numam-dpdk/drivers/net/szedata2/rte_eth_szedata2.c

1625 lines
40 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright (c) 2015 CESNET
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of CESNET nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#include <unistd.h>
#include <stdbool.h>
#include <err.h>
#include <libsze2.h>
#include <rte_mbuf.h>
#include <rte_ethdev.h>
#include <rte_malloc.h>
#include <rte_memcpy.h>
#include <rte_kvargs.h>
#include <rte_dev.h>
#include "rte_eth_szedata2.h"
#define RTE_ETH_SZEDATA2_DEV_PATH_ARG "dev_path"
#define RTE_ETH_SZEDATA2_RX_IFACES_ARG "rx_ifaces"
#define RTE_ETH_SZEDATA2_TX_IFACES_ARG "tx_ifaces"
#define RTE_ETH_SZEDATA2_MAX_RX_QUEUES 32
#define RTE_ETH_SZEDATA2_MAX_TX_QUEUES 32
#define RTE_ETH_SZEDATA2_TX_LOCK_SIZE (32 * 1024 * 1024)
/**
* size of szedata2_packet header with alignment
*/
#define RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED 8
struct szedata2_rx_queue {
struct szedata *sze;
uint8_t rx_channel;
uint8_t in_port;
struct rte_mempool *mb_pool;
volatile uint64_t rx_pkts;
volatile uint64_t rx_bytes;
volatile uint64_t err_pkts;
};
struct szedata2_tx_queue {
struct szedata *sze;
uint8_t tx_channel;
volatile uint64_t tx_pkts;
volatile uint64_t err_pkts;
volatile uint64_t tx_bytes;
};
struct rxtx_szedata2 {
uint32_t num_of_rx;
uint32_t num_of_tx;
uint32_t sze_rx_mask_req;
uint32_t sze_tx_mask_req;
char *sze_dev;
};
struct pmd_internals {
struct szedata2_rx_queue rx_queue[RTE_ETH_SZEDATA2_MAX_RX_QUEUES];
struct szedata2_tx_queue tx_queue[RTE_ETH_SZEDATA2_MAX_TX_QUEUES];
unsigned nb_rx_queues;
unsigned nb_tx_queues;
uint32_t num_of_rx;
uint32_t num_of_tx;
uint32_t sze_rx_req;
uint32_t sze_tx_req;
int if_index;
char *sze_dev;
};
static const char *valid_arguments[] = {
RTE_ETH_SZEDATA2_DEV_PATH_ARG,
RTE_ETH_SZEDATA2_RX_IFACES_ARG,
RTE_ETH_SZEDATA2_TX_IFACES_ARG,
NULL
};
static struct ether_addr eth_addr = {
.addr_bytes = { 0x00, 0x11, 0x17, 0x00, 0x00, 0x00 }
};
static const char *drivername = "SZEdata2 PMD";
static struct rte_eth_link pmd_link = {
.link_speed = ETH_LINK_SPEED_10G,
.link_duplex = ETH_LINK_FULL_DUPLEX,
.link_status = 0
};
static uint32_t
count_ones(uint32_t num)
{
num = num - ((num >> 1) & 0x55555555); /* reuse input as temporary */
num = (num & 0x33333333) + ((num >> 2) & 0x33333333); /* temp */
return (((num + (num >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24; /* count */
}
static uint16_t
eth_szedata2_rx(void *queue,
struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
unsigned int i;
struct rte_mbuf *mbuf;
struct szedata2_rx_queue *sze_q = queue;
struct rte_pktmbuf_pool_private *mbp_priv;
uint16_t num_rx = 0;
uint16_t buf_size;
uint16_t sg_size;
uint16_t hw_size;
uint16_t packet_size;
uint64_t num_bytes = 0;
struct szedata *sze = sze_q->sze;
uint8_t *header_ptr = NULL; /* header of packet */
uint8_t *packet_ptr1 = NULL;
uint8_t *packet_ptr2 = NULL;
uint16_t packet_len1 = 0;
uint16_t packet_len2 = 0;
uint16_t hw_data_align;
if (unlikely(sze_q->sze == NULL || nb_pkts == 0))
return 0;
/*
* Reads the given number of packets from szedata2 channel given
* by queue and copies the packet data into a newly allocated mbuf
* to return.
*/
for (i = 0; i < nb_pkts; i++) {
mbuf = rte_pktmbuf_alloc(sze_q->mb_pool);
if (unlikely(mbuf == NULL))
break;
/* get the next sze packet */
if (sze->ct_rx_lck != NULL && !sze->ct_rx_rem_bytes &&
sze->ct_rx_lck->next == NULL) {
/* unlock old data */
szedata_rx_unlock_data(sze_q->sze, sze->ct_rx_lck_orig);
sze->ct_rx_lck_orig = NULL;
sze->ct_rx_lck = NULL;
}
if (!sze->ct_rx_rem_bytes && sze->ct_rx_lck_orig == NULL) {
/* nothing to read, lock new data */
sze->ct_rx_lck = szedata_rx_lock_data(sze_q->sze, ~0U);
sze->ct_rx_lck_orig = sze->ct_rx_lck;
if (sze->ct_rx_lck == NULL) {
/* nothing to lock */
rte_pktmbuf_free(mbuf);
break;
}
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len;
if (!sze->ct_rx_rem_bytes) {
rte_pktmbuf_free(mbuf);
break;
}
}
if (sze->ct_rx_rem_bytes < RTE_SZE2_PACKET_HEADER_SIZE) {
/*
* cut in header
* copy parts of header to merge buffer
*/
if (sze->ct_rx_lck->next == NULL) {
rte_pktmbuf_free(mbuf);
break;
}
/* copy first part of header */
rte_memcpy(sze->ct_rx_buffer, sze->ct_rx_cur_ptr,
sze->ct_rx_rem_bytes);
/* copy second part of header */
sze->ct_rx_lck = sze->ct_rx_lck->next;
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
rte_memcpy(sze->ct_rx_buffer + sze->ct_rx_rem_bytes,
sze->ct_rx_cur_ptr,
