numam-dpdk/examples/l3fwd/l3fwd_sse.h

502 lines
13 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright(c) 2016 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _L3FWD_COMMON_H_
#define _L3FWD_COMMON_H_
#include "l3fwd.h"
#ifdef DO_RFC_1812_CHECKS
#define IPV4_MIN_VER_IHL 0x45
#define IPV4_MAX_VER_IHL 0x4f
#define IPV4_MAX_VER_IHL_DIFF (IPV4_MAX_VER_IHL - IPV4_MIN_VER_IHL)
/* Minimum value of IPV4 total length (20B) in network byte order. */
#define IPV4_MIN_LEN_BE (sizeof(struct ipv4_hdr) << 8)
/*
* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2:
* - The IP version number must be 4.
* - The IP header length field must be large enough to hold the
* minimum length legal IP datagram (20 bytes = 5 words).
* - The IP total length field must be large enough to hold the IP
* datagram header, whose length is specified in the IP header length
* field.
* If we encounter invalid IPV4 packet, then set destination port for it
* to BAD_PORT value.
*/
static inline __attribute__((always_inline)) void
rfc1812_process(struct ipv4_hdr *ipv4_hdr, uint16_t *dp, uint32_t ptype)
{
uint8_t ihl;
if (RTE_ETH_IS_IPV4_HDR(ptype)) {
ihl = ipv4_hdr->version_ihl - IPV4_MIN_VER_IHL;
ipv4_hdr->time_to_live--;
ipv4_hdr->hdr_checksum++;
if (ihl > IPV4_MAX_VER_IHL_DIFF ||
((uint8_t)ipv4_hdr->total_length == 0 &&
ipv4_hdr->total_length < IPV4_MIN_LEN_BE))
dp[0] = BAD_PORT;
}
}
#else
#define rfc1812_process(mb, dp, ptype) do { } while (0)
#endif /* DO_RFC_1812_CHECKS */
/*
* Update source and destination MAC addresses in the ethernet header.
* Perform RFC1812 checks and updates for IPV4 packets.
*/
static inline void
processx4_step3(struct rte_mbuf *pkt[FWDSTEP], uint16_t dst_port[FWDSTEP])
{
__m128i te[FWDSTEP];
__m128i ve[FWDSTEP];
__m128i *p[FWDSTEP];
p[0] = rte_pktmbuf_mtod(pkt[0], __m128i *);
p[1] = rte_pktmbuf_mtod(pkt[1], __m128i *);
p[2] = rte_pktmbuf_mtod(pkt[2], __m128i *);
p[3] = rte_pktmbuf_mtod(pkt[3], __m128i *);
ve[0] = val_eth[dst_port[0]];
te[0] = _mm_loadu_si128(p[0]);
ve[1] = val_eth[dst_port[1]];
te[1] = _mm_loadu_si128(p[1]);
ve[2] = val_eth[dst_port[2]];
te[2] = _mm_loadu_si128(p[2]);
ve[3] = val_eth[dst_port[3]];
te[3] = _mm_loadu_si128(p[3]);
/* Update first 12 bytes, keep rest bytes intact. */
te[0] = _mm_blend_epi16(te[0], ve[0], MASK_ETH);
te[1] = _mm_blend_epi16(te[1], ve[1], MASK_ETH);
te[2] = _mm_blend_epi16(te[2], ve[2], MASK_ETH);
te[3] = _mm_blend_epi16(te[3], ve[3], MASK_ETH);
_mm_storeu_si128(p[0], te[0]);
_mm_storeu_si128(p[1], te[1]);
_mm_storeu_si128(p[2], te[2]);
_mm_storeu_si128(p[3], te[3]);
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[0] + 1),
&dst_port[0], pkt[0]->packet_type);
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[1] + 1),
&dst_port[1], pkt[1]->packet_type);
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[2] + 1),
&dst_port[2], pkt[2]->packet_type);
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[3] + 1),
&dst_port[3], pkt[3]->packet_type);
}
/*
* We group consecutive packets with the same destionation port into one burst.
* To avoid extra latency this is done together with some other packet
* processing, but after we made a final decision about packet's destination.
* To do this we maintain:
* pnum - array of number of consecutive packets with the same dest port for
* each packet in the input burst.
* lp - pointer to the last updated element in the pnum.
* dlp - dest port value lp corresponds to.
*/
#define GRPSZ (1 << FWDSTEP)
#define GRPMSK (GRPSZ - 1)
#define GROUP_PORT_STEP(dlp, dcp, lp, pn, idx) do { \
if (likely((dlp) == (dcp)[(idx)])) { \
(lp)[0]++; \
} else { \
(dlp) = (dcp)[idx]; \
(lp) = (pn) + (idx); \
(lp)[0] = 1; \
} \
} while (0)
/*
* Group consecutive packets with the same destination port in bursts of 4.
