
|
|
|
|
struct sub_device *sdev;
|
|
|
|
int ret;
|
|
|
|
uint8_t i;
|
|
|
|
|
|
|
|
if (!PRIV(dev)->pending_alarm)
|
|
|
|
return;
|
|
|
|
PRIV(dev)->pending_alarm = 0;
|
|
|
|
FOREACH_SUBDEV(sdev, i, dev)
|
|
|
|
if (sdev->state != PRIV(dev)->state)
|
|
|
|
break;
|
|
|
|
/* if we have non-probed device */
|
|
|
|
if (i != PRIV(dev)->subs_tail) {
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
if (fs_lock(dev, 1) != 0)
|
|
|
|
goto reinstall;
|
2017-07-18 12:48:15 +00:00
|
|
|
ret = failsafe_eth_dev_state_sync(dev);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
fs_unlock(dev, 1);
|
2017-07-18 12:48:15 +00:00
|
|
|
if (ret)
|
|
|
|
ERROR("Unable to synchronize sub_device state");
|
|
|
|
}
|
2017-07-18 12:48:20 +00:00
|
|
|
failsafe_dev_remove(dev);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
reinstall:
|
2017-07-18 12:48:15 +00:00
|
|
|
ret = failsafe_hotplug_alarm_install(dev);
|
|
|
|
if (ret)
|
|
|
|
ERROR("Unable to set up next alarm");
|
|
|
|
}
|
|
|
|
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
static int
|
|
|
|
fs_mutex_init(struct fs_priv *priv)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
pthread_mutexattr_t attr;
|
|
|
|
|
|
|
|
ret = pthread_mutexattr_init(&attr);
|
|
|
|
if (ret) {
|
|
|
|
ERROR("Cannot initiate mutex attributes - %s", strerror(ret));
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
/* Allow mutex relocks for the thread holding the mutex. */
|
|
|
|
ret = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
|
|
|
|
if (ret) {
|
|
|
|
ERROR("Cannot set mutex type - %s", strerror(ret));
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
ret = pthread_mutex_init(&priv->hotplug_mutex, &attr);
|
|
|
|
if (ret) {
|
|
|
|
ERROR("Cannot initiate mutex - %s", strerror(ret));
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-07-18 12:48:14 +00:00
|
|
|
static int
|
|
|
|
fs_eth_dev_create(struct rte_vdev_device *vdev)
|
|
|
|
{
|
|
|
|
struct rte_eth_dev *dev;
|
2019-05-21 16:13:03 +00:00
|
|
|
struct rte_ether_addr *mac;
|
2017-07-18 12:48:14 +00:00
|
|
|
struct fs_priv *priv;
|
|
|
|
struct sub_device *sdev;
|
|
|
|
const char *params;
|
|
|
|
unsigned int socket_id;
|
|
|
|
uint8_t i;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
dev = NULL;
|
|
|
|
priv = NULL;
|
|
|
|
socket_id = rte_socket_id();
|
|
|
|
INFO("Creating fail-safe device on NUMA socket %u", socket_id);
|
|
|
|
params = rte_vdev_device_args(vdev);
|
|
|
|
if (params == NULL) {
|
|
|
|
ERROR("This PMD requires sub-devices, none provided");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
dev = rte_eth_vdev_allocate(vdev, sizeof(*priv));
|
|
|
|
if (dev == NULL) {
|
|
|
|
ERROR("Unable to allocate rte_eth_dev");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
priv = PRIV(dev);
|
2019-03-18 16:05:25 +00:00
|
|
|
priv->data = dev->data;
|
2020-04-27 10:44:19 +00:00
|
|
|
priv->rxp = FS_RX_PROXY_INIT;
|
2017-07-18 12:48:14 +00:00
|
|
|
dev->dev_ops = &failsafe_ops;
|
|
|
|
dev->data->mac_addrs = &PRIV(dev)->mac_addrs[0];
|
|
|
|
dev->data->dev_link = eth_link;
|
|
|
|
PRIV(dev)->nb_mac_addr = 1;
|
2017-07-18 12:48:17 +00:00
|
|
|
TAILQ_INIT(&PRIV(dev)->flow_list);
|
2017-07-18 12:48:14 +00:00
|
|
|