RTE_SZE2_PACKET_HEADER_SIZE -
sze->ct_rx_rem_bytes);
sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE -
sze->ct_rx_rem_bytes;
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
RTE_SZE2_PACKET_HEADER_SIZE +
sze->ct_rx_rem_bytes;
header_ptr = (uint8_t *)sze->ct_rx_buffer;
} else {
/* not cut */
header_ptr = (uint8_t *)sze->ct_rx_cur_ptr;
sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE;
sze->ct_rx_rem_bytes -= RTE_SZE2_PACKET_HEADER_SIZE;
}
sg_size = le16toh(*((uint16_t *)header_ptr));
hw_size = le16toh(*(((uint16_t *)header_ptr) + 1));
packet_size = sg_size -
RTE_SZE2_ALIGN8(RTE_SZE2_PACKET_HEADER_SIZE + hw_size);
/* checks if packet all right */
if (!sg_size)
errx(5, "Zero segsize");
/* check sg_size and hwsize */
if (hw_size > sg_size - RTE_SZE2_PACKET_HEADER_SIZE) {
errx(10, "Hwsize bigger than expected. Segsize: %d, "
"hwsize: %d", sg_size, hw_size);
}
hw_data_align =
RTE_SZE2_ALIGN8(RTE_SZE2_PACKET_HEADER_SIZE + hw_size) -
RTE_SZE2_PACKET_HEADER_SIZE;
if (sze->ct_rx_rem_bytes >=
(uint16_t)(sg_size -
RTE_SZE2_PACKET_HEADER_SIZE)) {
/* no cut */
/* one packet ready - go to another */
packet_ptr1 = sze->ct_rx_cur_ptr + hw_data_align;
packet_len1 = packet_size;
packet_ptr2 = NULL;
packet_len2 = 0;
sze->ct_rx_cur_ptr += RTE_SZE2_ALIGN8(sg_size) -
RTE_SZE2_PACKET_HEADER_SIZE;
sze->ct_rx_rem_bytes -= RTE_SZE2_ALIGN8(sg_size) -
RTE_SZE2_PACKET_HEADER_SIZE;
} else {
/* cut in data */
if (sze->ct_rx_lck->next == NULL) {
errx(6, "Need \"next\" lock, "
"but it is missing: %u",
sze->ct_rx_rem_bytes);
}
/* skip hw data */
if (sze->ct_rx_rem_bytes <= hw_data_align) {
uint16_t rem_size = hw_data_align -
sze->ct_rx_rem_bytes;
/* MOVE to next lock */
sze->ct_rx_lck = sze->ct_rx_lck->next;
sze->ct_rx_cur_ptr =
(void *)(((uint8_t *)
(sze->ct_rx_lck->start)) + rem_size);
packet_ptr1 = sze->ct_rx_cur_ptr;
packet_len1 = packet_size;
packet_ptr2 = NULL;
packet_len2 = 0;
sze->ct_rx_cur_ptr +=
RTE_SZE2_ALIGN8(packet_size);
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
rem_size - RTE_SZE2_ALIGN8(packet_size);
} else {
/* get pointer and length from first part */
packet_ptr1 = sze->ct_rx_cur_ptr +
hw_data_align;
packet_len1 = sze->ct_rx_rem_bytes -
hw_data_align;
/* MOVE to next lock */
sze->ct_rx_lck = sze->ct_rx_lck->next;
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
/* get pointer and length from second part */
packet_ptr2 = sze->ct_rx_cur_ptr;
packet_len2 = packet_size - packet_len1;
sze->ct_rx_cur_ptr +=
RTE_SZE2_ALIGN8(packet_size) -
packet_len1;
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
(RTE_SZE2_ALIGN8(packet_size) -
packet_len1);
}
}
if (unlikely(packet_ptr1 == NULL)) {
rte_pktmbuf_free(mbuf);
break;
}
/* get the space available for data in the mbuf */
mbp_priv = rte_mempool_get_priv(sze_q->mb_pool);
buf_size = (uint16_t)(mbp_priv->mbuf_data_room_size -
RTE_PKTMBUF_HEADROOM);
if (packet_size <= buf_size) {
/* sze packet will fit in one mbuf, go ahead and copy */
rte_memcpy(rte_pktmbuf_mtod(mbuf, void *),
packet_ptr1, packet_len1);
if (packet_ptr2 != NULL) {
rte_memcpy((void *)(rte_pktmbuf_mtod(mbuf,
uint8_t *) + packet_len1),
packet_ptr2, packet_len2);
}
mbuf->data_len = (uint16_t)packet_size;
mbuf->pkt_len = packet_size;
mbuf->port = sze_q->in_port;
bufs[num_rx] = mbuf;
num_rx++;
num_bytes += packet_size;
} else {
/*
* sze packet will not fit in one mbuf,
* scattered mode is not enabled, drop packet
*/
RTE_LOG(ERR, PMD,
"SZE segment %d bytes will not fit in one mbuf "
"(%d bytes), scattered mode is not enabled, "
"drop packet!!\n",
packet_size, buf_size);
rte_pktmbuf_free(mbuf);
}
}
sze_q->rx_pkts += num_rx;
sze_q->rx_bytes += num_bytes;
return num_rx;
}
static uint16_t
eth_szedata2_rx_scattered(void *queue,
struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
unsigned int i;
struct rte_mbuf *mbuf;
struct szedata2_rx_queue *sze_q = queue;
struct rte_pktmbuf_pool_private *mbp_priv;
uint16_t num_rx = 0;
uint16_t buf_size;
uint16_t sg_size;
uint16_t hw_size;
uint16_t packet_size;
uint64_t num_bytes = 0;
struct szedata *sze = sze_q->sze;
uint8_t *header_ptr = NULL; /* header of packet */
uint8_t *packet_ptr1 = NULL;
uint8_t *packet_ptr2 = NULL;
uint16_t packet_len1 = 0;
uint16_t packet_len2 = 0;
uint16_t hw_data_align;
if (unlikely(sze_q->sze == NULL || nb_pkts == 0))
return 0;
/*
* Reads the given number of packets from szedata2 channel given
* by queue and copies the packet data into a newly allocated mbuf
* to return.
