57 lines
1.3 KiB
Makefile
Raw Normal View History

# SPDX-License-Identifier: BSD-3-Clause
# Copyright(c) 2010-2015 Intel Corporation
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
include $(RTE_SDK)/mk/rte.vars.mk
#
# library name
#
LIB = librte_pmd_vmxnet3_uio.a
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
CFLAGS += -DALLOW_EXPERIMENTAL_API
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
CFLAGS += -O3
CFLAGS += $(WERROR_FLAGS)
ifeq ($(CONFIG_RTE_TOOLCHAIN_ICC),y)
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
#
# CFLAGS for icc
#
CFLAGS_BASE_DRIVER = -diag-disable 174 -diag-disable 593 -diag-disable 869
CFLAGS_BASE_DRIVER += -diag-disable 981 -diag-disable 2259
else ifeq ($(CONFIG_RTE_TOOLCHAIN_CLANG),y)
#
# CFLAGS for clang
#
CFLAGS_BASE_DRIVER = -Wno-unused-parameter -Wno-unused-value
CFLAGS_BASE_DRIVER += -Wno-strict-aliasing -Wno-format-extra-args
else
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
#
# CFLAGS for gcc
#
ifeq ($(shell test $(GCC_VERSION) -ge 44 && echo 1), 1)
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
CFLAGS += -Wno-deprecated
endif
CFLAGS_BASE_DRIVER = -Wno-unused-parameter -Wno-unused-value
CFLAGS_BASE_DRIVER += -Wno-strict-aliasing -Wno-format-extra-args
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
endif
LDLIBS += -lrte_eal -lrte_mbuf -lrte_mempool -lrte_ring
LDLIBS += -lrte_ethdev -lrte_net -lrte_kvargs
LDLIBS += -lrte_bus_pci
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
VPATH += $(SRCDIR)/base
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
EXPORT_MAP := rte_pmd_vmxnet3_version.map
LIBABIVER := 1
vmxnet3: import new vmxnet3 poll mode driver implementation Poll Mode Driver for Paravirtual VMXNET3 NIC. As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks, vmxnet3_recv_pkts and vmxnet3_xmit_pkts. It does not support scattered packet reception as part of vmxnet3_recv_pkts and vmxnet3_xmit_pkts. Also, it does not support scattered packet reception as part of the device operations supported. The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space and it is solely responsible to free that memory when not needed. The packet buffers and features to be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch in the TX case. The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of the other PMDs available in the Intel(R) DPDK API. The driver pre-allocates the packet buffers and loads the command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and write completion ring descriptors, which are eventually pulled by the PMD. After reception, the Intel(R) DPDK application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are disabled and there is no notification required. This keeps performance up on the RX side, even though the device provides a notification feature. In the transmit routine, the Intel(R) DPDK application fills packet buffer pointers in the descriptors of the command ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to the vSwitch. It writes into the completion descriptors ring. The rings are read by the PMD in the next transmit routine call and the buffers and descriptors are freed from memory. Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-10 15:27:26 +00:00
#
# all source are stored in SRCS-y
#
SRCS-$(CONFIG_RTE_LIBRTE_VMXNET3_PMD) += vmxnet3_rxtx.c
SRCS-$(CONFIG_RTE_LIBRTE_VMXNET3_PMD) += vmxnet3_ethdev.c
include $(RTE_SDK)/mk/rte.lib.mk