numam-dpdk/drivers/net/enic/enic_flow.c

1515 lines
40 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2008-2017 Cisco Systems, Inc. All rights reserved.
*/
#include <errno.h>
#include <rte_log.h>
#include <rte_ethdev_driver.h>
#include <rte_flow_driver.h>
#include <rte_ether.h>
#include <rte_ip.h>
#include <rte_udp.h>
#include "enic_compat.h"
#include "enic.h"
#include "vnic_dev.h"
#include "vnic_nic.h"
#define FLOW_TRACE() \
rte_log(RTE_LOG_DEBUG, enicpmd_logtype_flow, \
"%s()\n", __func__)
#define FLOW_LOG(level, fmt, args...) \
rte_log(RTE_LOG_ ## level, enicpmd_logtype_flow, \
fmt "\n", ##args)
/** Info about how to copy items into enic filters. */
struct enic_items {
/** Function for copying and validating an item. */
int (*copy_item)(const struct rte_flow_item *item,
struct filter_v2 *enic_filter, u8 *inner_ofst);
/** List of valid previous items. */
const enum rte_flow_item_type * const prev_items;
/** True if it's OK for this item to be the first item. For some NIC
* versions, it's invalid to start the stack above layer 3.
*/
const u8 valid_start_item;
};
/** Filtering capabilities for various NIC and firmware versions. */
struct enic_filter_cap {
/** list of valid items and their handlers and attributes. */
const struct enic_items *item_info;
};
/* functions for copying flow actions into enic actions */
typedef int (copy_action_fn)(const struct rte_flow_action actions[],
struct filter_action_v2 *enic_action);
/* functions for copying items into enic filters */
typedef int(enic_copy_item_fn)(const struct rte_flow_item *item,
struct filter_v2 *enic_filter, u8 *inner_ofst);
/** Action capabilities for various NICs. */
struct enic_action_cap {
/** list of valid actions */
const enum rte_flow_action_type *actions;
/** copy function for a particular NIC */
int (*copy_fn)(const struct rte_flow_action actions[],
struct filter_action_v2 *enic_action);
};
/* Forward declarations */
static enic_copy_item_fn enic_copy_item_ipv4_v1;
static enic_copy_item_fn enic_copy_item_udp_v1;
static enic_copy_item_fn enic_copy_item_tcp_v1;
static enic_copy_item_fn enic_copy_item_eth_v2;
static enic_copy_item_fn enic_copy_item_vlan_v2;
static enic_copy_item_fn enic_copy_item_ipv4_v2;
static enic_copy_item_fn enic_copy_item_ipv6_v2;
static enic_copy_item_fn enic_copy_item_udp_v2;
static enic_copy_item_fn enic_copy_item_tcp_v2;
static enic_copy_item_fn enic_copy_item_sctp_v2;
static enic_copy_item_fn enic_copy_item_sctp_v2;
static enic_copy_item_fn enic_copy_item_vxlan_v2;
static copy_action_fn enic_copy_action_v1;
static copy_action_fn enic_copy_action_v2;
/**
* Legacy NICs or NICs with outdated firmware. Only 5-tuple perfect match
* is supported.
*/
static const struct enic_items enic_items_v1[] = {
[RTE_FLOW_ITEM_TYPE_IPV4] = {
.copy_item = enic_copy_item_ipv4_v1,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_UDP] = {
.copy_item = enic_copy_item_udp_v1,
.valid_start_item = 0,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_TCP] = {
.copy_item = enic_copy_item_tcp_v1,
.valid_start_item = 0,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_END,
},
},
};
/**
* NICs have Advanced Filters capability but they are disabled. This means
* that layer 3 must be specified.
