numam-dpdk/app/test/test_mcslock.c

251 lines
5.9 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2019 Arm Limited
*/
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
#include <string.h>
#include <unistd.h>
#include <sys/queue.h>
#include <rte_common.h>
#include <rte_memory.h>
#include <rte_per_lcore.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_lcore.h>
#include <rte_cycles.h>
#include <rte_mcslock.h>
#include <rte_atomic.h>
#include "test.h"
/*
* RTE MCS lock test
* =================
*
* These tests are derived from spin lock test cases.
*
* - The functional test takes all of these locks and launches the
* ''test_mcslock_per_core()'' function on each core (except the master).
*
* - The function takes the global lock, display something, then releases
* the global lock on each core.
*
* - A load test is carried out, with all cores attempting to lock a single
* lock multiple times.
*/
RTE_DEFINE_PER_LCORE(rte_mcslock_t, _ml_me);
RTE_DEFINE_PER_LCORE(rte_mcslock_t, _ml_try_me);
RTE_DEFINE_PER_LCORE(rte_mcslock_t, _ml_perf_me);
rte_mcslock_t *p_ml;
rte_mcslock_t *p_ml_try;
rte_mcslock_t *p_ml_perf;
static unsigned int count;
static rte_atomic32_t synchro;
static int
test_mcslock_per_core(__rte_unused void *arg)
{
/* Per core me node. */
rte_mcslock_t ml_me = RTE_PER_LCORE(_ml_me);
rte_mcslock_lock(&p_ml, &ml_me);
printf("MCS lock taken on core %u\n", rte_lcore_id());
rte_mcslock_unlock(&p_ml, &ml_me);
printf("MCS lock released on core %u\n", rte_lcore_id());
return 0;
}
static uint64_t time_count[RTE_MAX_LCORE] = {0};
#define MAX_LOOP 1000000
static int
load_loop_fn(void *func_param)
{
uint64_t time_diff = 0, begin;
uint64_t hz = rte_get_timer_hz();
volatile uint64_t lcount = 0;
const int use_lock = *(int *)func_param;
const unsigned int lcore = rte_lcore_id();
/**< Per core me node. */
rte_mcslock_t ml_perf_me = RTE_PER_LCORE(_ml_perf_me);
/* wait synchro */
while (rte_atomic32_read(&synchro) == 0)
;
begin = rte_get_timer_cycles();
while (lcount < MAX_LOOP) {
if (use_lock)
rte_mcslock_lock(&p_ml_perf, &ml_perf_me);
lcount++;
if (use_lock)
rte_mcslock_unlock(&p_ml_perf, &ml_perf_me);
}
time_diff = rte_get_timer_cycles() - begin;
time_count[lcore] = time_diff * 1000000 / hz;
return 0;
}
static int
test_mcslock_perf(void)
{
unsigned int i;
uint64_t total = 0;
int lock = 0;
const unsigned int lcore = rte_lcore_id();
printf("\nTest with no lock on single core...\n");
rte_atomic32_set(&synchro, 1);
load_loop_fn(&lock);
printf("Core [%u] Cost Time = %"PRIu64" us\n",
lcore, time_count[lcore]);
memset(time_count, 0, sizeof(time_count));
printf("\nTest with lock on single core...\n");
lock = 1;
rte_atomic32_set(&synchro, 1);
load_loop_fn(&lock);
printf("Core [%u] Cost Time = %"PRIu64" us\n",
lcore, time_count[lcore]);
memset(time_count, 0, sizeof(time_count));
printf("\nTest with lock on %u cores...\n", (rte_lcore_count()));
rte_atomic32_set(&synchro, 0);
rte_eal_mp_remote_launch(load_loop_fn, &lock, SKIP_MASTER);
/* start synchro and launch test on master */
rte_atomic32_set(&synchro, 1);
load_loop_fn(&lock);
rte_eal_mp_wait_lcore();
RTE_LCORE_FOREACH(i) {
printf("Core [%u] Cost Time = %"PRIu64" us\n",
i, time_count[i]);
total += time_count[i];
}
printf("Total Cost Time = %"PRIu64" us\n", total);
return 0;
}
/*
* Use rte_mcslock_trylock() to trylock a mcs lock object,
* If it could not lock the object successfully, it would
* return immediately.
*/
static int
test_mcslock_try(__rte_unused void *arg)
{
/**< Per core me node. */
rte_mcslock_t ml_me = RTE_PER_LCORE(_ml_me);
rte_mcslock_t ml_try_me = RTE_PER_LCORE(_ml_try_me);
/* Locked ml_try in the master lcore, so it should fail
* when trying to lock it in the slave lcore.
*/
if (rte_mcslock_trylock(&p_ml_try, &ml_try_me) == 0) {
rte_mcslock_lock(&p_ml, &ml_me);
count++;
rte_mcslock_unlock(&p_ml, &ml_me);
}
return 0;
}
/*
* Test rte_eal_get_lcore_state() in addition to mcs locks
* as we have "waiting" then "running" lcores.
*/
static int
test_mcslock(void)
{
int ret = 0;
int i;
/* Define per core me node. */
rte_mcslock_t ml_me = RTE_PER_LCORE(_ml_me);
rte_mcslock_t ml_try_me = RTE_PER_LCORE(_ml_try_me);
/*
* Test mcs lock & unlock on each core
*/
/* slave cores should be waiting: print it */
RTE_LCORE_FOREACH_SLAVE(i) {
printf("lcore %d state: %d\n", i,
(int) rte_eal_get_lcore_state(i));
}
rte_mcslock_lock(&p_ml, &ml_me);
RTE_LCORE_FOREACH_SLAVE(i) {
rte_eal_remote_launch(test_mcslock_per_core, NULL, i);
}
/* slave cores should be busy: print it */
RTE_LCORE_FOREACH_SLAVE(i) {
printf("lcore %d state: %d\n", i,
(int) rte_eal_get_lcore_state(i));
}
rte_mcslock_unlock(&p_ml, &ml_me);
rte_eal_mp_wait_lcore();
/*
* Test if it could return immediately from try-locking a locked object.
* Here it will lock the mcs lock object first, then launch all the
* slave lcores to trylock the same mcs lock object.
* All the slave lcores should give up try-locking a locked object and
* return immediately, and then increase the "count" initialized with
* zero by one per times.
* We can check if the "count" is finally equal to the number of all
* slave lcores to see if the behavior of try-locking a locked
* mcslock object is correct.
*/
if (rte_mcslock_trylock(&p_ml_try, &ml_try_me) == 0)
return -1;
count = 0;
RTE_LCORE_FOREACH_SLAVE(i) {
rte_eal_remote_launch(test_mcslock_try, NULL, i);
}
rte_eal_mp_wait_lcore();
rte_mcslock_unlock(&p_ml_try, &ml_try_me);
/* Test is_locked API */
if (rte_mcslock_is_locked(p_ml)) {
printf("mcslock is locked but it should not be\n");
return -1;
}
/* Counting the locked times in each core */
rte_mcslock_lock(&p_ml, &ml_me);
if (count != (rte_lcore_count() - 1))
ret = -1;
rte_mcslock_unlock(&p_ml, &ml_me);
/* mcs lock perf test */
if (test_mcslock_perf() < 0)
return -1;
return ret;
}
REGISTER_TEST_COMMAND(mcslock_autotest, test_mcslock);