1045 lines
24 KiB
C
1045 lines
24 KiB
C
|
/*
|
||
|
* Copyright (c) 2009-2016 Solarflare Communications Inc.
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions are met:
|
||
|
*
|
||
|
* 1. Redistributions of source code must retain the above copyright notice,
|
||
|
* this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||
|
* this list of conditions and the following disclaimer in the documentation
|
||
|
* and/or other materials provided with the distribution.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
||
|
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
||
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
||
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
||
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
||
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*
|
||
|
* The views and conclusions contained in the software and documentation are
|
||
|
* those of the authors and should not be interpreted as representing official
|
||
|
* policies, either expressed or implied, of the FreeBSD Project.
|
||
|
*/
|
||
|
|
||
|
#include "efx.h"
|
||
|
#include "efx_impl.h"
|
||
|
|
||
|
#if EFSYS_OPT_NVRAM
|
||
|
|
||
|
#if EFSYS_OPT_SIENA
|
||
|
|
||
|
static const efx_nvram_ops_t __efx_nvram_siena_ops = {
|
||
|
#if EFSYS_OPT_DIAG
|
||
|
siena_nvram_test, /* envo_test */
|
||
|
#endif /* EFSYS_OPT_DIAG */
|
||
|
siena_nvram_type_to_partn, /* envo_type_to_partn */
|
||
|
siena_nvram_partn_size, /* envo_partn_size */
|
||
|
siena_nvram_partn_rw_start, /* envo_partn_rw_start */
|
||
|
siena_nvram_partn_read, /* envo_partn_read */
|
||
|
siena_nvram_partn_erase, /* envo_partn_erase */
|
||
|
siena_nvram_partn_write, /* envo_partn_write */
|
||
|
siena_nvram_partn_rw_finish, /* envo_partn_rw_finish */
|
||
|
siena_nvram_partn_get_version, /* envo_partn_get_version */
|
||
|
siena_nvram_partn_set_version, /* envo_partn_set_version */
|
||
|
NULL, /* envo_partn_validate */
|
||
|
};
|
||
|
|
||
|
#endif /* EFSYS_OPT_SIENA */
|
||
|
|
||
|
#if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD
|
||
|
|
||
|
static const efx_nvram_ops_t __efx_nvram_ef10_ops = {
|
||
|
#if EFSYS_OPT_DIAG
|
||
|
ef10_nvram_test, /* envo_test */
|
||
|
#endif /* EFSYS_OPT_DIAG */
|
||
|
ef10_nvram_type_to_partn, /* envo_type_to_partn */
|
||
|
ef10_nvram_partn_size, /* envo_partn_size */
|
||
|
ef10_nvram_partn_rw_start, /* envo_partn_rw_start */
|
||
|
ef10_nvram_partn_read, /* envo_partn_read */
|
||
|
ef10_nvram_partn_erase, /* envo_partn_erase */
|
||
|
ef10_nvram_partn_write, /* envo_partn_write */
|
||
|
ef10_nvram_partn_rw_finish, /* envo_partn_rw_finish */
|
||
|
ef10_nvram_partn_get_version, /* envo_partn_get_version */
|
||
|
ef10_nvram_partn_set_version, /* envo_partn_set_version */
|
||
|
ef10_nvram_buffer_validate, /* envo_buffer_validate */
|
||
|
};
|
||
|
|
||
|
#endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
efx_nvram_init(
|
||
|
__in efx_nic_t *enp)
|
||
|
{
|
||
|
const efx_nvram_ops_t *envop;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
||
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
|
||
|
EFSYS_ASSERT(!(enp->en_mod_flags & EFX_MOD_NVRAM));
|
||
|
|
||
|
switch (enp->en_family) {
|
||
|
#if EFSYS_OPT_SIENA
|
||
|
case EFX_FAMILY_SIENA:
|
||
|
envop = &__efx_nvram_siena_ops;
|
||
|
break;
|
||
|
#endif /* EFSYS_OPT_SIENA */
|
||
|
|
||
|
#if EFSYS_OPT_HUNTINGTON
|
||
|
case EFX_FAMILY_HUNTINGTON:
|
||
|
envop = &__efx_nvram_ef10_ops;
|
||
|
break;
|
||
|
#endif /* EFSYS_OPT_HUNTINGTON */
|
||
|
|
||
|
#if EFSYS_OPT_MEDFORD
|
||
|
case EFX_FAMILY_MEDFORD:
|
||
|
envop = &__efx_nvram_ef10_ops;
|
||
|
break;
|
||
|
#endif /* EFSYS_OPT_MEDFORD */