*/
static const struct enic_items enic_items_v2[] = {
[RTE_FLOW_ITEM_TYPE_ETH] = {
.copy_item = enic_copy_item_eth_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_VLAN] = {
.copy_item = enic_copy_item_vlan_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_IPV4] = {
.copy_item = enic_copy_item_ipv4_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_IPV6] = {
.copy_item = enic_copy_item_ipv6_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_UDP] = {
.copy_item = enic_copy_item_udp_v2,
.valid_start_item = 0,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_TCP] = {
.copy_item = enic_copy_item_tcp_v2,
.valid_start_item = 0,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_SCTP] = {
.copy_item = enic_copy_item_sctp_v2,
.valid_start_item = 0,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_VXLAN] = {
.copy_item = enic_copy_item_vxlan_v2,
.valid_start_item = 0,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
},
},
};
/** NICs with Advanced filters enabled */
static const struct enic_items enic_items_v3[] = {
[RTE_FLOW_ITEM_TYPE_ETH] = {
.copy_item = enic_copy_item_eth_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_VLAN] = {
.copy_item = enic_copy_item_vlan_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_IPV4] = {
.copy_item = enic_copy_item_ipv4_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_IPV6] = {
.copy_item = enic_copy_item_ipv6_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_VLAN,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_UDP] = {
.copy_item = enic_copy_item_udp_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_TCP] = {
.copy_item = enic_copy_item_tcp_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_SCTP] = {
.copy_item = enic_copy_item_sctp_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
},
},
[RTE_FLOW_ITEM_TYPE_VXLAN] = {
.copy_item = enic_copy_item_vxlan_v2,
.valid_start_item = 1,
.prev_items = (const enum rte_flow_item_type[]) {
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
},
},
};
/** Filtering capabilities indexed this NICs supported filter type. */
static const struct enic_filter_cap enic_filter_cap[] = {
[FILTER_IPV4_5TUPLE] = {
.item_info = enic_items_v1,
},
[FILTER_USNIC_IP] = {
.item_info = enic_items_v2,
},
[FILTER_DPDK_1] = {
.item_info = enic_items_v3,
},
};
/** Supported actions for older NICs */
static const enum rte_flow_action_type enic_supported_actions_v1[] = {
RTE_FLOW_ACTION_TYPE_QUEUE,
RTE_FLOW_ACTION_TYPE_END,
};
/** Supported actions for newer NICs */
static const enum rte_flow_action_type enic_supported_actions_v2[] = {
RTE_FLOW_ACTION_TYPE_QUEUE,
RTE_FLOW_ACTION_TYPE_MARK,
RTE_FLOW_ACTION_TYPE_FLAG,
RTE_FLOW_ACTION_TYPE_END,
};
/** Action capabilities indexed by NIC version information */
static const struct enic_action_cap enic_action_cap[] = {
[FILTER_ACTION_RQ_STEERING_FLAG] = {
.actions = enic_supported_actions_v1,
.copy_fn = enic_copy_action_v1,
},
[FILTER_ACTION_V2_ALL] = {
.actions = enic_supported_actions_v2,
.copy_fn = enic_copy_action_v2,
},
};
static int
mask_exact_match(const u8 *supported, const u8 *supplied,
unsigned int size)
{
unsigned int i;
for (i = 0; i < size; i++) {
if (supported[i] != supplied[i])
return 0;
}
return 1;
}
/**
* Copy IPv4 item into version 1 NIC filter.
*
* @param item[in]
* Item specification.
* @param enic_filter[out]
* Partially filled in NIC filter structure.
* @param inner_ofst[in]
* Should always be 0 for version 1.
*/
static int
enic_copy_item_ipv4_v1(const struct rte_flow_item *item,
struct filter_v2 *enic_filter, u8 *inner_ofst)
{
const struct rte_flow_item_ipv4 *spec = item->spec;
const struct rte_flow_item_ipv4 *mask = item->mask;
struct filter_ipv4_5tuple *enic_5tup = &enic_filter->u.ipv4;
struct ipv4_hdr supported_mask = {
.src_addr = 0xffffffff,
.dst_addr = 0xffffffff,
};
FLOW_TRACE();
if (*inner_ofst)
return ENOTSUP;
if (!mask)
mask = &rte_flow_item_ipv4_mask;
/* This is an exact match filter, both fields must be set */
if (!spec || !spec->hdr.src_addr || !spec->hdr.dst_addr) {
FLOW_LOG(ERR, "IPv4 exact match src/dst addr");
return ENOTSUP;
}
/* check that the suppied mask exactly matches capabilty */
if (!mask_exact_match((const u8 *)&supported_mask,
(const u8 *)item->mask, sizeof(*mask))) {
FLOW_LOG(ERR, "IPv4 exact match mask");
return ENOTSUP;
}
enic_filter->u.ipv4.flags = FILTER_FIELDS_IPV4_5TUPLE;
enic_5tup->src_addr = spec->hdr.src_addr;
enic_5tup->dst_addr = spec->hdr.dst_addr;
return 0;
}
/**
* Copy UDP item into version 1 NIC filter.
*
* @param item[in]
* Item specification.
* @param enic_filter[out]
* Partially filled in NIC filter structure.
* @param inner_ofst[in]
* Should always be 0 for version 1.
*/
static int
enic_copy_item_udp_v1(const struct rte_flow_item *item,
struct filter_v2 *enic_filter, u8 *inner_ofst)
{
const struct rte_flow_item_udp *spec = item->spec;
const struct rte_flow_item_udp *mask = item->mask;
struct filter_ipv4_5tuple *enic_5tup = &enic_filter->u.ipv4;
struct udp_hdr supported_mask = {
.src_port = 0xffff,
.dst_port = 0xffff,
};
FLOW_TRACE();
if (*inner_ofst)
return ENOTSUP;
if (!mask)
mask = &rte_flow_item_udp_mask;
/* This is an exact match filter, both ports must be set */
if (!spec || !spec->hdr.src_port || !spec->hdr.dst_port) {
FLOW_LOG(ERR, "UDP exact match src/dst addr");
return ENOTSUP;
}
/* check that the suppied mask exactly matches capabilty */
if (!mask_exact_match((const u8 *)&supported_mask,
(const u8 *)item->mask, sizeof(*mask))) {
FLOW_LOG(ERR, "UDP exact match mask");
return ENOTSUP;
}
enic_filter->u.ipv4.flags = FILTER_FIELDS_IPV4_5TUPLE;
enic_5tup->src_port = spec->hdr.src_port;
enic_5tup->dst_port = spec->hdr.dst_port;
enic_5tup->protocol = PROTO_UDP;
return 0;
}
/**
* Copy TCP item into version 1 NIC filter.