*/
for (i = 0; i < nb_pkts; i++) {
const struct szedata_lock *ct_rx_lck_backup;
unsigned int ct_rx_rem_bytes_backup;
unsigned char *ct_rx_cur_ptr_backup;
/* get the next sze packet */
if (sze->ct_rx_lck != NULL && !sze->ct_rx_rem_bytes &&
sze->ct_rx_lck->next == NULL) {
/* unlock old data */
szedata_rx_unlock_data(sze_q->sze, sze->ct_rx_lck_orig);
sze->ct_rx_lck_orig = NULL;
sze->ct_rx_lck = NULL;
}
/*
* Store items from sze structure which can be changed
* before mbuf allocating. Use these items in case of mbuf
* allocating failure.
*/
ct_rx_lck_backup = sze->ct_rx_lck;
ct_rx_rem_bytes_backup = sze->ct_rx_rem_bytes;
ct_rx_cur_ptr_backup = sze->ct_rx_cur_ptr;
if (!sze->ct_rx_rem_bytes && sze->ct_rx_lck_orig == NULL) {
/* nothing to read, lock new data */
sze->ct_rx_lck = szedata_rx_lock_data(sze_q->sze, ~0U);
sze->ct_rx_lck_orig = sze->ct_rx_lck;
/*
* Backup items from sze structure must be updated
* after locking to contain pointers to new locks.
*/
ct_rx_lck_backup = sze->ct_rx_lck;
ct_rx_rem_bytes_backup = sze->ct_rx_rem_bytes;
ct_rx_cur_ptr_backup = sze->ct_rx_cur_ptr;
if (sze->ct_rx_lck == NULL)
/* nothing to lock */
break;
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len;
if (!sze->ct_rx_rem_bytes)
break;
}
if (sze->ct_rx_rem_bytes < RTE_SZE2_PACKET_HEADER_SIZE) {
/*
* cut in header - copy parts of header to merge buffer
*/
if (sze->ct_rx_lck->next == NULL)
break;
/* copy first part of header */
rte_memcpy(sze->ct_rx_buffer, sze->ct_rx_cur_ptr,
sze->ct_rx_rem_bytes);
/* copy second part of header */
sze->ct_rx_lck = sze->ct_rx_lck->next;
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
rte_memcpy(sze->ct_rx_buffer + sze->ct_rx_rem_bytes,
sze->ct_rx_cur_ptr,
RTE_SZE2_PACKET_HEADER_SIZE -
sze->ct_rx_rem_bytes);
sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE -
sze->ct_rx_rem_bytes;
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
RTE_SZE2_PACKET_HEADER_SIZE +
sze->ct_rx_rem_bytes;
header_ptr = (uint8_t *)sze->ct_rx_buffer;
} else {
/* not cut */
header_ptr = (uint8_t *)sze->ct_rx_cur_ptr;
sze->ct_rx_cur_ptr += RTE_SZE2_PACKET_HEADER_SIZE;
sze->ct_rx_rem_bytes -= RTE_SZE2_PACKET_HEADER_SIZE;
}
sg_size = le16toh(*((uint16_t *)header_ptr));
hw_size = le16toh(*(((uint16_t *)header_ptr) + 1));
packet_size = sg_size -
RTE_SZE2_ALIGN8(RTE_SZE2_PACKET_HEADER_SIZE + hw_size);
/* checks if packet all right */
if (!sg_size)
errx(5, "Zero segsize");
/* check sg_size and hwsize */
if (hw_size > sg_size - RTE_SZE2_PACKET_HEADER_SIZE) {
errx(10, "Hwsize bigger than expected. Segsize: %d, "
"hwsize: %d", sg_size, hw_size);
}
hw_data_align =
RTE_SZE2_ALIGN8((RTE_SZE2_PACKET_HEADER_SIZE +
hw_size)) - RTE_SZE2_PACKET_HEADER_SIZE;
if (sze->ct_rx_rem_bytes >=
(uint16_t)(sg_size -
RTE_SZE2_PACKET_HEADER_SIZE)) {
/* no cut */
/* one packet ready - go to another */
packet_ptr1 = sze->ct_rx_cur_ptr + hw_data_align;
packet_len1 = packet_size;
packet_ptr2 = NULL;
packet_len2 = 0;
sze->ct_rx_cur_ptr += RTE_SZE2_ALIGN8(sg_size) -
RTE_SZE2_PACKET_HEADER_SIZE;
sze->ct_rx_rem_bytes -= RTE_SZE2_ALIGN8(sg_size) -
RTE_SZE2_PACKET_HEADER_SIZE;
} else {
/* cut in data */
if (sze->ct_rx_lck->next == NULL) {
errx(6, "Need \"next\" lock, but it is "
"missing: %u", sze->ct_rx_rem_bytes);
}
/* skip hw data */
if (sze->ct_rx_rem_bytes <= hw_data_align) {
uint16_t rem_size = hw_data_align -
sze->ct_rx_rem_bytes;
/* MOVE to next lock */
sze->ct_rx_lck = sze->ct_rx_lck->next;
sze->ct_rx_cur_ptr =
(void *)(((uint8_t *)
(sze->ct_rx_lck->start)) + rem_size);
packet_ptr1 = sze->ct_rx_cur_ptr;
packet_len1 = packet_size;
packet_ptr2 = NULL;
packet_len2 = 0;
sze->ct_rx_cur_ptr +=
RTE_SZE2_ALIGN8(packet_size);
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
rem_size - RTE_SZE2_ALIGN8(packet_size);
} else {
/* get pointer and length from first part */
packet_ptr1 = sze->ct_rx_cur_ptr +
hw_data_align;
packet_len1 = sze->ct_rx_rem_bytes -
hw_data_align;
/* MOVE to next lock */
sze->ct_rx_lck = sze->ct_rx_lck->next;
sze->ct_rx_cur_ptr = sze->ct_rx_lck->start;
/* get pointer and length from second part */
packet_ptr2 = sze->ct_rx_cur_ptr;
packet_len2 = packet_size - packet_len1;
sze->ct_rx_cur_ptr +=
RTE_SZE2_ALIGN8(packet_size) -
packet_len1;
sze->ct_rx_rem_bytes = sze->ct_rx_lck->len -
(RTE_SZE2_ALIGN8(packet_size) -
packet_len1);
}
}
if (unlikely(packet_ptr1 == NULL))
break;
mbuf = rte_pktmbuf_alloc(sze_q->mb_pool);
if (unlikely(mbuf == NULL)) {
/*
* Restore items from sze structure to state after
* unlocking (eventually locking).