|
||
|
|
||
|
default:
|
||
|
EFSYS_ASSERT(0);
|
||
|
rc = ENOTSUP;
|
||
|
goto fail1;
|
||
|
}
|
||
|
|
||
|
enp->en_envop = envop;
|
||
|
enp->en_mod_flags |= EFX_MOD_NVRAM;
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
#if EFSYS_OPT_DIAG
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
efx_nvram_test(
|
||
|
__in efx_nic_t *enp)
|
||
|
{
|
||
|
const efx_nvram_ops_t *envop = enp->en_envop;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
||
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM);
|
||
|
|
||
|
if ((rc = envop->envo_test(enp)) != 0)
|
||
|
goto fail1;
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
#endif /* EFSYS_OPT_DIAG */
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
efx_nvram_size(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in efx_nvram_type_t type,
|
||
|
__out size_t *sizep)
|
||
|
{
|
||
|
const efx_nvram_ops_t *envop = enp->en_envop;
|
||
|
uint32_t partn;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
||
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM);
|
||
|
|
||
|
EFSYS_ASSERT3U(type, <, EFX_NVRAM_NTYPES);
|
||
|
|
||
|
if ((rc = envop->envo_type_to_partn(enp, type, &partn)) != 0)
|
||
|
goto fail1;
|
||
|
|
||
|
if ((rc = envop->envo_partn_size(enp, partn, sizep)) != 0)
|
||
|
goto fail2;
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
*sizep = 0;
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
efx_nvram_get_version(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in efx_nvram_type_t type,
|
||
|
__out uint32_t *subtypep,
|
||
|
__out_ecount(4) uint16_t version[4])
|
||
|
{
|
||
|
const efx_nvram_ops_t *envop = enp->en_envop;
|
||
|
uint32_t partn;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
||
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
|
||
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM);
|
||
|
|
||
|
EFSYS_ASSERT3U(type, <, EFX_NVRAM_NTYPES);
|
||
|
|
||
|
if ((rc = envop->envo_type_to_partn(enp, type, &partn)) != 0)
|
||
|
goto fail1;
|
||
|
|
||
|
if ((rc = envop->envo_partn_get_version(enp, partn,
|
||
|
subtypep, version)) != 0)
|
||
|
goto fail2;
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
efx_nvram_rw_start(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in efx_nvram_type_t type,
|
||
|
__out_opt size_t *chunk_sizep)
|
||
|
{
|
||
|
const efx_nvram_ops_t *envop = enp->en_envop;
|
||
|
uint32_t partn;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
||
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM);
|
||
|
|
||
|
EFSYS_ASSERT3U(type, <, EFX_NVRAM_NTYPES);
|
||
|
EFSYS_ASSERT3U(type, !=, EFX_NVRAM_INVALID);
|
||
|
|
||
|
EFSYS_ASSERT3U(enp->en_nvram_locked, ==, EFX_NVRAM_INVALID);
|
||
|
|
||
|
if ((rc = envop->envo_type_to_partn(enp, type, &partn)) != 0)
|
||
|
goto fail1;
|
||
|
|
||
|
if ((rc = envop->envo_partn_rw_start(enp, partn, chunk_sizep)) != 0)
|
||
|
goto fail2;
|
||
|
|
||
|
enp->en_nvram_locked = type;
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
efx_nvram_read_chunk(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in efx_nvram_type_t type,
|
||
|
__in unsigned int offset,
|
||
|
__out_bcount(size) caddr_t data,
|
||
|
__in size_t size)
|
||
|
{
|
||
|
const efx_nvram_ops_t *envop = enp->en_envop;
|
||
|
uint32_t partn;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
||
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM);
|
||
|
|
||
|
EFSYS_ASSERT3U(type, <, EFX_NVRAM_NTYPES);
|
||
|
EFSYS_ASSERT3U(type, !=, EFX_NVRAM_INVALID);
|
||
|
|
||
|
EFSYS_ASSERT3U(enp->en_nvram_locked, ==, type);
|
||
|
|
||
|
if ((rc = envop->envo_type_to_partn(enp, type, &partn)) != 0)
|
||
|
goto fail1;
|
||
|
|
||