*
* @param item[in]
* Item specification.
* @param enic_filter[out]
* Partially filled in NIC filter structure.
* @param inner_ofst[in]
* Should always be 0 for version 1.
*/
static int
enic_copy_item_tcp_v1(const struct rte_flow_item *item,
struct filter_v2 *enic_filter, u8 *inner_ofst)
{
const struct rte_flow_item_tcp *spec = item->spec;
const struct rte_flow_item_tcp *mask = item->mask;
struct filter_ipv4_5tuple *enic_5tup = &enic_filter->u.ipv4;
struct tcp_hdr supported_mask = {
.src_port = 0xffff,
.dst_port = 0xffff,
};
FLOW_TRACE();
if (*inner_ofst)
return ENOTSUP;
if (!mask)
mask = &rte_flow_item_tcp_mask;
/* This is an exact match filter, both ports must be set */
if (!spec || !spec->hdr.src_port || !spec->hdr.dst_port) {
FLOW_LOG(ERR, "TCPIPv4 exact match src/dst addr");
return ENOTSUP;
}
/* check that the suppied mask exactly matches capabilty */
if (!mask_exact_match((const u8 *)&supported_mask,
(const u8 *)item->mask, sizeof(*mask))) {
FLOW_LOG(ERR, "TCP exact match mask");
return ENOTSUP;
}
enic_filter->u.ipv4.flags = FILTER_FIELDS_IPV4_5TUPLE;
enic_5tup->src_port = spec->hdr.src_port;
enic_5tup->dst_port = spec->hdr.dst_port;
enic_5tup->protocol = PROTO_TCP;
return 0;
}
/**
* Copy ETH item into version 2 NIC filter.
*
* @param item[in]
* Item specification.
* @param enic_filter[out]
* Partially filled in NIC filter structure.
* @param inner_ofst[in]
* If zero, this is an outer header. If non-zero, this is the offset into L5
* where the header begins.
*/
static int
enic_copy_item_eth_v2(const struct rte_flow_item *item,
struct filter_v2 *enic_filter, u8 *inner_ofst)
{
struct ether_hdr enic_spec;
struct ether_hdr enic_mask;
const struct rte_flow_item_eth *spec = item->spec;
const struct rte_flow_item_eth *mask = item->mask;
struct filter_generic_1 *gp = &enic_filter->u.generic_1;
FLOW_TRACE();
/* Match all if no spec */
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_eth_mask;
memcpy(enic_spec.d_addr.addr_bytes, spec->dst.addr_bytes,
ETHER_ADDR_LEN);
memcpy(enic_spec.s_addr.addr_bytes, spec->src.addr_bytes,
ETHER_ADDR_LEN);
memcpy(enic_mask.d_addr.addr_bytes, mask->dst.addr_bytes,
ETHER_ADDR_LEN);
memcpy(enic_mask.s_addr.addr_bytes, mask->src.addr_bytes,
ETHER_ADDR_LEN);
enic_spec.ether_type = spec->type;
enic_mask.ether_type = mask->type;
if (*inner_ofst == 0) {
/* outer header */
memcpy(gp->layer[FILTER_GENERIC_1_L2].mask, &enic_mask,
sizeof(struct ether_hdr));
memcpy(gp->layer[FILTER_GENERIC_1_L2].val, &enic_spec,
sizeof(struct ether_hdr));
} else {
/* inner header */
if ((*inner_ofst + sizeof(struct ether_hdr)) >
FILTER_GENERIC_1_KEY_LEN)
return ENOTSUP;
/* Offset into L5 where inner Ethernet header goes */
memcpy(&gp->layer[FILTER_GENERIC_1_L5].mask[*inner_ofst],
&enic_mask, sizeof(struct ether_hdr));
memcpy(&gp->layer[FILTER_GENERIC_1_L5].val[*inner_ofst],
&enic_spec, sizeof(struct ether_hdr));
*inner_ofst += sizeof(struct ether_hdr);
}
return 0;
}
/**
* Copy VLAN item into version 2 NIC filter.
*
* @param item[in]
* Item specification.
* @param enic_filter[out]
* Partially filled in NIC filter structure.
* @param inner_ofst[in]
* If zero, this is an outer header. If non-zero, this is the offset into L5
* where the header begins.