* Suppose we have array of destionation ports:
* dst_port[] = {a, b, c, d,, e, ... }
* dp1 should contain: <a, b, c, d>, dp2: <b, c, d, e>.
* We doing 4 comparisions at once and the result is 4 bit mask.
* This mask is used as an index into prebuild array of pnum values.
*/
static inline uint16_t *
port_groupx4(uint16_t pn[FWDSTEP + 1], uint16_t *lp, __m128i dp1, __m128i dp2)
{
static const struct {
uint64_t pnum; /* prebuild 4 values for pnum[]. */
int32_t idx; /* index for new last updated elemnet. */
uint16_t lpv; /* add value to the last updated element. */
} gptbl[GRPSZ] = {
{
/* 0: a != b, b != c, c != d, d != e */
.pnum = UINT64_C(0x0001000100010001),
.idx = 4,
.lpv = 0,
},
{
/* 1: a == b, b != c, c != d, d != e */
.pnum = UINT64_C(0x0001000100010002),
.idx = 4,
.lpv = 1,
},
{
/* 2: a != b, b == c, c != d, d != e */
.pnum = UINT64_C(0x0001000100020001),
.idx = 4,
.lpv = 0,
},
{
/* 3: a == b, b == c, c != d, d != e */
.pnum = UINT64_C(0x0001000100020003),
.idx = 4,
.lpv = 2,
},
{
/* 4: a != b, b != c, c == d, d != e */
.pnum = UINT64_C(0x0001000200010001),
.idx = 4,
.lpv = 0,
},
{
/* 5: a == b, b != c, c == d, d != e */
.pnum = UINT64_C(0x0001000200010002),
.idx = 4,
.lpv = 1,
},
{
/* 6: a != b, b == c, c == d, d != e */
.pnum = UINT64_C(0x0001000200030001),
.idx = 4,
.lpv = 0,
},
{
/* 7: a == b, b == c, c == d, d != e */
.pnum = UINT64_C(0x0001000200030004),
.idx = 4,
.lpv = 3,
},
{
/* 8: a != b, b != c, c != d, d == e */
.pnum = UINT64_C(0x0002000100010001),
.idx = 3,
.lpv = 0,
},
{
/* 9: a == b, b != c, c != d, d == e */
.pnum = UINT64_C(0x0002000100010002),
.idx = 3,
.lpv = 1,
},
{
/* 0xa: a != b, b == c, c != d, d == e */
.pnum = UINT64_C(0x0002000100020001),
.idx = 3,
.lpv = 0,
},
{
/* 0xb: a == b, b == c, c != d, d == e */
.pnum = UINT64_C(0x0002000100020003),
.idx = 3,
.lpv = 2,
},
{
/* 0xc: a != b, b != c, c == d, d == e */
.pnum = UINT64_C(0x0002000300010001),
.idx = 2,
.lpv = 0,
},
{
/* 0xd: a == b, b != c, c == d, d == e */
.pnum = UINT64_C(0x0002000300010002),
.idx = 2,
.lpv = 1,
},
{
/* 0xe: a != b, b == c, c == d, d == e */
.pnum = UINT64_C(0x0002000300040001),
.idx = 1,
.lpv = 0,
},
{
/* 0xf: a == b, b == c, c == d, d == e */
.pnum = UINT64_C(0x0002000300040005),
.idx = 0,
.lpv = 4,
},
};
union {
uint16_t u16[FWDSTEP + 1];
uint64_t u64;
} *pnum = (void *)pn;
int32_t v;
dp1 = _mm_cmpeq_epi16(dp1, dp2);
dp1 = _mm_unpacklo_epi16(dp1, dp1);
v = _mm_movemask_ps((__m128)dp1);
/* update last port counter. */
lp[0] += gptbl[v].lpv;
/* if dest port value has changed. */
if (v != GRPMSK) {
pnum->u64 = gptbl[v].pnum;
pnum->u16[FWDSTEP] = 1;
lp = pnum->u16 + gptbl[v].idx;
}
return lp;
}
/**
* Process one packet:
* Update source and destination MAC addresses in the ethernet header.
* Perform RFC1812 checks and updates for IPV4 packets.
*/
static inline void
process_packet(struct rte_mbuf *pkt, uint16_t *dst_port)
{
struct ether_hdr *eth_hdr;
__m128i te, ve;
eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
te = _mm_loadu_si128((__m128i *)eth_hdr);
ve = val_eth[dst_port[0]];
rfc1812_process((struct ipv4_hdr *)(eth_hdr + 1), dst_port,
pkt->packet_type);
te = _mm_blend_epi16(te, ve, MASK_ETH);
_mm_storeu_si128((__m128i *)eth_hdr, te);
}
static inline __attribute__((always_inline)) void
send_packetsx4(struct lcore_conf *qconf, uint8_t port, struct rte_mbuf *m[],
uint32_t num)
{
uint32_t len, j, n;
len = qconf->tx_mbufs[port].len;
/*
* If TX buffer for that queue is empty, and we have enough packets,
* then send them straightway.