|
if ((rc = envop->envo_partn_read(enp, partn, offset, data, size)) != 0)
|
||
|
goto fail2;
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
efx_nvram_erase(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in efx_nvram_type_t type)
|
||
|
{
|
||
|
const efx_nvram_ops_t *envop = enp->en_envop;
|
||
|
unsigned int offset = 0;
|
||
|
size_t size = 0;
|
||
|
uint32_t partn;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
||
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM);
|
||
|
|
||
|
EFSYS_ASSERT3U(type, <, EFX_NVRAM_NTYPES);
|
||
|
EFSYS_ASSERT3U(type, !=, EFX_NVRAM_INVALID);
|
||
|
|
||
|
EFSYS_ASSERT3U(enp->en_nvram_locked, ==, type);
|
||
|
|
||
|
if ((rc = envop->envo_type_to_partn(enp, type, &partn)) != 0)
|
||
|
goto fail1;
|
||
|
|
||
|
if ((rc = envop->envo_partn_size(enp, partn, &size)) != 0)
|
||
|
goto fail2;
|
||
|
|
||
|
if ((rc = envop->envo_partn_erase(enp, partn, offset, size)) != 0)
|
||
|
goto fail3;
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail3:
|
||
|
EFSYS_PROBE(fail3);
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
efx_nvram_write_chunk(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in efx_nvram_type_t type,
|
||
|
__in unsigned int offset,
|
||
|
__in_bcount(size) caddr_t data,
|
||
|
__in size_t size)
|
||
|
{
|
||
|
const efx_nvram_ops_t *envop = enp->en_envop;
|
||
|
uint32_t partn;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
||
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM);
|
||
|
|
||
|
EFSYS_ASSERT3U(type, <, EFX_NVRAM_NTYPES);
|
||
|
EFSYS_ASSERT3U(type, !=, EFX_NVRAM_INVALID);
|
||
|
|
||
|
EFSYS_ASSERT3U(enp->en_nvram_locked, ==, type);
|
||
|
|
||
|
if ((rc = envop->envo_type_to_partn(enp, type, &partn)) != 0)
|
||
|
goto fail1;
|
||
|
|
||
|
if ((rc = envop->envo_partn_write(enp, partn, offset, data, size)) != 0)
|
||
|
goto fail2;
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
efx_nvram_rw_finish(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in efx_nvram_type_t type)
|
||
|
{
|
||
|
const efx_nvram_ops_t *envop = enp->en_envop;
|
||
|
uint32_t partn;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
||
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM);
|
||
|
|
||
|
EFSYS_ASSERT3U(type, <, EFX_NVRAM_NTYPES);
|
||
|
EFSYS_ASSERT3U(type, !=, EFX_NVRAM_INVALID);
|
||
|
|
||
|
EFSYS_ASSERT3U(enp->en_nvram_locked, ==, type);
|
||
|
|
||
|
if ((rc = envop->envo_type_to_partn(enp, type, &partn)) != 0)
|
||
|
goto fail1;
|
||
|
|
||
|
if ((rc = envop->envo_partn_rw_finish(enp, partn)) != 0)
|
||
|
goto fail2;
|
||
|
|
||
|
enp->en_nvram_locked = EFX_NVRAM_INVALID;
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
enp->en_nvram_locked = EFX_NVRAM_INVALID;
|
||
|
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
efx_nvram_set_version(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in efx_nvram_type_t type,
|
||
|
__in_ecount(4) uint16_t version[4])
|
||
|
{
|
||
|
const efx_nvram_ops_t *envop = enp->en_envop;
|
||
|
uint32_t partn;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
||
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
|
||
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM);
|
||
|
|
||
|
EFSYS_ASSERT3U(type, <, EFX_NVRAM_NTYPES);
|
||
|
|
||
|
/*
|
||
|
* The Siena implementation of envo_set_version() will attempt to
|
||
|
* acquire the NVRAM_UPDATE lock for the DYNAMIC_CONFIG sector.
|
||
|
* Therefore, you can't have already acquired the NVRAM_UPDATE lock.
|
||
|
*/
|
||
|
EFSYS_ASSERT3U(enp->en_nvram_locked, ==, EFX_NVRAM_INVALID);
|
||
|
|
||
|
if ((rc = envop->envo_type_to_partn(enp, type, &partn)) != 0)
|
||
|
goto fail1;
|
||
|
|
||
|