*/
static int
enic_copy_item_vlan_v2(const struct rte_flow_item *item,
struct filter_v2 *enic_filter, u8 *inner_ofst)
{
const struct rte_flow_item_vlan *spec = item->spec;
const struct rte_flow_item_vlan *mask = item->mask;
struct filter_generic_1 *gp = &enic_filter->u.generic_1;
FLOW_TRACE();
/* Match all if no spec */
if (!spec)
return 0;
/* Don't support filtering in tpid */
if (mask) {
if (mask->tpid != 0)
return ENOTSUP;
} else {
mask = &rte_flow_item_vlan_mask;
RTE_ASSERT(mask->tpid == 0);
}
if (*inner_ofst == 0) {
/* Outer header. Use the vlan mask/val fields */
gp->mask_vlan = mask->tci;
gp->val_vlan = spec->tci;
} else {
/* Inner header. Mask/Val start at *inner_ofst into L5 */
if ((*inner_ofst + sizeof(struct vlan_hdr)) >
FILTER_GENERIC_1_KEY_LEN)
return ENOTSUP;
memcpy(&gp->layer[FILTER_GENERIC_1_L5].mask[*inner_ofst],
mask, sizeof(struct vlan_hdr));
memcpy(&gp->layer[FILTER_GENERIC_1_L5].val[*inner_ofst],
spec, sizeof(struct vlan_hdr));
*inner_ofst += sizeof(struct vlan_hdr);
}
return 0;
}
/**
* Copy IPv4 item into version 2 NIC filter.
*
* @param item[in]
* Item specification.
* @param enic_filter[out]
* Partially filled in NIC filter structure.
* @param inner_ofst[in]
* Must be 0. Don't support inner IPv4 filtering.
*/
static int
enic_copy_item_ipv4_v2(const struct rte_flow_item *item,
struct filter_v2 *enic_filter, u8 *inner_ofst)
{
const struct rte_flow_item_ipv4 *spec = item->spec;
const struct rte_flow_item_ipv4 *mask = item->mask;
struct filter_generic_1 *gp = &enic_filter->u.generic_1;
FLOW_TRACE();
if (*inner_ofst == 0) {
/* Match IPv4 */
gp->mask_flags |= FILTER_GENERIC_1_IPV4;
gp->val_flags |= FILTER_GENERIC_1_IPV4;
/* Match all if no spec */
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_ipv4_mask;
memcpy(gp->layer[FILTER_GENERIC_1_L3].mask, &mask->hdr,
sizeof(struct ipv4_hdr));
memcpy(gp->layer[FILTER_GENERIC_1_L3].val, &spec->hdr,
sizeof(struct ipv4_hdr));
} else {
/* Inner IPv4 header. Mask/Val start at *inner_ofst into L5 */
if ((*inner_ofst + sizeof(struct ipv4_hdr)) >
FILTER_GENERIC_1_KEY_LEN)
return ENOTSUP;
memcpy(&gp->layer[FILTER_GENERIC_1_L5].mask[*inner_ofst],
mask, sizeof(struct ipv4_hdr));
memcpy(&gp->layer[FILTER_GENERIC_1_L5].val[*inner_ofst],
spec, sizeof(struct ipv4_hdr));
*inner_ofst += sizeof(struct ipv4_hdr);
}
return 0;
}
/**
* Copy IPv6 item into version 2 NIC filter.
*
* @param item[in]
* Item specification.
* @param enic_filter[out]
* Partially filled in NIC filter structure.
* @param inner_ofst[in]
* Must be 0. Don't support inner IPv6 filtering.
*/
static int
enic_copy_item_ipv6_v2(const struct rte_flow_item *item,
struct filter_v2 *enic_filter, u8 *inner_ofst)
{
const struct rte_flow_item_ipv6 *spec = item->spec;
const struct rte_flow_item_ipv6 *mask = item->mask;
struct filter_generic_1 *gp = &enic_filter->u.generic_1;
FLOW_TRACE();
/* Match IPv6 */
gp->mask_flags |= FILTER_GENERIC_1_IPV6;
gp->val_flags |= FILTER_GENERIC_1_IPV6;
/* Match all if no spec */
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_ipv6_mask;
if (*inner_ofst == 0) {
memcpy(gp->layer[FILTER_GENERIC_1_L3].mask, &mask->hdr,
sizeof(struct ipv6_hdr));
memcpy(gp->layer[FILTER_GENERIC_1_L3].val, &spec->hdr,
sizeof(struct ipv6_hdr));
} else {
/* Inner IPv6 header. Mask/Val start at *inner_ofst into L5 */
if ((*inner_ofst + sizeof(struct ipv6_hdr)) >
FILTER_GENERIC_1_KEY_LEN)
return ENOTSUP;
memcpy(&gp->layer[FILTER_GENERIC_1_L5].mask[*inner_ofst],
mask, sizeof(struct ipv6_hdr));
memcpy(&gp->layer[FILTER_GENERIC_1_L5].val[*inner_ofst],
spec, sizeof(struct ipv6_hdr));
*inner_ofst += sizeof(struct ipv6_hdr);
}
return 0;
}
/**
* Copy UDP item into version 2 NIC filter.
*
* @param item[in]
* Item specification.
* @param enic_filter[out]
* Partially filled in NIC filter structure.
* @param inner_ofst[in]
* Must be 0. Don't support inner UDP filtering.