*/
sze->ct_rx_lck = ct_rx_lck_backup;
sze->ct_rx_rem_bytes = ct_rx_rem_bytes_backup;
sze->ct_rx_cur_ptr = ct_rx_cur_ptr_backup;
break;
}
/* get the space available for data in the mbuf */
mbp_priv = rte_mempool_get_priv(sze_q->mb_pool);
buf_size = (uint16_t)(mbp_priv->mbuf_data_room_size -
RTE_PKTMBUF_HEADROOM);
if (packet_size <= buf_size) {
/* sze packet will fit in one mbuf, go ahead and copy */
rte_memcpy(rte_pktmbuf_mtod(mbuf, void *),
packet_ptr1, packet_len1);
if (packet_ptr2 != NULL) {
rte_memcpy((void *)
(rte_pktmbuf_mtod(mbuf, uint8_t *) +
packet_len1), packet_ptr2, packet_len2);
}
mbuf->data_len = (uint16_t)packet_size;
} else {
/*
* sze packet will not fit in one mbuf,
* scatter packet into more mbufs
*/
struct rte_mbuf *m = mbuf;
uint16_t len = rte_pktmbuf_tailroom(mbuf);
/* copy first part of packet */
/* fill first mbuf */
rte_memcpy(rte_pktmbuf_append(mbuf, len), packet_ptr1,
len);
packet_len1 -= len;
packet_ptr1 = ((uint8_t *)packet_ptr1) + len;
while (packet_len1 > 0) {
/* fill new mbufs */
m->next = rte_pktmbuf_alloc(sze_q->mb_pool);
if (unlikely(m->next == NULL)) {
rte_pktmbuf_free(mbuf);
/*
* Restore items from sze structure
* to state after unlocking (eventually
* locking).
*/
sze->ct_rx_lck = ct_rx_lck_backup;
sze->ct_rx_rem_bytes =
ct_rx_rem_bytes_backup;
sze->ct_rx_cur_ptr =
ct_rx_cur_ptr_backup;
goto finish;
}
m = m->next;
len = RTE_MIN(rte_pktmbuf_tailroom(m),
packet_len1);
rte_memcpy(rte_pktmbuf_append(mbuf, len),
packet_ptr1, len);
(mbuf->nb_segs)++;
packet_len1 -= len;
packet_ptr1 = ((uint8_t *)packet_ptr1) + len;
}
if (packet_ptr2 != NULL) {
/* copy second part of packet, if exists */
/* fill the rest of currently last mbuf */
len = rte_pktmbuf_tailroom(m);
rte_memcpy(rte_pktmbuf_append(mbuf, len),
packet_ptr2, len);
packet_len2 -= len;
packet_ptr2 = ((uint8_t *)packet_ptr2) + len;
while (packet_len2 > 0) {
/* fill new mbufs */
m->next = rte_pktmbuf_alloc(
sze_q->mb_pool);
if (unlikely(m->next == NULL)) {
rte_pktmbuf_free(mbuf);
/*
* Restore items from sze
* structure to state after
* unlocking (eventually
* locking).
*/
sze->ct_rx_lck =
ct_rx_lck_backup;
sze->ct_rx_rem_bytes =
ct_rx_rem_bytes_backup;
sze->ct_rx_cur_ptr =
ct_rx_cur_ptr_backup;
goto finish;
}
m = m->next;
len = RTE_MIN(rte_pktmbuf_tailroom(m),
packet_len2);
rte_memcpy(
rte_pktmbuf_append(mbuf, len),
packet_ptr2, len);
(mbuf->nb_segs)++;
packet_len2 -= len;
packet_ptr2 = ((uint8_t *)packet_ptr2) +
len;
}
}
}
mbuf->pkt_len = packet_size;
mbuf->port = sze_q->in_port;
bufs[num_rx] = mbuf;
num_rx++;
num_bytes += packet_size;
}
finish:
sze_q->rx_pkts += num_rx;
sze_q->rx_bytes += num_bytes;
return num_rx;
}
static uint16_t
eth_szedata2_tx(void *queue,
struct rte_mbuf **bufs,
uint16_t nb_pkts)
{
struct rte_mbuf *mbuf;
struct szedata2_tx_queue *sze_q = queue;
uint16_t num_tx = 0;
uint64_t num_bytes = 0;
const struct szedata_lock *lck;
uint32_t lock_size;
uint32_t lock_size2;
void *dst;
uint32_t pkt_len;
uint32_t hwpkt_len;
uint32_t unlock_size;
uint32_t rem_len;
uint8_t mbuf_segs;
uint16_t pkt_left = nb_pkts;
if (sze_q->sze == NULL || nb_pkts == 0)
return 0;
while (pkt_left > 0) {
unlock_size = 0;
lck = szedata_tx_lock_data(sze_q->sze,
RTE_ETH_SZEDATA2_TX_LOCK_SIZE,
sze_q->tx_channel);
if (lck == NULL)
continue;
dst = lck->start;
lock_size = lck->len;
lock_size2 = lck->next ? lck->next->len : 0;
next_packet:
mbuf = bufs[nb_pkts - pkt_left];
pkt_len = mbuf->pkt_len;
mbuf_segs = mbuf->nb_segs;
hwpkt_len = RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED +
RTE_SZE2_ALIGN8(pkt_len);
if (lock_size + lock_size2 < hwpkt_len) {
szedata_tx_unlock_data(sze_q->sze, lck, unlock_size);
continue;
}
num_bytes += pkt_len;
if (lock_size > hwpkt_len) {
void *tmp_dst;
rem_len = 0;
/* write packet length at first 2 bytes in 8B header */
*((uint16_t *)dst) = htole16(
RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED +
pkt_len);
*(((uint16_t *)dst) + 1) = htole16(0);
/* copy packet from mbuf */
tmp_dst = ((uint8_t *)(dst)) +
RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED;
if (mbuf_segs == 1) {
/*
* non-scattered packet,
* transmit from one mbuf
*/
rte_memcpy(tmp_dst,
rte_pktmbuf_mtod(mbuf, const void *),
pkt_len);
} else {
/* scattered packet, transmit from more mbufs */
struct rte_mbuf *m = mbuf;
while (m) {
rte_memcpy(tmp_dst,
rte_pktmbuf_mtod(m,
const void *),
m->data_len);
tmp_dst = ((uint8_t *)(tmp_dst)) +
m->data_len;
m = m->next;
}
}
dst = ((uint8_t *)dst) + hwpkt_len;
unlock_size += hwpkt_len;
lock_size -= hwpkt_len;
rte_pktmbuf_free(mbuf);
num_tx++;
pkt_left--;
if (pkt_left == 0) {
szedata_tx_unlock_data(sze_q->sze, lck,
unlock_size);
break;
}
goto next_packet;
} else if (lock_size + lock_size2 >= hwpkt_len) {
void *tmp_dst;
uint16_t write_len;
/* write packet length at first 2 bytes in 8B header */
*((uint16_t *)dst) =
htole16(RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED +
pkt_len);
*(((uint16_t *)dst) + 1) = htole16(0);
/*
* If the raw packet (pkt_len) is smaller than lock_size
* get the correct length for memcpy
*/
write_len =
pkt_len < lock_size -
RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED ?