if ((rc = envop->envo_partn_set_version(enp, partn, version)) != 0)
|
||
|
goto fail2;
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
/* Validate buffer contents (before writing to flash) */
|
||
|
__checkReturn efx_rc_t
|
||
|
efx_nvram_validate(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in efx_nvram_type_t type,
|
||
|
__in_bcount(partn_size) caddr_t partn_data,
|
||
|
__in size_t partn_size)
|
||
|
{
|
||
|
const efx_nvram_ops_t *envop = enp->en_envop;
|
||
|
uint32_t partn;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
||
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
|
||
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM);
|
||
|
|
||
|
EFSYS_ASSERT3U(type, <, EFX_NVRAM_NTYPES);
|
||
|
|
||
|
|
||
|
if ((rc = envop->envo_type_to_partn(enp, type, &partn)) != 0)
|
||
|
goto fail1;
|
||
|
|
||
|
if (envop->envo_type_to_partn != NULL &&
|
||
|
((rc = envop->envo_buffer_validate(enp, partn,
|
||
|
partn_data, partn_size)) != 0))
|
||
|
goto fail2;
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
|
||
|
void
|
||
|
efx_nvram_fini(
|
||
|
__in efx_nic_t *enp)
|
||
|
{
|
||
|
EFSYS_ASSERT3U(enp->en_magic, ==, EFX_NIC_MAGIC);
|
||
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_PROBE);
|
||
|
EFSYS_ASSERT3U(enp->en_mod_flags, &, EFX_MOD_NVRAM);
|
||
|
|
||
|
EFSYS_ASSERT3U(enp->en_nvram_locked, ==, EFX_NVRAM_INVALID);
|
||
|
|
||
|
enp->en_envop = NULL;
|
||
|
enp->en_mod_flags &= ~EFX_MOD_NVRAM;
|
||
|
}
|
||
|
|
||
|
#endif /* EFSYS_OPT_NVRAM */
|
||
|
|
||
|
#if EFSYS_OPT_NVRAM || EFSYS_OPT_VPD
|
||
|
|
||
|
/*
|
||
|
* Internal MCDI request handling
|
||
|
*/
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
efx_mcdi_nvram_partitions(
|
||
|
__in efx_nic_t *enp,
|
||
|
__out_bcount(size) caddr_t data,
|
||
|
__in size_t size,
|
||
|
__out unsigned int *npartnp)
|
||
|
{
|
||
|
efx_mcdi_req_t req;
|
||
|
uint8_t payload[MAX(MC_CMD_NVRAM_PARTITIONS_IN_LEN,
|
||
|
MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX)];
|
||
|
unsigned int npartn;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
(void) memset(payload, 0, sizeof (payload));
|
||
|
req.emr_cmd = MC_CMD_NVRAM_PARTITIONS;
|
||
|
req.emr_in_buf = payload;
|
||
|
req.emr_in_length = MC_CMD_NVRAM_PARTITIONS_IN_LEN;
|
||
|
req.emr_out_buf = payload;
|
||
|
req.emr_out_length = MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX;
|
||
|
|
||
|
efx_mcdi_execute(enp, &req);
|
||
|
|
||
|
if (req.emr_rc != 0) {
|
||
|
rc = req.emr_rc;
|
||
|
goto fail1;
|
||
|
}
|
||
|
|
||
|
if (req.emr_out_length_used < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN) {
|
||
|
rc = EMSGSIZE;
|
||
|
goto fail2;
|
||
|
}
|
||
|
npartn = MCDI_OUT_DWORD(req, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
|
||
|
|
||
|
if (req.emr_out_length_used < MC_CMD_NVRAM_PARTITIONS_OUT_LEN(npartn)) {
|
||
|
rc = ENOENT;
|
||
|
goto fail3;
|
||
|
}
|
||
|
|
||
|
if (size < npartn * sizeof (uint32_t)) {
|
||
|
rc = ENOSPC;
|
||
|
goto fail3;
|
||
|
}
|
||
|
|
||
|
*npartnp = npartn;
|
||
|
|
||
|
memcpy(data,
|
||
|
MCDI_OUT2(req, uint32_t, NVRAM_PARTITIONS_OUT_TYPE_ID),
|
||
|
(npartn * sizeof (uint32_t)));
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail3:
|
||
|
EFSYS_PROBE(fail3);
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
efx_mcdi_nvram_metadata(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in uint32_t partn,
|
||
|
__out uint32_t *subtypep,
|
||
|
__out_ecount(4) uint16_t version[4],
|
||
|
__out_bcount_opt(size) char *descp,
|
||
|
__in size_t size)
|
||
|
{
|
||
|
efx_mcdi_req_t req;
|
||
|
uint8_t payload[MAX(MC_CMD_NVRAM_METADATA_IN_LEN,
|
||
|
MC_CMD_NVRAM_METADATA_OUT_LENMAX)];