*/
static int
enic_copy_item_udp_v2(const struct rte_flow_item *item,
struct filter_v2 *enic_filter, u8 *inner_ofst)
{
const struct rte_flow_item_udp *spec = item->spec;
const struct rte_flow_item_udp *mask = item->mask;
struct filter_generic_1 *gp = &enic_filter->u.generic_1;
FLOW_TRACE();
/* Match UDP */
gp->mask_flags |= FILTER_GENERIC_1_UDP;
gp->val_flags |= FILTER_GENERIC_1_UDP;
/* Match all if no spec */
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_udp_mask;
if (*inner_ofst == 0) {
memcpy(gp->layer[FILTER_GENERIC_1_L4].mask, &mask->hdr,
sizeof(struct udp_hdr));
memcpy(gp->layer[FILTER_GENERIC_1_L4].val, &spec->hdr,
sizeof(struct udp_hdr));
} else {
/* Inner IPv6 header. Mask/Val start at *inner_ofst into L5 */
if ((*inner_ofst + sizeof(struct udp_hdr)) >
FILTER_GENERIC_1_KEY_LEN)
return ENOTSUP;
memcpy(&gp->layer[FILTER_GENERIC_1_L5].mask[*inner_ofst],
mask, sizeof(struct udp_hdr));
memcpy(&gp->layer[FILTER_GENERIC_1_L5].val[*inner_ofst],
spec, sizeof(struct udp_hdr));
*inner_ofst += sizeof(struct udp_hdr);
}
return 0;
}
/**
* Copy TCP item into version 2 NIC filter.
*
* @param item[in]
* Item specification.
* @param enic_filter[out]
* Partially filled in NIC filter structure.
* @param inner_ofst[in]
* Must be 0. Don't support inner TCP filtering.
*/
static int
enic_copy_item_tcp_v2(const struct rte_flow_item *item,
struct filter_v2 *enic_filter, u8 *inner_ofst)
{
const struct rte_flow_item_tcp *spec = item->spec;
const struct rte_flow_item_tcp *mask = item->mask;
struct filter_generic_1 *gp = &enic_filter->u.generic_1;
FLOW_TRACE();
/* Match TCP */
gp->mask_flags |= FILTER_GENERIC_1_TCP;
gp->val_flags |= FILTER_GENERIC_1_TCP;
/* Match all if no spec */
if (!spec)
return 0;
if (!mask)
return ENOTSUP;
if (*inner_ofst == 0) {
memcpy(gp->layer[FILTER_GENERIC_1_L4].mask, &mask->hdr,
sizeof(struct tcp_hdr));
memcpy(gp->layer[FILTER_GENERIC_1_L4].val, &spec->hdr,
sizeof(struct tcp_hdr));
} else {
/* Inner IPv6 header. Mask/Val start at *inner_ofst into L5 */
if ((*inner_ofst + sizeof(struct tcp_hdr)) >
FILTER_GENERIC_1_KEY_LEN)
return ENOTSUP;
memcpy(&gp->layer[FILTER_GENERIC_1_L5].mask[*inner_ofst],
mask, sizeof(struct tcp_hdr));
memcpy(&gp->layer[FILTER_GENERIC_1_L5].val[*inner_ofst],
spec, sizeof(struct tcp_hdr));
*inner_ofst += sizeof(struct tcp_hdr);
}
return 0;
}
/**
* Copy SCTP item into version 2 NIC filter.
*
* @param item[in]
* Item specification.
* @param enic_filter[out]
* Partially filled in NIC filter structure.
* @param inner_ofst[in]
* Must be 0. Don't support inner SCTP filtering.
*/
static int
enic_copy_item_sctp_v2(const struct rte_flow_item *item,
struct filter_v2 *enic_filter, u8 *inner_ofst)
{
const struct rte_flow_item_sctp *spec = item->spec;
const struct rte_flow_item_sctp *mask = item->mask;
struct filter_generic_1 *gp = &enic_filter->u.generic_1;
FLOW_TRACE();
if (*inner_ofst)
return ENOTSUP;
/* Match all if no spec */
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_sctp_mask;
memcpy(gp->layer[FILTER_GENERIC_1_L4].mask, &mask->hdr,
sizeof(struct sctp_hdr));
memcpy(gp->layer[FILTER_GENERIC_1_L4].val, &spec->hdr,
sizeof(struct sctp_hdr));
return 0;
}
/**
* Copy UDP item into version 2 NIC filter.
*
* @param item[in]
* Item specification.
* @param enic_filter[out]
* Partially filled in NIC filter structure.
* @param inner_ofst[in]
* Must be 0. VxLAN headers always start at the beginning of L5.
*/
static int
enic_copy_item_vxlan_v2(const struct rte_flow_item *item,
struct filter_v2 *enic_filter, u8 *inner_ofst)
{
const struct rte_flow_item_vxlan *spec = item->spec;
const struct rte_flow_item_vxlan *mask = item->mask;
struct filter_generic_1 *gp = &enic_filter->u.generic_1;
FLOW_TRACE();
if (*inner_ofst)
return EINVAL;
/* Match all if no spec */
if (!spec)
return 0;
if (!mask)
mask = &rte_flow_item_vxlan_mask;
memcpy(gp->layer[FILTER_GENERIC_1_L5].mask, mask,
sizeof(struct vxlan_hdr));
memcpy(gp->layer[FILTER_GENERIC_1_L5].val, spec,
sizeof(struct vxlan_hdr));
*inner_ofst = sizeof(struct vxlan_hdr);
return 0;
}
/**
* Return 1 if current item is valid on top of the previous one.