pkt_len :
lock_size - RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED;
rem_len = hwpkt_len - lock_size;
tmp_dst = ((uint8_t *)(dst)) +
RTE_SZE2_PACKET_HEADER_SIZE_ALIGNED;
if (mbuf_segs == 1) {
/*
* non-scattered packet,
* transmit from one mbuf
*/
/* copy part of packet to first area */
rte_memcpy(tmp_dst,
rte_pktmbuf_mtod(mbuf, const void *),
write_len);
if (lck->next)
dst = lck->next->start;
/* copy part of packet to second area */
rte_memcpy(dst,
(const void *)(rte_pktmbuf_mtod(mbuf,
const uint8_t *) +
write_len), pkt_len - write_len);
} else {
/* scattered packet, transmit from more mbufs */
struct rte_mbuf *m = mbuf;
uint16_t written = 0;
uint16_t to_write = 0;
bool new_mbuf = true;
uint16_t write_off = 0;
/* copy part of packet to first area */
while (m && written < write_len) {
to_write = RTE_MIN(m->data_len,
write_len - written);
rte_memcpy(tmp_dst,
rte_pktmbuf_mtod(m,
const void *),
to_write);
tmp_dst = ((uint8_t *)(tmp_dst)) +
to_write;
if (m->data_len <= write_len -
written) {
m = m->next;
new_mbuf = true;
} else {
new_mbuf = false;
}
written += to_write;
}
if (lck->next)
dst = lck->next->start;
tmp_dst = dst;
written = 0;
write_off = new_mbuf ? 0 : to_write;
/* copy part of packet to second area */
while (m && written < pkt_len - write_len) {
rte_memcpy(tmp_dst, (const void *)
(rte_pktmbuf_mtod(m,
uint8_t *) + write_off),
m->data_len - write_off);
tmp_dst = ((uint8_t *)(tmp_dst)) +
(m->data_len - write_off);
written += m->data_len - write_off;
m = m->next;
write_off = 0;
}
}
dst = ((uint8_t *)dst) + rem_len;
unlock_size += hwpkt_len;
lock_size = lock_size2 - rem_len;
lock_size2 = 0;
rte_pktmbuf_free(mbuf);
num_tx++;
}
szedata_tx_unlock_data(sze_q->sze, lck, unlock_size);
pkt_left--;
}
sze_q->tx_pkts += num_tx;
sze_q->err_pkts += nb_pkts - num_tx;
sze_q->tx_bytes += num_bytes;
return num_tx;
}
static int
init_rx_channels(struct rte_eth_dev *dev, int v)
{
struct pmd_internals *internals = dev->data->dev_private;
int ret;
uint32_t i;
uint32_t count = internals->num_of_rx;
uint32_t num_sub = 0;
uint32_t x;
uint32_t rx;
uint32_t tx;
rx = internals->sze_rx_req;
tx = 0;
for (i = 0; i < count; i++) {
/*
* Open, subscribe rx,tx channels and start device
*/
if (v)
RTE_LOG(INFO, PMD, "Opening SZE device %u. time\n", i);
internals->rx_queue[num_sub].sze =
szedata_open(internals->sze_dev);
if (internals->rx_queue[num_sub].sze == NULL)
return -1;
/* separate least significant non-zero bit */
x = rx & ((~rx) + 1);
if (v)
RTE_LOG(INFO, PMD, "Subscribing rx channel: 0x%x "
"tx channel: 0x%x\n", x, tx);
ret = szedata_subscribe3(internals->rx_queue[num_sub].sze,
&x, &tx);
if (ret) {
szedata_close(internals->rx_queue[num_sub].sze);
internals->rx_queue[num_sub].sze = NULL;
return -1;
}
if (v)
RTE_LOG(INFO, PMD, "Subscribed rx channel: 0x%x "
"tx channel: 0x%x\n", x, tx);
if (x) {
if (v)
RTE_LOG(INFO, PMD, "Starting SZE device for "
"rx queue: %u\n", num_sub);
ret = szedata_start(internals->rx_queue[num_sub].sze);
if (ret) {
szedata_close(internals->rx_queue[num_sub].sze);
internals->rx_queue[num_sub].sze = NULL;
return -1;
}
/*
* set to 1 all bits lower than bit set to 1
* and that bit to 0
*/
x -= 1;
internals->rx_queue[num_sub].rx_channel =
count_ones(x);
if (v)
RTE_LOG(INFO, PMD, "Subscribed rx channel "
"no: %u\n",
internals->rx_queue[num_sub].rx_channel
);
num_sub++;
internals->nb_rx_queues = num_sub;
} else {
if (v)
RTE_LOG(INFO, PMD,
"Could not subscribe any rx channel. "
"Closing SZE device\n");
szedata_close(internals->rx_queue[num_sub].sze);
internals->rx_queue[num_sub].sze = NULL;
}
/* set least significant non-zero bit to zero */
rx = rx & (rx - 1);
}
dev->data->nb_rx_queues = (uint16_t)num_sub;
if (v)
RTE_LOG(INFO, PMD, "Successfully opened rx channels: %u\n",
num_sub);
return 0;
}
static int
init_tx_channels(struct rte_eth_dev *dev, int v)
{
struct pmd_internals *internals = dev->data->dev_private;
int ret;
uint32_t i;
uint32_t count = internals->num_of_tx;
uint32_t num_sub = 0;
uint32_t x;
uint32_t rx;
uint32_t tx;
rx = 0;
tx = internals->sze_tx_req;
for (i = 0; i < count; i++) {
/*
* Open, subscribe rx,tx channels and start device
*/
if (v)
RTE_LOG(INFO, PMD, "Opening SZE device %u. time\n",
i + internals->num_of_rx);
internals->tx_queue[num_sub].sze =
szedata_open(internals->sze_dev);
if (internals->tx_queue[num_sub].sze == NULL)
return -1;
/* separate least significant non-zero bit */
x = tx & ((~tx) + 1);
if (v)
RTE_LOG(INFO, PMD, "Subscribing rx channel: 0x%x "
"tx channel: 0x%x\n", rx, x);