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
(void) memset(payload, 0, sizeof (payload));
|
||
|
req.emr_cmd = MC_CMD_NVRAM_METADATA;
|
||
|
req.emr_in_buf = payload;
|
||
|
req.emr_in_length = MC_CMD_NVRAM_METADATA_IN_LEN;
|
||
|
req.emr_out_buf = payload;
|
||
|
req.emr_out_length = MC_CMD_NVRAM_METADATA_OUT_LENMAX;
|
||
|
|
||
|
MCDI_IN_SET_DWORD(req, NVRAM_METADATA_IN_TYPE, partn);
|
||
|
|
||
|
efx_mcdi_execute(enp, &req);
|
||
|
|
||
|
if (req.emr_rc != 0) {
|
||
|
rc = req.emr_rc;
|
||
|
goto fail1;
|
||
|
}
|
||
|
|
||
|
if (req.emr_out_length_used < MC_CMD_NVRAM_METADATA_OUT_LENMIN) {
|
||
|
rc = EMSGSIZE;
|
||
|
goto fail2;
|
||
|
}
|
||
|
|
||
|
if (MCDI_OUT_DWORD_FIELD(req, NVRAM_METADATA_OUT_FLAGS,
|
||
|
NVRAM_METADATA_OUT_SUBTYPE_VALID)) {
|
||
|
*subtypep = MCDI_OUT_DWORD(req, NVRAM_METADATA_OUT_SUBTYPE);
|
||
|
} else {
|
||
|
*subtypep = 0;
|
||
|
}
|
||
|
|
||
|
if (MCDI_OUT_DWORD_FIELD(req, NVRAM_METADATA_OUT_FLAGS,
|
||
|
NVRAM_METADATA_OUT_VERSION_VALID)) {
|
||
|
version[0] = MCDI_OUT_WORD(req, NVRAM_METADATA_OUT_VERSION_W);
|
||
|
version[1] = MCDI_OUT_WORD(req, NVRAM_METADATA_OUT_VERSION_X);
|
||
|
version[2] = MCDI_OUT_WORD(req, NVRAM_METADATA_OUT_VERSION_Y);
|
||
|
version[3] = MCDI_OUT_WORD(req, NVRAM_METADATA_OUT_VERSION_Z);
|
||
|
} else {
|
||
|
version[0] = version[1] = version[2] = version[3] = 0;
|
||
|
}
|
||
|
|
||
|
if (MCDI_OUT_DWORD_FIELD(req, NVRAM_METADATA_OUT_FLAGS,
|
||
|
NVRAM_METADATA_OUT_DESCRIPTION_VALID)) {
|
||
|
/* Return optional descrition string */
|
||
|
if ((descp != NULL) && (size > 0)) {
|
||
|
size_t desclen;
|
||
|
|
||
|
descp[0] = '\0';
|
||
|
desclen = (req.emr_out_length_used
|
||
|
- MC_CMD_NVRAM_METADATA_OUT_LEN(0));
|
||
|
|
||
|
EFSYS_ASSERT3U(desclen, <=,
|
||
|
MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_MAXNUM);
|
||
|
|
||
|
if (size < desclen) {
|
||
|
rc = ENOSPC;
|
||
|
goto fail3;
|
||
|
}
|
||
|
|
||
|
memcpy(descp, MCDI_OUT2(req, char,
|
||
|
NVRAM_METADATA_OUT_DESCRIPTION),
|
||
|
desclen);
|
||
|
|
||
|
/* Ensure string is NUL terminated */
|
||
|
descp[desclen] = '\0';
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail3:
|
||
|
EFSYS_PROBE(fail3);
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
efx_mcdi_nvram_info(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in uint32_t partn,
|
||
|
__out_opt size_t *sizep,
|
||
|
__out_opt uint32_t *addressp,
|
||
|
__out_opt uint32_t *erase_sizep,
|
||
|
__out_opt uint32_t *write_sizep)
|
||
|
{
|
||
|
uint8_t payload[MAX(MC_CMD_NVRAM_INFO_IN_LEN,
|
||
|
MC_CMD_NVRAM_INFO_V2_OUT_LEN)];
|
||
|
efx_mcdi_req_t req;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
(void) memset(payload, 0, sizeof (payload));
|
||
|
req.emr_cmd = MC_CMD_NVRAM_INFO;
|
||
|
req.emr_in_buf = payload;
|
||
|
req.emr_in_length = MC_CMD_NVRAM_INFO_IN_LEN;
|
||
|
req.emr_out_buf = payload;
|
||
|
req.emr_out_length = MC_CMD_NVRAM_INFO_V2_OUT_LEN;
|
||
|
|
||
|
MCDI_IN_SET_DWORD(req, NVRAM_INFO_IN_TYPE, partn);
|
||
|
|
||
|
efx_mcdi_execute_quiet(enp, &req);
|
||
|
|
||
|
if (req.emr_rc != 0) {
|
||
|
rc = req.emr_rc;
|
||
|
goto fail1;
|
||
|
}
|
||
|
|
||
|
if (req.emr_out_length_used < MC_CMD_NVRAM_INFO_OUT_LEN) {
|
||
|
rc = EMSGSIZE;
|
||
|
goto fail2;
|
||
|
}
|
||
|
|
||
|
if (sizep)
|
||
|
*sizep = MCDI_OUT_DWORD(req, NVRAM_INFO_OUT_SIZE);
|
||
|
|
||
|
if (addressp)
|
||
|
*addressp = MCDI_OUT_DWORD(req, NVRAM_INFO_OUT_PHYSADDR);
|
||
|
|
||
|
if (erase_sizep)
|
||
|
*erase_sizep = MCDI_OUT_DWORD(req, NVRAM_INFO_OUT_ERASESIZE);
|
||
|
|
||
|
if (write_sizep) {
|
||
|
*write_sizep =
|
||
|
(req.emr_out_length_used <
|
||
|
MC_CMD_NVRAM_INFO_V2_OUT_LEN) ?