*
* @param prev_item[in]
* The item before this one in the pattern or RTE_FLOW_ITEM_TYPE_END if this
* is the first item.
* @param item_info[in]
* Info about this item, like valid previous items.
* @param is_first[in]
* True if this the first item in the pattern.
*/
static int
item_stacking_valid(enum rte_flow_item_type prev_item,
const struct enic_items *item_info, u8 is_first_item)
{
enum rte_flow_item_type const *allowed_items = item_info->prev_items;
FLOW_TRACE();
for (; *allowed_items != RTE_FLOW_ITEM_TYPE_END; allowed_items++) {
if (prev_item == *allowed_items)
return 1;
}
/* This is the first item in the stack. Check if that's cool */
if (is_first_item && item_info->valid_start_item)
return 1;
return 0;
}
/**
* Build the intenal enic filter structure from the provided pattern. The
* pattern is validated as the items are copied.
*
* @param pattern[in]
* @param items_info[in]
* Info about this NICs item support, like valid previous items.
* @param enic_filter[out]
* NIC specfilc filters derived from the pattern.
* @param error[out]
*/
static int
enic_copy_filter(const struct rte_flow_item pattern[],
const struct enic_items *items_info,
struct filter_v2 *enic_filter,
struct rte_flow_error *error)
{
int ret;
const struct rte_flow_item *item = pattern;
u8 inner_ofst = 0; /* If encapsulated, ofst into L5 */
enum rte_flow_item_type prev_item;
const struct enic_items *item_info;
u8 is_first_item = 1;
FLOW_TRACE();
prev_item = 0;
for (; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
/* Get info about how to validate and copy the item. If NULL
* is returned the nic does not support the item.
*/
if (item->type == RTE_FLOW_ITEM_TYPE_VOID)
continue;
item_info = &items_info[item->type];
/* check to see if item stacking is valid */
if (!item_stacking_valid(prev_item, item_info, is_first_item))
goto stacking_error;
ret = item_info->copy_item(item, enic_filter, &inner_ofst);
if (ret)
goto item_not_supported;
prev_item = item->type;
is_first_item = 0;
}
return 0;
item_not_supported:
rte_flow_error_set(error, ret, RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "enic type error");
return -rte_errno;
stacking_error:
rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
item, "stacking error");
return -rte_errno;
}
/**
* Build the intenal version 1 NIC action structure from the provided pattern.
* The pattern is validated as the items are copied.
*
* @param actions[in]
* @param enic_action[out]
* NIC specfilc actions derived from the actions.
* @param error[out]
*/
static int
enic_copy_action_v1(const struct rte_flow_action actions[],
struct filter_action_v2 *enic_action)
{
FLOW_TRACE();
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
if (actions->type == RTE_FLOW_ACTION_TYPE_VOID)
continue;
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_QUEUE: {
const struct rte_flow_action_queue *queue =
(const struct rte_flow_action_queue *)
actions->conf;
enic_action->rq_idx =
enic_rte_rq_idx_to_sop_idx(queue->index);
break;
}
default:
RTE_ASSERT(0);
break;
}
}
enic_action->type = FILTER_ACTION_RQ_STEERING;
return 0;
}
/**
* Build the intenal version 2 NIC action structure from the provided pattern.
* The pattern is validated as the items are copied.
*
* @param actions[in]
* @param enic_action[out]
* NIC specfilc actions derived from the actions.
* @param error[out]
*/
static int
enic_copy_action_v2(const struct rte_flow_action actions[],
struct filter_action_v2 *enic_action)
{
FLOW_TRACE();
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_QUEUE: {
const struct rte_flow_action_queue *queue =
(const struct rte_flow_action_queue *)
actions->conf;
enic_action->rq_idx =
enic_rte_rq_idx_to_sop_idx(queue->index);
enic_action->flags |= FILTER_ACTION_RQ_STEERING_FLAG;
break;
}
case RTE_FLOW_ACTION_TYPE_MARK: {
const struct rte_flow_action_mark *mark =
(const struct rte_flow_action_mark *)
actions->conf;
/* ENIC_MAGIC_FILTER_ID is reserved and is the highest
* in the range of allows mark ids.