*/
if (num >= MAX_TX_BURST && len == 0) {
n = rte_eth_tx_burst(port, qconf->tx_queue_id[port], m, num);
if (unlikely(n < num)) {
do {
rte_pktmbuf_free(m[n]);
} while (++n < num);
}
return;
}
/*
* Put packets into TX buffer for that queue.
*/
n = len + num;
n = (n > MAX_PKT_BURST) ? MAX_PKT_BURST - len : num;
j = 0;
switch (n % FWDSTEP) {
while (j < n) {
case 0:
qconf->tx_mbufs[port].m_table[len + j] = m[j];
j++;
case 3:
qconf->tx_mbufs[port].m_table[len + j] = m[j];
j++;
case 2:
qconf->tx_mbufs[port].m_table[len + j] = m[j];
j++;
case 1:
qconf->tx_mbufs[port].m_table[len + j] = m[j];
j++;
}
}
len += n;
/* enough pkts to be sent */
if (unlikely(len == MAX_PKT_BURST)) {
send_burst(qconf, MAX_PKT_BURST, port);
/* copy rest of the packets into the TX buffer. */
len = num - n;
j = 0;
switch (len % FWDSTEP) {
while (j < len) {
case 0:
qconf->tx_mbufs[port].m_table[j] = m[n + j];
j++;
case 3:
qconf->tx_mbufs[port].m_table[j] = m[n + j];
j++;
case 2:
qconf->tx_mbufs[port].m_table[j] = m[n + j];
j++;
case 1:
qconf->tx_mbufs[port].m_table[j] = m[n + j];
j++;
}
}
}
qconf->tx_mbufs[port].len = len;
}
/**
* Send packets burst from pkts_burst to the ports in dst_port array
*/
static inline __attribute__((always_inline)) void
send_packets_multi(struct lcore_conf *qconf, struct rte_mbuf **pkts_burst,
uint16_t dst_port[MAX_PKT_BURST], int nb_rx)
{
int32_t k;
int j = 0;
uint16_t dlp;
uint16_t *lp;
uint16_t pnum[MAX_PKT_BURST + 1];
/*
* Finish packet processing and group consecutive
* packets with the same destination port.
*/
k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
if (k != 0) {
__m128i dp1, dp2;
lp = pnum;
lp[0] = 1;
processx4_step3(pkts_burst, dst_port);
/* dp1: <d[0], d[1], d[2], d[3], ... > */
dp1 = _mm_loadu_si128((__m128i *)dst_port);
for (j = FWDSTEP; j != k; j += FWDSTEP) {
processx4_step3(&pkts_burst[j], &dst_port[j]);
/*
* dp2:
* <d[j-3], d[j-2], d[j-1], d[j], ... >
*/
dp2 = _mm_loadu_si128((__m128i *)
&dst_port[j - FWDSTEP + 1]);
lp = port_groupx4(&pnum[j - FWDSTEP], lp, dp1, dp2);
/*
* dp1:
* <d[j], d[j+1], d[j+2], d[j+3], ... >
*/
dp1 = _mm_srli_si128(dp2, (FWDSTEP - 1) *
sizeof(dst_port[0]));
}
/*
* dp2: <d[j-3], d[j-2], d[j-1], d[j-1], ... >
*/
dp2 = _mm_shufflelo_epi16(dp1, 0xf9);
lp = port_groupx4(&pnum[j - FWDSTEP], lp, dp1, dp2);
/*
* remove values added by the last repeated
* dst port.
*/
lp[0]--;
dlp = dst_port[j - 1];
} else {
/* set dlp and lp to the never used values. */
dlp = BAD_PORT - 1;
lp = pnum + MAX_PKT_BURST;
}
/* Process up to last 3 packets one by one. */
switch (nb_rx % FWDSTEP) {
case 3:
process_packet(pkts_burst[j], dst_port + j);
GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
j++;
case 2:
process_packet(pkts_burst[j], dst_port + j);
GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
j++;
case 1:
process_packet(pkts_burst[j], dst_port + j);
GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
j++;
}
/*
* Send packets out, through destination port.
* Consecutive packets with the same destination port
* are already grouped together.
* If destination port for the packet equals BAD_PORT,
* then free the packet without sending it out.
*/
for (j = 0; j < nb_rx; j += k) {
int32_t m;
uint16_t pn;
pn = dst_port[j];
k = pnum[j];
if (likely(pn != BAD_PORT))
send_packetsx4(qconf, pn, pkts_burst + j, k);
else
for (m = j; m != j + k; m++)
rte_pktmbuf_free(pkts_burst[m]);
}
}
#endif /* _L3FWD_COMMON_H_ */