|
||
|
0 : MCDI_OUT_DWORD(req, NVRAM_INFO_V2_OUT_WRITESIZE);
|
||
|
}
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* MC_CMD_NVRAM_UPDATE_START_V2 must be used to support firmware-verified
|
||
|
* NVRAM updates. Older firmware will ignore the flags field in the request.
|
||
|
*/
|
||
|
__checkReturn efx_rc_t
|
||
|
efx_mcdi_nvram_update_start(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in uint32_t partn)
|
||
|
{
|
||
|
uint8_t payload[MAX(MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN,
|
||
|
MC_CMD_NVRAM_UPDATE_START_OUT_LEN)];
|
||
|
efx_mcdi_req_t req;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
(void) memset(payload, 0, sizeof (payload));
|
||
|
req.emr_cmd = MC_CMD_NVRAM_UPDATE_START;
|
||
|
req.emr_in_buf = payload;
|
||
|
req.emr_in_length = MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN;
|
||
|
req.emr_out_buf = payload;
|
||
|
req.emr_out_length = MC_CMD_NVRAM_UPDATE_START_OUT_LEN;
|
||
|
|
||
|
MCDI_IN_SET_DWORD(req, NVRAM_UPDATE_START_V2_IN_TYPE, partn);
|
||
|
|
||
|
MCDI_IN_POPULATE_DWORD_1(req, NVRAM_UPDATE_START_V2_IN_FLAGS,
|
||
|
NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT, 1);
|
||
|
|
||
|
efx_mcdi_execute(enp, &req);
|
||
|
|
||
|
if (req.emr_rc != 0) {
|
||
|
rc = req.emr_rc;
|
||
|
goto fail1;
|
||
|
}
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
efx_mcdi_nvram_read(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in uint32_t partn,
|
||
|
__in uint32_t offset,
|
||
|
__out_bcount(size) caddr_t data,
|
||
|
__in size_t size,
|
||
|
__in uint32_t mode)
|
||
|
{
|
||
|
efx_mcdi_req_t req;
|
||
|
uint8_t payload[MAX(MC_CMD_NVRAM_READ_IN_V2_LEN,
|
||
|
MC_CMD_NVRAM_READ_OUT_LENMAX)];
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
if (size > MC_CMD_NVRAM_READ_OUT_LENMAX) {
|
||
|
rc = EINVAL;
|
||
|
goto fail1;
|
||
|
}
|
||
|
|
||
|
(void) memset(payload, 0, sizeof (payload));
|
||
|
req.emr_cmd = MC_CMD_NVRAM_READ;
|
||
|
req.emr_in_buf = payload;
|
||
|
req.emr_in_length = MC_CMD_NVRAM_READ_IN_V2_LEN;
|
||
|
req.emr_out_buf = payload;
|
||
|
req.emr_out_length = MC_CMD_NVRAM_READ_OUT_LENMAX;
|
||
|
|
||
|
MCDI_IN_SET_DWORD(req, NVRAM_READ_IN_V2_TYPE, partn);
|
||
|
MCDI_IN_SET_DWORD(req, NVRAM_READ_IN_V2_OFFSET, offset);
|
||
|
MCDI_IN_SET_DWORD(req, NVRAM_READ_IN_V2_LENGTH, size);
|
||
|
MCDI_IN_SET_DWORD(req, NVRAM_READ_IN_V2_MODE, mode);
|
||
|
|
||
|
efx_mcdi_execute(enp, &req);
|
||
|
|
||
|
if (req.emr_rc != 0) {
|
||
|
rc = req.emr_rc;
|
||
|
goto fail1;
|
||
|
}
|
||
|
|
||
|
if (req.emr_out_length_used < MC_CMD_NVRAM_READ_OUT_LEN(size)) {
|
||
|
rc = EMSGSIZE;
|
||
|
goto fail2;
|
||
|
}
|
||
|
|
||
|
memcpy(data,
|
||
|
MCDI_OUT2(req, uint8_t, NVRAM_READ_OUT_READ_BUFFER),
|
||
|
size);
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
efx_mcdi_nvram_erase(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in uint32_t partn,
|
||
|
__in uint32_t offset,
|
||
|
__in size_t size)
|
||
|
{
|
||
|
efx_mcdi_req_t req;
|
||
|
uint8_t payload[MAX(MC_CMD_NVRAM_ERASE_IN_LEN,
|
||
|
MC_CMD_NVRAM_ERASE_OUT_LEN)];
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
(void) memset(payload, 0, sizeof (payload));
|
||
|
req.emr_cmd = MC_CMD_NVRAM_ERASE;
|
||
|
req.emr_in_buf = payload;
|
||
|
req.emr_in_length = MC_CMD_NVRAM_ERASE_IN_LEN;
|
||
|
req.emr_out_buf = payload;
|
||
|
req.emr_out_length = MC_CMD_NVRAM_ERASE_OUT_LEN;
|
||
|
|
||
|
MCDI_IN_SET_DWORD(req, NVRAM_ERASE_IN_TYPE, partn);
|
||
|
MCDI_IN_SET_DWORD(req, NVRAM_ERASE_IN_OFFSET, offset);
|
||
|
MCDI_IN_SET_DWORD(req, NVRAM_ERASE_IN_LENGTH, size);
|
||
|
|
||
|
efx_mcdi_execute(enp, &req);
|
||
|
|
||
|
if (req.emr_rc != 0) {
|
||
|
rc = req.emr_rc;
|
||
|
goto fail1;
|
||
|
}
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The NVRAM_WRITE MCDI command is a V1 command and so is supported by both
|
||
|
* Sienna and EF10 based boards. However EF10 based boards support the use
|
||
|
* of this command with payloads up to the maximum MCDI V2 payload length.