*/
if (mark->id >= ENIC_MAGIC_FILTER_ID)
return EINVAL;
enic_action->filter_id = mark->id;
enic_action->flags |= FILTER_ACTION_FILTER_ID_FLAG;
break;
}
case RTE_FLOW_ACTION_TYPE_FLAG: {
enic_action->filter_id = ENIC_MAGIC_FILTER_ID;
enic_action->flags |= FILTER_ACTION_FILTER_ID_FLAG;
break;
}
case RTE_FLOW_ACTION_TYPE_VOID:
continue;
default:
RTE_ASSERT(0);
break;
}
}
enic_action->type = FILTER_ACTION_V2;
return 0;
}
/** Check if the action is supported */
static int
enic_match_action(const struct rte_flow_action *action,
const enum rte_flow_action_type *supported_actions)
{
for (; *supported_actions != RTE_FLOW_ACTION_TYPE_END;
supported_actions++) {
if (action->type == *supported_actions)
return 1;
}
return 0;
}
/** Get the NIC filter capabilties structure */
static const struct enic_filter_cap *
enic_get_filter_cap(struct enic *enic)
{
if (enic->flow_filter_mode)
return &enic_filter_cap[enic->flow_filter_mode];
return NULL;
}
/** Get the actions for this NIC version. */
static const struct enic_action_cap *
enic_get_action_cap(struct enic *enic)
{
static const struct enic_action_cap *ea;
if (enic->filter_tags)
ea = &enic_action_cap[FILTER_ACTION_V2_ALL];
else
ea = &enic_action_cap[FILTER_ACTION_RQ_STEERING_FLAG];
return ea;
}
/* Debug function to dump internal NIC action structure. */
static void
enic_dump_actions(const struct filter_action_v2 *ea)
{
if (ea->type == FILTER_ACTION_RQ_STEERING) {
FLOW_LOG(INFO, "Action(V1), queue: %u\n", ea->rq_idx);
} else if (ea->type == FILTER_ACTION_V2) {
FLOW_LOG(INFO, "Actions(V2)\n");
if (ea->flags & FILTER_ACTION_RQ_STEERING_FLAG)
FLOW_LOG(INFO, "\tqueue: %u\n",
enic_sop_rq_idx_to_rte_idx(ea->rq_idx));
if (ea->flags & FILTER_ACTION_FILTER_ID_FLAG)
FLOW_LOG(INFO, "\tfilter_id: %u\n", ea->filter_id);
}
}
/* Debug function to dump internal NIC filter structure. */
static void
enic_dump_filter(const struct filter_v2 *filt)
{
const struct filter_generic_1 *gp;
int i, j, mbyte;
char buf[128], *bp;
char ip4[16], ip6[16], udp[16], tcp[16], tcpudp[16], ip4csum[16];
char l4csum[16], ipfrag[16];
switch (filt->type) {
case FILTER_IPV4_5TUPLE:
FLOW_LOG(INFO, "FILTER_IPV4_5TUPLE\n");
break;
case FILTER_USNIC_IP:
case FILTER_DPDK_1:
/* FIXME: this should be a loop */
gp = &filt->u.generic_1;
FLOW_LOG(INFO, "Filter: vlan: 0x%04x, mask: 0x%04x\n",
gp->val_vlan, gp->mask_vlan);
if (gp->mask_flags & FILTER_GENERIC_1_IPV4)
sprintf(ip4, "%s ",
(gp->val_flags & FILTER_GENERIC_1_IPV4)
? "ip4(y)" : "ip4(n)");
else
sprintf(ip4, "%s ", "ip4(x)");
if (gp->mask_flags & FILTER_GENERIC_1_IPV6)
sprintf(ip6, "%s ",
(gp->val_flags & FILTER_GENERIC_1_IPV4)
? "ip6(y)" : "ip6(n)");
else
sprintf(ip6, "%s ", "ip6(x)");
if (gp->mask_flags & FILTER_GENERIC_1_UDP)
sprintf(udp, "%s ",
(gp->val_flags & FILTER_GENERIC_1_UDP)
? "udp(y)" : "udp(n)");
else
sprintf(udp, "%s ", "udp(x)");
if (gp->mask_flags & FILTER_GENERIC_1_TCP)
sprintf(tcp, "%s ",
(gp->val_flags & FILTER_GENERIC_1_TCP)
? "tcp(y)" : "tcp(n)");
else
sprintf(tcp, "%s ", "tcp(x)");
if (gp->mask_flags & FILTER_GENERIC_1_TCP_OR_UDP)
sprintf(tcpudp, "%s ",
(gp->val_flags & FILTER_GENERIC_1_TCP_OR_UDP)
? "tcpudp(y)" : "tcpudp(n)");
else
sprintf(tcpudp, "%s ", "tcpudp(x)");
if (gp->mask_flags & FILTER_GENERIC_1_IP4SUM_OK)
sprintf(ip4csum, "%s ",
(gp->val_flags & FILTER_GENERIC_1_IP4SUM_OK)
? "ip4csum(y)" : "ip4csum(n)");
else
sprintf(ip4csum, "%s ", "ip4csum(x)");
if (gp->mask_flags & FILTER_GENERIC_1_L4SUM_OK)
sprintf(l4csum, "%s ",
(gp->val_flags & FILTER_GENERIC_1_L4SUM_OK)
? "l4csum(y)" : "l4csum(n)");
else
sprintf(l4csum, "%s ", "l4csum(x)");
if (gp->mask_flags & FILTER_GENERIC_1_IPFRAG)
sprintf(ipfrag, "%s ",
(gp->val_flags & FILTER_GENERIC_1_IPFRAG)
? "ipfrag(y)" : "ipfrag(n)");
else
sprintf(ipfrag, "%s ", "ipfrag(x)");
FLOW_LOG(INFO, "\tFlags: %s%s%s%s%s%s%s%s\n", ip4, ip6, udp,
tcp, tcpudp, ip4csum, l4csum, ipfrag);
for (i = 0; i < FILTER_GENERIC_1_NUM_LAYERS; i++) {
mbyte = FILTER_GENERIC_1_KEY_LEN - 1;
while (mbyte && !gp->layer[i].mask[mbyte])
mbyte--;
if (mbyte == 0)
continue;
bp = buf;