dev->rx_pkt_burst = (eth_rx_burst_t)&failsafe_rx_burst;
|
|
|
|
dev->tx_pkt_burst = (eth_tx_burst_t)&failsafe_tx_burst;
|
|
|
|
ret = fs_sub_device_alloc(dev, params);
|
|
|
|
if (ret) {
|
|
|
|
ERROR("Could not allocate sub_devices");
|
|
|
|
goto free_dev;
|
|
|
|
}
|
|
|
|
ret = failsafe_args_parse(dev, params);
|
|
|
|
if (ret)
|
|
|
|
goto free_subs;
|
2018-01-22 16:38:22 +00:00
|
|
|
ret = rte_eth_dev_owner_new(&priv->my_owner.id);
|
|
|
|
if (ret) {
|
|
|
|
ERROR("Failed to get unique owner identifier");
|
|
|
|
goto free_args;
|
|
|
|
}
|
|
|
|
snprintf(priv->my_owner.name, sizeof(priv->my_owner.name),
|
|
|
|
FAILSAFE_OWNER_NAME);
|
2018-05-10 23:58:35 +00:00
|
|
|
DEBUG("Failsafe port %u owner info: %s_%016"PRIX64, dev->data->port_id,
|
|
|
|
priv->my_owner.name, priv->my_owner.id);
|
|
|
|
ret = rte_eth_dev_callback_register(RTE_ETH_ALL, RTE_ETH_EVENT_NEW,
|
|
|
|
failsafe_eth_new_event_callback,
|
|
|
|
dev);
|
|
|
|
if (ret) {
|
|
|
|
ERROR("Failed to register NEW callback");
|
|
|
|
goto free_args;
|
|
|
|
}
|
2017-07-18 12:48:14 +00:00
|
|
|
ret = failsafe_eal_init(dev);
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
if (ret)
|
2018-05-10 23:58:35 +00:00
|
|
|
goto unregister_new_callback;
|
net/failsafe: fix hotplug races
Fail-safe uses a periodic alarm mechanism, running from the host
thread, to manage the hot-plug events of its sub-devices. This
management requires a lot of sub-devices PMDs operations
(stop, close, start, configure, etc.).
While the hot-plug alarm runs in the host thread, the application may
call fail-safe operations, which directly trigger the sub-devices PMDs
operations as well. This call may occur from any thread decided by the
application (probably the master thread).
Thus, more than one operation can be executed to a sub-device at the
same time. This can initiate a lot of races in the sub-PMDs.
Moreover, some control operations update the fail-safe internal
databases, which can be used by the alarm mechanism at the same time.
This can also initiate races and crashes.
Fail-safe is the owner of its sub-devices and must synchronize their
use according to the ETHDEV ownership rules.
Synchronize hot-plug management by a new lock mechanism uses a mutex to
atomically defend each critical section in the fail-safe hot-plug
mechanism and control operations to prevent any races between them.
Fixes: a46f8d5 ("net/failsafe: add fail-safe PMD")
Cc: stable@dpdk.org
Signed-off-by: Matan Azrad <matan@mellanox.com>
Acked-by: Gaetan Rivet <gaetan.rivet@6wind.com>
2018-02-12 20:51:42 +00:00
|
|
|
ret = fs_mutex_init(priv);
|
2017-07-18 12:48:14 +00:00
|
|
|
if (ret)
|
2018-05-10 23:58:35 +00:00
|
|
|
goto unregister_new_callback;
|
2017-07-18 12:48:15 +00:00
|
|
|
ret = failsafe_hotplug_alarm_install(dev);
|
|
|
|
if (ret) {
|
|
|
|
ERROR("Could not set up plug-in event detection");
|
2018-05-10 23:58:35 +00:00
|
|
|
goto unregister_new_callback;
|
2017-07-18 12:48:15 +00:00
|
|
|
}
|
2017-07-18 12:48:14 +00:00
|
|
|
mac = &dev->data->mac_addrs[0];
|
2018-10-28 23:57:39 +00:00
|
|
|
if (failsafe_mac_from_arg) {
|
2017-07-18 12:48:14 +00:00
|
|
|
/*
|
|
|
|
* If MAC address was provided as a parameter,
|
|
|
|
* apply to all probed slaves.