ret = szedata_subscribe3(internals->tx_queue[num_sub].sze,
&rx, &x);
if (ret) {
szedata_close(internals->tx_queue[num_sub].sze);
internals->tx_queue[num_sub].sze = NULL;
return -1;
}
if (v)
RTE_LOG(INFO, PMD, "Subscribed rx channel: 0x%x "
"tx channel: 0x%x\n", rx, x);
if (x) {
if (v)
RTE_LOG(INFO, PMD, "Starting SZE device for "
"tx queue: %u\n", num_sub);
ret = szedata_start(internals->tx_queue[num_sub].sze);
if (ret) {
szedata_close(internals->tx_queue[num_sub].sze);
internals->tx_queue[num_sub].sze = NULL;
return -1;
}
/*
* set to 1 all bits lower than bit set to 1
* and that bit to 0
*/
x -= 1;
internals->tx_queue[num_sub].tx_channel =
count_ones(x);
if (v)
RTE_LOG(INFO, PMD, "Subscribed tx channel "
"no: %u\n",
internals->tx_queue[num_sub].tx_channel
);
num_sub++;
internals->nb_tx_queues = num_sub;
} else {
if (v)
RTE_LOG(INFO, PMD,
"Could not subscribe any tx channel. "
"Closing SZE device\n");
szedata_close(internals->tx_queue[num_sub].sze);
internals->tx_queue[num_sub].sze = NULL;
}
/* set least significant non-zero bit to zero */
tx = tx & (tx - 1);
}
dev->data->nb_tx_queues = (uint16_t)num_sub;
if (v)
RTE_LOG(INFO, PMD, "Successfully opened tx channels: %u\n",
num_sub);
return 0;
}
static void
close_rx_channels(struct rte_eth_dev *dev)
{
struct pmd_internals *internals = dev->data->dev_private;
uint32_t i;
uint32_t num_sub = internals->nb_rx_queues;
for (i = 0; i < num_sub; i++) {
if (internals->rx_queue[i].sze != NULL) {
szedata_close(internals->rx_queue[i].sze);
internals->rx_queue[i].sze = NULL;
}
}
/* set number of rx queues to zero */
internals->nb_rx_queues = 0;
dev->data->nb_rx_queues = (uint16_t)0;
}
static void
close_tx_channels(struct rte_eth_dev *dev)
{
struct pmd_internals *internals = dev->data->dev_private;
uint32_t i;
uint32_t num_sub = internals->nb_tx_queues;
for (i = 0; i < num_sub; i++) {
if (internals->tx_queue[i].sze != NULL) {
szedata_close(internals->tx_queue[i].sze);
internals->tx_queue[i].sze = NULL;
}
}
/* set number of rx queues to zero */
internals->nb_tx_queues = 0;
dev->data->nb_tx_queues = (uint16_t)0;
}
static int
eth_dev_start(struct rte_eth_dev *dev)
{
struct pmd_internals *internals = dev->data->dev_private;
int ret;
if (internals->nb_rx_queues == 0) {
ret = init_rx_channels(dev, 0);
if (ret != 0) {
close_rx_channels(dev);
return -1;
}
}
if (internals->nb_tx_queues == 0) {
ret = init_tx_channels(dev, 0);
if (ret != 0) {
close_tx_channels(dev);
close_rx_channels(dev);
return -1;
}
}
dev->data->dev_link.link_status = 1;
return 0;
}
static void
eth_dev_stop(struct rte_eth_dev *dev)
{
unsigned i;
struct pmd_internals *internals = dev->data->dev_private;
for (i = 0; i < internals->nb_rx_queues; i++) {
if (internals->rx_queue[i].sze != NULL) {
szedata_close(internals->rx_queue[i].sze);
internals->rx_queue[i].sze = NULL;
}
}
for (i = 0; i < internals->nb_tx_queues; i++) {
if (internals->tx_queue[i].sze != NULL) {
szedata_close(internals->tx_queue[i].sze);
internals->tx_queue[i].sze = NULL;
}
}
internals->nb_rx_queues = 0;
internals->nb_tx_queues = 0;
dev->data->nb_rx_queues = (uint16_t)0;
dev->data->nb_tx_queues = (uint16_t)0;
dev->data->dev_link.link_status = 0;
}
static int
eth_dev_configure(struct rte_eth_dev *dev)
{
struct rte_eth_dev_data *data = dev->data;
if (data->dev_conf.rxmode.enable_scatter == 1) {
dev->rx_pkt_burst = eth_szedata2_rx_scattered;
data->scattered_rx = 1;
} else {
dev->rx_pkt_burst = eth_szedata2_rx;
data->scattered_rx = 0;
}
return 0;
}
static void
eth_dev_info(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info)
{
struct pmd_internals *internals = dev->data->dev_private;
dev_info->driver_name = drivername;
dev_info->if_index = internals->if_index;
dev_info->max_mac_addrs = 1;
dev_info->max_rx_pktlen = (uint32_t)-1;
dev_info->max_rx_queues = (uint16_t)internals->nb_rx_queues;
dev_info->max_tx_queues = (uint16_t)internals->nb_tx_queues;
dev_info->min_rx_bufsize = 0;
dev_info->pci_dev = NULL;
}
static void
eth_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats)
{
unsigned i;
uint64_t rx_total = 0;
uint64_t tx_total = 0;
uint64_t tx_err_total = 0;
uint64_t rx_total_bytes = 0;
uint64_t tx_total_bytes = 0;
const struct pmd_internals *internal = dev->data->dev_private;
for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
i < internal->nb_rx_queues; i++) {
stats->q_ipackets[i] = internal->rx_queue[i].rx_pkts;
stats->q_ibytes[i] = internal->rx_queue[i].rx_bytes;
rx_total += stats->q_ipackets[i];
rx_total_bytes += stats->q_ibytes[i];
}