|
||
|
*/
|
||
|
__checkReturn efx_rc_t
|
||
|
efx_mcdi_nvram_write(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in uint32_t partn,
|
||
|
__in uint32_t offset,
|
||
|
__out_bcount(size) caddr_t data,
|
||
|
__in size_t size)
|
||
|
{
|
||
|
efx_mcdi_req_t req;
|
||
|
uint8_t payload[MAX(MCDI_CTL_SDU_LEN_MAX_V1,
|
||
|
MCDI_CTL_SDU_LEN_MAX_V2)];
|
||
|
efx_rc_t rc;
|
||
|
size_t max_data_size;
|
||
|
|
||
|
max_data_size = enp->en_nic_cfg.enc_mcdi_max_payload_length
|
||
|
- MC_CMD_NVRAM_WRITE_IN_LEN(0);
|
||
|
EFSYS_ASSERT3U(enp->en_nic_cfg.enc_mcdi_max_payload_length, >, 0);
|
||
|
EFSYS_ASSERT3U(max_data_size, <,
|
||
|
enp->en_nic_cfg.enc_mcdi_max_payload_length);
|
||
|
|
||
|
if (size > max_data_size) {
|
||
|
rc = EINVAL;
|
||
|
goto fail1;
|
||
|
}
|
||
|
|
||
|
(void) memset(payload, 0, sizeof (payload));
|
||
|
req.emr_cmd = MC_CMD_NVRAM_WRITE;
|
||
|
req.emr_in_buf = payload;
|
||
|
req.emr_in_length = MC_CMD_NVRAM_WRITE_IN_LEN(size);
|
||
|
req.emr_out_buf = payload;
|
||
|
req.emr_out_length = MC_CMD_NVRAM_WRITE_OUT_LEN;
|
||
|
|
||
|
MCDI_IN_SET_DWORD(req, NVRAM_WRITE_IN_TYPE, partn);
|
||
|
MCDI_IN_SET_DWORD(req, NVRAM_WRITE_IN_OFFSET, offset);
|
||
|
MCDI_IN_SET_DWORD(req, NVRAM_WRITE_IN_LENGTH, size);
|
||
|
|
||
|
memcpy(MCDI_IN2(req, uint8_t, NVRAM_WRITE_IN_WRITE_BUFFER),
|
||
|
data, size);
|
||
|
|
||
|
efx_mcdi_execute(enp, &req);
|
||
|
|
||
|
if (req.emr_rc != 0) {
|
||
|
rc = req.emr_rc;
|
||
|
goto fail2;
|
||
|
}
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* MC_CMD_NVRAM_UPDATE_FINISH_V2 must be used to support firmware-verified
|
||
|
* NVRAM updates. Older firmware will ignore the flags field in the request.