|
|
|
|
*/
|
|
|
|
FOREACH_SUBDEV_STATE(sdev, i, dev, DEV_PROBED) {
|
|
|
|
ret = rte_eth_dev_default_mac_addr_set(PORT_ID(sdev),
|
|
|
|
mac);
|
|
|
|
if (ret) {
|
|
|
|
ERROR("Failed to set default MAC address");
|
2018-05-09 15:57:39 +00:00
|
|
|
goto cancel_alarm;
|
2017-07-18 12:48:14 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Use the ether_addr from first probed
|
|
|
|
* device, either preferred or fallback.
|
|
|
|
*/
|
|
|
|
FOREACH_SUBDEV(sdev, i, dev)
|
|
|
|
if (sdev->state >= DEV_PROBED) {
|
2019-05-21 16:13:04 +00:00
|
|
|
rte_ether_addr_copy(
|
|
|
|
Ð(sdev)->data->mac_addrs[0], mac);
|
2017-07-18 12:48:14 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* If no device has been probed and no ether_addr
|
|
|
|
* has been provided on the command line, use a random
|
|
|
|
* valid one.
|
|
|
|
* It will be applied during future slave state syncs to
|
|
|
|
* probed slaves.
|
|
|
|
*/
|
|
|
|
if (i == priv->subs_tail)
|
2019-05-21 16:13:04 +00:00
|
|
|
rte_eth_random_addr(&mac->addr_bytes[0]);
|
2017-07-18 12:48:14 +00:00
|
|
|
}
|
|
|
|
INFO("MAC address is %02x:%02x:%02x:%02x:%02x:%02x",
|
|
|
|
mac->addr_bytes[0], mac->addr_bytes[1],
|
|
|
|
mac->addr_bytes[2], mac->addr_bytes[3],
|
|
|
|
mac->addr_bytes[4], mac->addr_bytes[5]);
|
2020-10-14 02:26:47 +00:00
|
|
|
dev->data->dev_flags |= RTE_ETH_DEV_INTR_LSC |
|
|
|
|
RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
|
2018-01-25 16:19:30 +00:00
|
|
|
PRIV(dev)->intr_handle = (struct rte_intr_handle){
|
|
|
|
.fd = -1,
|
|
|
|
.type = RTE_INTR_HANDLE_EXT,
|
|
|
|
};
|
2018-05-10 23:58:30 +00:00
|
|
|
rte_eth_dev_probing_finish(dev);
|
2017-07-18 12:48:14 +00:00
|
|
|
return 0;
|
2018-05-09 15:57:39 +00:00
|
|
|
cancel_alarm:
|
|
|
|
failsafe_hotplug_alarm_cancel(dev);
|
2018-05-10 23:58:35 +00:00
|
|
|
unregister_new_callback:
|
|
|
|
rte_eth_dev_callback_unregister(RTE_ETH_ALL, RTE_ETH_EVENT_NEW,
|
|
|
|
failsafe_eth_new_event_callback, dev);
|
2017-07-18 12:48:14 +00:00
|
|
|
free_args:
|
|
|
|
failsafe_args_free(dev);
|
|
|
|
free_subs:
|
2020-09-28 23:14:19 +00:00
|
|
|
rte_free(PRIV(dev)->subs);
|
2017-07-18 12:48:14 +00:00
|
|
|
free_dev:
|
2018-10-19 02:07:55 +00:00
|
|
|
/* mac_addrs must not be freed alone because part of dev_private */
|
|
|
|
dev->data->mac_addrs = NULL;
|
2017-07-18 12:48:14 +00:00
|
|
|
rte_eth_dev_release_port(dev);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
fs_rte_eth_free(const char *name)
|
|
|
|
{
|
|
|
|
struct rte_eth_dev *dev;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
dev = rte_eth_dev_allocated(name);
|
|
|
|
if (dev == NULL)
|
2020-09-28 23:14:19 +00:00
|
|
|
return 0; /* port already released */
|
|
|
|
ret = failsafe_eth_dev_close(dev);
|
2017-07-18 12:48:14 +00:00
|
|
|
rte_eth_dev_release_port(dev);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2019-03-18 16:05:27 +00:00
|
|
|
static bool
|
|
|
|
devargs_already_listed(struct rte_devargs *devargs)
|
|
|
|
{
|
|
|
|
struct rte_devargs *list_da;
|
|
|
|
|
|
|
|
RTE_EAL_DEVARGS_FOREACH(devargs->bus->name, list_da) {
|
|
|
|
if (strcmp(list_da->name, devargs->name) == 0)