for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
i < internal->nb_tx_queues; i++) {
stats->q_opackets[i] = internal->tx_queue[i].tx_pkts;
stats->q_errors[i] = internal->tx_queue[i].err_pkts;
stats->q_obytes[i] = internal->tx_queue[i].tx_bytes;
tx_total += stats->q_opackets[i];
tx_err_total += stats->q_errors[i];
tx_total_bytes += stats->q_obytes[i];
}
stats->ipackets = rx_total;
stats->opackets = tx_total;
stats->ibytes = rx_total_bytes;
stats->obytes = tx_total_bytes;
stats->oerrors = tx_err_total;
}
static void
eth_stats_reset(struct rte_eth_dev *dev)
{
unsigned i;
struct pmd_internals *internal = dev->data->dev_private;
for (i = 0; i < internal->nb_rx_queues; i++) {
internal->rx_queue[i].rx_pkts = 0;
internal->rx_queue[i].rx_bytes = 0;
}
for (i = 0; i < internal->nb_tx_queues; i++) {
internal->tx_queue[i].tx_pkts = 0;
internal->tx_queue[i].err_pkts = 0;
internal->tx_queue[i].tx_bytes = 0;
}
}
static void
eth_dev_close(struct rte_eth_dev *dev)
{
unsigned i;
struct pmd_internals *internals = dev->data->dev_private;
for (i = 0; i < internals->nb_rx_queues; i++) {
if (internals->rx_queue[i].sze != NULL) {
szedata_close(internals->rx_queue[i].sze);
internals->rx_queue[i].sze = NULL;
}
}
for (i = 0; i < internals->nb_tx_queues; i++) {
if (internals->tx_queue[i].sze != NULL) {
szedata_close(internals->tx_queue[i].sze);
internals->tx_queue[i].sze = NULL;
}
}
internals->nb_rx_queues = 0;
internals->nb_tx_queues = 0;
dev->data->nb_rx_queues = (uint16_t)0;
dev->data->nb_tx_queues = (uint16_t)0;
}
static void
eth_queue_release(void *q __rte_unused)
{
}
static int
eth_link_update(struct rte_eth_dev *dev __rte_unused,
int wait_to_complete __rte_unused)
{
return 0;
}
static int
eth_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t rx_queue_id,
uint16_t nb_rx_desc __rte_unused,
unsigned int socket_id __rte_unused,
const struct rte_eth_rxconf *rx_conf __rte_unused,
struct rte_mempool *mb_pool)
{
struct pmd_internals *internals = dev->data->dev_private;
struct szedata2_rx_queue *szedata2_q =
&internals->rx_queue[rx_queue_id];
szedata2_q->mb_pool = mb_pool;
dev->data->rx_queues[rx_queue_id] = szedata2_q;
szedata2_q->in_port = dev->data->port_id;
return 0;
}
static int
eth_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t tx_queue_id,
uint16_t nb_tx_desc __rte_unused,
unsigned int socket_id __rte_unused,
const struct rte_eth_txconf *tx_conf __rte_unused)
{
struct pmd_internals *internals = dev->data->dev_private;
dev->data->tx_queues[tx_queue_id] = &internals->tx_queue[tx_queue_id];
return 0;
}
static void
eth_mac_addr_set(struct rte_eth_dev *dev __rte_unused,
struct ether_addr *mac_addr __rte_unused)
{
}
static struct eth_dev_ops ops = {
.dev_start = eth_dev_start,
.dev_stop = eth_dev_stop,
.dev_close = eth_dev_close,
.dev_configure = eth_dev_configure,
.dev_infos_get = eth_dev_info,
.rx_queue_setup = eth_rx_queue_setup,
.tx_queue_setup = eth_tx_queue_setup,
.rx_queue_release = eth_queue_release,
.tx_queue_release = eth_queue_release,
.link_update = eth_link_update,
.stats_get = eth_stats_get,
.stats_reset = eth_stats_reset,
.mac_addr_set = eth_mac_addr_set,
};
static int
parse_mask(const char *mask_str, uint32_t *mask_num)
{
char *endptr;
long int value;
value = strtol(mask_str, &endptr, 0);
if (*endptr != '\0' || value > UINT32_MAX || value < 0)
return -1;
*mask_num = (uint32_t)value;
return 0;
}
static int
add_rx_mask(const char *key __rte_unused, const char *value, void *extra_args)
{
struct rxtx_szedata2 *szedata2 = extra_args;
uint32_t mask;
if (parse_mask(value, &mask) != 0)
return -1;
szedata2->sze_rx_mask_req |= mask;
return 0;
}
static int
add_tx_mask(const char *key __rte_unused, const char *value, void *extra_args)
{
struct rxtx_szedata2 *szedata2 = extra_args;
uint32_t mask;
if (parse_mask(value, &mask) != 0)
return -1;
szedata2->sze_tx_mask_req |= mask;
return 0;
}
static int
rte_pmd_init_internals(const char *name, const unsigned nb_rx_queues,
const unsigned nb_tx_queues,
const unsigned numa_node,
struct pmd_internals **internals,
struct rte_eth_dev **eth_dev)
{
struct rte_eth_dev_data *data = NULL;
RTE_LOG(INFO, PMD,
"Creating szedata2-backed ethdev on numa socket %u\n",
numa_node);
/*
* now do all data allocation - for eth_dev structure
* and internal (private) data
*/
data = rte_zmalloc_socket(name, sizeof(*data), 0, numa_node);
if (data == NULL)
goto error;
*internals = rte_zmalloc_socket(name, sizeof(**internals), 0,
numa_node);
if (*internals == NULL)
goto error;
/* reserve an ethdev entry */