|
||
|
*/
|
||
|
__checkReturn efx_rc_t
|
||
|
efx_mcdi_nvram_update_finish(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in uint32_t partn,
|
||
|
__in boolean_t reboot,
|
||
|
__out_opt uint32_t *resultp)
|
||
|
{
|
||
|
const efx_nic_cfg_t *encp = &enp->en_nic_cfg;
|
||
|
efx_mcdi_req_t req;
|
||
|
uint8_t payload[MAX(MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN,
|
||
|
MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN)];
|
||
|
uint32_t result = 0; /* FIXME: use MC_CMD_NVRAM_VERIFY_RC_UNKNOWN */
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
(void) memset(payload, 0, sizeof (payload));
|
||
|
req.emr_cmd = MC_CMD_NVRAM_UPDATE_FINISH;
|
||
|
req.emr_in_buf = payload;
|
||
|
req.emr_in_length = MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN;
|
||
|
req.emr_out_buf = payload;
|
||
|
req.emr_out_length = MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN;
|
||
|
|
||
|
MCDI_IN_SET_DWORD(req, NVRAM_UPDATE_FINISH_V2_IN_TYPE, partn);
|
||
|
MCDI_IN_SET_DWORD(req, NVRAM_UPDATE_FINISH_V2_IN_REBOOT, reboot);
|
||
|
|
||
|
MCDI_IN_POPULATE_DWORD_1(req, NVRAM_UPDATE_FINISH_V2_IN_FLAGS,
|
||
|
NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT, 1);
|
||
|
|
||
|
efx_mcdi_execute(enp, &req);
|
||
|
|
||
|
if (req.emr_rc != 0) {
|
||
|
rc = req.emr_rc;
|
||
|
goto fail1;
|
||
|
}
|
||
|
|
||
|
if (encp->enc_fw_verified_nvram_update_required == B_FALSE) {
|
||
|
/* Report success if verified updates are not supported. */
|
||
|
result = MC_CMD_NVRAM_VERIFY_RC_SUCCESS;
|
||
|
} else {
|
||
|
/* Firmware-verified NVRAM updates are required */
|
||
|
if (req.emr_out_length_used <
|
||
|
MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN) {
|
||
|
rc = EMSGSIZE;
|
||
|
goto fail2;
|
||
|
}
|
||
|
result =
|
||
|
MCDI_OUT_DWORD(req, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE);
|
||
|
|
||
|
if (result != MC_CMD_NVRAM_VERIFY_RC_SUCCESS) {
|
||
|
/* Mandatory verification failed */
|
||
|
rc = EINVAL;
|
||
|
goto fail3;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (resultp != NULL)
|
||
|
*resultp = result;
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail3:
|
||
|
EFSYS_PROBE(fail3);
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
/* Always report verification result */
|
||
|
if (resultp != NULL)
|
||
|
*resultp = result;
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
#if EFSYS_OPT_DIAG
|
||
|
|
||
|
__checkReturn efx_rc_t
|
||
|
efx_mcdi_nvram_test(
|
||
|
__in efx_nic_t *enp,
|
||
|
__in uint32_t partn)
|
||
|
{
|
||
|
efx_mcdi_req_t req;
|
||
|
uint8_t payload[MAX(MC_CMD_NVRAM_TEST_IN_LEN,
|
||
|
MC_CMD_NVRAM_TEST_OUT_LEN)];
|
||
|
int result;
|
||
|
efx_rc_t rc;
|
||
|
|
||
|
(void) memset(payload, 0, sizeof (payload));
|
||
|
req.emr_cmd = MC_CMD_NVRAM_TEST;
|
||
|
req.emr_in_buf = payload;
|
||
|
req.emr_in_length = MC_CMD_NVRAM_TEST_IN_LEN;
|
||
|
req.emr_out_buf = payload;
|
||
|
req.emr_out_length = MC_CMD_NVRAM_TEST_OUT_LEN;
|
||
|
|
||
|
MCDI_IN_SET_DWORD(req, NVRAM_TEST_IN_TYPE, partn);
|
||
|
|
||
|
efx_mcdi_execute(enp, &req);
|
||
|
|
||
|
if (req.emr_rc != 0) {
|
||
|
rc = req.emr_rc;
|
||
|
goto fail1;
|
||
|
}
|
||
|
|
||
|
if (req.emr_out_length_used < MC_CMD_NVRAM_TEST_OUT_LEN) {
|
||
|
rc = EMSGSIZE;
|
||
|
goto fail2;
|
||
|
}
|
||
|
|
||
|
result = MCDI_OUT_DWORD(req, NVRAM_TEST_OUT_RESULT);
|
||
|
if (result == MC_CMD_NVRAM_TEST_FAIL) {
|
||
|
|
||
|
EFSYS_PROBE1(nvram_test_failure, int, partn);
|
||
|
|
||
|
rc = (EINVAL);
|
||
|
goto fail3;
|
||
|
}
|
||
|
|
||
|
return (0);
|
||
|
|
||
|
fail3:
|
||
|
EFSYS_PROBE(fail3);
|
||
|
fail2:
|
||
|
EFSYS_PROBE(fail2);
|
||
|
fail1:
|
||
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
||
|
|
||
|
return (rc);
|
||
|
}
|
||
|
|
||
|
#endif /* EFSYS_OPT_DIAG */
|
||
|
|
||
|
|
||
|
#endif /* EFSYS_OPT_NVRAM || EFSYS_OPT_VPD */
|