|
|
|
|
/* devargs already in the list */
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2017-07-18 12:48:14 +00:00
|
|
|
static int
|
|
|
|
rte_pmd_failsafe_probe(struct rte_vdev_device *vdev)
|
|
|
|
{
|
|
|
|
const char *name;
|
2018-04-24 05:51:24 +00:00
|
|
|
struct rte_eth_dev *eth_dev;
|
2019-03-18 16:05:27 +00:00
|
|
|
struct sub_device *sdev;
|
|
|
|
struct rte_devargs devargs;
|
|
|
|
uint8_t i;
|
|
|
|
int ret;
|
2017-07-18 12:48:14 +00:00
|
|
|
|
|
|
|
name = rte_vdev_device_name(vdev);
|
|
|
|
INFO("Initializing " FAILSAFE_DRIVER_NAME " for %s",
|
|
|
|
name);
|
2018-04-24 05:51:24 +00:00
|
|
|
|
|
|
|
if (rte_eal_process_type() == RTE_PROC_SECONDARY &&
|
|
|
|
strlen(rte_vdev_device_args(vdev)) == 0) {
|
|
|
|
eth_dev = rte_eth_dev_attach_secondary(name);
|
|
|
|
if (!eth_dev) {
|
2018-04-25 15:56:42 +00:00
|
|
|
ERROR("Failed to probe %s", name);
|
2018-04-24 05:51:24 +00:00
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
eth_dev->dev_ops = &failsafe_ops;
|
2018-07-20 14:54:23 +00:00
|
|
|
eth_dev->device = &vdev->device;
|
2019-03-18 16:05:27 +00:00
|
|
|
eth_dev->rx_pkt_burst = (eth_rx_burst_t)&failsafe_rx_burst;
|
|
|
|
eth_dev->tx_pkt_burst = (eth_tx_burst_t)&failsafe_tx_burst;
|
|
|
|
/*
|
|
|
|
* Failsafe will attempt to probe all of its sub-devices.
|
|
|
|
* Any failure in sub-devices is not a fatal error.
|
|
|
|
* A sub-device can be plugged later.
|
|
|
|
*/
|
|
|
|
FOREACH_SUBDEV(sdev, i, eth_dev) {
|
2019-06-21 22:08:24 +00:00
|
|
|
/* skip empty devargs */
|
|
|
|
if (sdev->devargs.name[0] == '\0')
|
|
|
|
continue;
|
|
|
|
|
2019-03-18 16:05:27 +00:00
|
|
|
/* rebuild devargs to be able to get the bus name. */
|
|
|
|
ret = rte_devargs_parse(&devargs,
|
|
|
|
sdev->devargs.name);
|
|
|
|
if (ret != 0) {
|
|
|
|
ERROR("Failed to parse devargs %s",
|
|
|
|
devargs.name);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (!devargs_already_listed(&devargs)) {
|
|
|
|
ret = rte_dev_probe(devargs.name);
|
2019-06-06 10:02:28 +00:00
|
|
|
if (ret < 0) {
|
2019-03-18 16:05:27 +00:00
|
|
|
ERROR("Failed to probe devargs %s",
|
|
|
|
devargs.name);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2018-05-10 23:58:30 +00:00
|
|
|
rte_eth_dev_probing_finish(eth_dev);
|
2018-04-24 05:51:24 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2017-07-18 12:48:14 +00:00
|
|
|
return fs_eth_dev_create(vdev);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
rte_pmd_failsafe_remove(struct rte_vdev_device *vdev)
|
|
|
|
{
|
|
|
|
const char *name;
|
|
|
|
|
|
|
|
name = rte_vdev_device_name(vdev);
|
|
|
|
INFO("Uninitializing " FAILSAFE_DRIVER_NAME " for %s", name);
|
|
|
|
return fs_rte_eth_free(name);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct rte_vdev_driver failsafe_drv = {
|
|
|
|
.probe = rte_pmd_failsafe_probe,
|
|
|
|
.remove = rte_pmd_failsafe_remove,
|
|
|
|
};
|
|
|
|
|
|
|
|
RTE_PMD_REGISTER_VDEV(net_failsafe, failsafe_drv);
|
|
|
|
RTE_PMD_REGISTER_PARAM_STRING(net_failsafe, PMD_FAILSAFE_PARAM_STRING);
|
2020-07-01 12:33:35 +00:00
|
|
|
RTE_LOG_REGISTER(failsafe_logtype, pmd.net.failsafe, NOTICE)
|