*eth_dev = rte_eth_dev_allocate(name, RTE_ETH_DEV_VIRTUAL);
if (*eth_dev == NULL)
goto error;
/*
* now put it all together
* - store queue data in internals,
* - store numa_node info in pci_driver
* - point eth_dev_data to internals
* - and point eth_dev structure to new eth_dev_data structure
*
* NOTE: we'll replace the data element, of originally allocated eth_dev
* so the rings are local per-process
*/
(*internals)->nb_rx_queues = nb_rx_queues;
(*internals)->nb_tx_queues = nb_tx_queues;
(*internals)->if_index = 0;
data->dev_private = *internals;
data->port_id = (*eth_dev)->data->port_id;
snprintf(data->name, sizeof(data->name), "%s", (*eth_dev)->data->name);
data->nb_rx_queues = (uint16_t)nb_rx_queues;
data->nb_tx_queues = (uint16_t)nb_tx_queues;
data->dev_link = pmd_link;
data->mac_addrs = &eth_addr;
(*eth_dev)->data = data;
(*eth_dev)->dev_ops = &ops;
(*eth_dev)->data->dev_flags = RTE_ETH_DEV_DETACHABLE;
(*eth_dev)->driver = NULL;
(*eth_dev)->data->kdrv = RTE_KDRV_NONE;
(*eth_dev)->data->drv_name = drivername;
(*eth_dev)->data->numa_node = numa_node;
return 0;
error:
rte_free(data);
rte_free(*internals);
return -1;
}
static int
rte_eth_from_szedata2(const char *name,
struct rxtx_szedata2 *szedata2,
const unsigned numa_node)
{
struct pmd_internals *internals = NULL;
struct rte_eth_dev *eth_dev = NULL;
struct rte_eth_dev_data *data = NULL;
int ret;
if (rte_pmd_init_internals(name, 0, 0, numa_node,
&internals, &eth_dev) < 0)
return -1;
data = eth_dev->data;
internals->sze_dev = szedata2->sze_dev;
internals->sze_rx_req = szedata2->sze_rx_mask_req;
internals->sze_tx_req = szedata2->sze_tx_mask_req;
internals->num_of_rx = szedata2->num_of_rx;
internals->num_of_tx = szedata2->num_of_tx;
RTE_LOG(INFO, PMD, "Number of rx channels to open: %u mask: 0x%x\n",
internals->num_of_rx, internals->sze_rx_req);
RTE_LOG(INFO, PMD, "Number of tx channels to open: %u mask: 0x%x\n",
internals->num_of_tx, internals->sze_tx_req);
ret = init_rx_channels(eth_dev, 1);
if (ret != 0) {
close_rx_channels(eth_dev);
return -1;
}
ret = init_tx_channels(eth_dev, 1);
if (ret != 0) {
close_tx_channels(eth_dev);
close_rx_channels(eth_dev);
return -1;
}
if (data->dev_conf.rxmode.enable_scatter == 1 ||
data->scattered_rx == 1) {
eth_dev->rx_pkt_burst = eth_szedata2_rx_scattered;
data->scattered_rx = 1;
} else {
eth_dev->rx_pkt_burst = eth_szedata2_rx;
data->scattered_rx = 0;
}
eth_dev->tx_pkt_burst = eth_szedata2_tx;
return 0;
}
static int
rte_pmd_szedata2_devinit(const char *name, const char *params)
{
unsigned numa_node;
int ret;
struct rte_kvargs *kvlist;
unsigned k_idx;
struct rte_kvargs_pair *pair = NULL;
struct rxtx_szedata2 szedata2 = { 0, 0, 0, 0, NULL };
bool dev_path_missing = true;
RTE_LOG(INFO, PMD, "Initializing pmd_szedata2 for %s\n", name);
numa_node = rte_socket_id();
kvlist = rte_kvargs_parse(params, valid_arguments);
if (kvlist == NULL)
return -1;
/*
* Get szedata2 device path and rx,tx channels from passed arguments.
*/
if (rte_kvargs_count(kvlist, RTE_ETH_SZEDATA2_DEV_PATH_ARG) != 1)
goto err;
if (rte_kvargs_count(kvlist, RTE_ETH_SZEDATA2_RX_IFACES_ARG) < 1)
goto err;
if (rte_kvargs_count(kvlist, RTE_ETH_SZEDATA2_TX_IFACES_ARG) < 1)
goto err;
for (k_idx = 0; k_idx < kvlist->count; k_idx++) {
pair = &kvlist->pairs[k_idx];
if (strstr(pair->key, RTE_ETH_SZEDATA2_DEV_PATH_ARG) != NULL) {
szedata2.sze_dev = pair->value;
dev_path_missing = false;
break;
}
}
if (dev_path_missing)
goto err;
ret = rte_kvargs_process(kvlist, RTE_ETH_SZEDATA2_RX_IFACES_ARG,
&add_rx_mask, &szedata2);
if (ret < 0)
goto err;
ret = rte_kvargs_process(kvlist, RTE_ETH_SZEDATA2_TX_IFACES_ARG,
&add_tx_mask, &szedata2);
if (ret < 0)
goto err;
szedata2.num_of_rx = count_ones(szedata2.sze_rx_mask_req);
szedata2.num_of_tx = count_ones(szedata2.sze_tx_mask_req);
RTE_LOG(INFO, PMD, "SZE device found at path %s\n", szedata2.sze_dev);
return rte_eth_from_szedata2(name, &szedata2, numa_node);
err:
rte_kvargs_free(kvlist);
return -1;
}
static int
rte_pmd_szedata2_devuninit(const char *name)
{
struct rte_eth_dev *dev = NULL;
RTE_LOG(INFO, PMD, "Uninitializing pmd_szedata2 for %s "
"on numa socket %u\n", name, rte_socket_id());
if (name == NULL)
return -1;
dev = rte_eth_dev_allocated(name);
if (dev == NULL)
return -1;
rte_free(dev->data->dev_private);
rte_free(dev->data);
rte_eth_dev_release_port(dev);
return 0;
}
static struct rte_driver pmd_szedata2_drv = {
.name = "eth_szedata2",
.type = PMD_VDEV,
.init = rte_pmd_szedata2_devinit,
.uninit = rte_pmd_szedata2_devuninit,
};
PMD_REGISTER_DRIVER(pmd_szedata2_drv);