for (j = 0; j <= mbyte; j++) {
sprintf(bp, "%02x",
gp->layer[i].mask[j]);
bp += 2;
}
*bp = '\0';
FLOW_LOG(INFO, "\tL%u mask: %s\n", i + 2, buf);
bp = buf;
for (j = 0; j <= mbyte; j++) {
sprintf(bp, "%02x",
gp->layer[i].val[j]);
bp += 2;
}
*bp = '\0';
FLOW_LOG(INFO, "\tL%u val: %s\n", i + 2, buf);
}
break;
default:
FLOW_LOG(INFO, "FILTER UNKNOWN\n");
break;
}
}
/* Debug function to dump internal NIC flow structures. */
static void
enic_dump_flow(const struct filter_action_v2 *ea, const struct filter_v2 *filt)
{
enic_dump_filter(filt);
enic_dump_actions(ea);
}
/**
* Internal flow parse/validate function.
*
* @param dev[in]
* This device pointer.
* @param pattern[in]
* @param actions[in]
* @param error[out]
* @param enic_filter[out]
* Internal NIC filter structure pointer.
* @param enic_action[out]
* Internal NIC action structure pointer.
*/
static int
enic_flow_parse(struct rte_eth_dev *dev,
const struct rte_flow_attr *attrs,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error,
struct filter_v2 *enic_filter,
struct filter_action_v2 *enic_action)
{
unsigned int ret = 0;
struct enic *enic = pmd_priv(dev);
const struct enic_filter_cap *enic_filter_cap;
const struct enic_action_cap *enic_action_cap;
const struct rte_flow_action *action;
FLOW_TRACE();
memset(enic_filter, 0, sizeof(*enic_filter));
memset(enic_action, 0, sizeof(*enic_action));
if (!pattern) {
rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "No pattern specified");
return -rte_errno;
}
if (!actions) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM,
NULL, "No action specified");
return -rte_errno;
}
if (attrs) {
if (attrs->group) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
NULL,
"priority groups are not supported");
return -rte_errno;
} else if (attrs->priority) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
NULL,
"priorities are not supported");
return -rte_errno;
} else if (attrs->egress) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
NULL,
"egress is not supported");
return -rte_errno;
} else if (!attrs->ingress) {
rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
NULL,
"only ingress is supported");
return -rte_errno;
}
} else {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR,
NULL, "No attribute specified");
return -rte_errno;
}
/* Verify Actions. */
enic_action_cap = enic_get_action_cap(enic);
for (action = &actions[0]; action->type != RTE_FLOW_ACTION_TYPE_END;
action++) {
if (action->type == RTE_FLOW_ACTION_TYPE_VOID)
continue;
else if (!enic_match_action(action, enic_action_cap->actions))
break;
}
if (action->type != RTE_FLOW_ACTION_TYPE_END) {
rte_flow_error_set(error, EPERM, RTE_FLOW_ERROR_TYPE_ACTION,
action, "Invalid action.");
return -rte_errno;
}
ret = enic_action_cap->copy_fn(actions, enic_action);
if (ret) {
rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Unsupported action.");
return -rte_errno;
}
/* Verify Flow items. If copying the filter from flow format to enic
* format fails, the flow is not supported
*/
enic_filter_cap = enic_get_filter_cap(enic);
if (enic_filter_cap == NULL) {
rte_flow_error_set(error, ENOTSUP, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Flow API not available");
return -rte_errno;
}
enic_filter->type = enic->flow_filter_mode;
ret = enic_copy_filter(pattern, enic_filter_cap->item_info,
enic_filter, error);
return ret;
}
/**
* Push filter/action to the NIC.
*
* @param enic[in]
* Device structure pointer.
* @param enic_filter[in]
* Internal NIC filter structure pointer.
* @param enic_action[in]
* Internal NIC action structure pointer.
* @param error[out]
*/
static struct rte_flow *
enic_flow_add_filter(struct enic *enic, struct filter_v2 *enic_filter,
struct filter_action_v2 *enic_action,
struct rte_flow_error *error)
{
struct rte_flow *flow;
int ret;
u16 entry;
FLOW_TRACE();
flow = rte_calloc(__func__, 1, sizeof(*flow), 0);
if (!flow) {
rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "cannot allocate flow memory");
return NULL;
}
/* entry[in] is the queue id, entry[out] is the filter Id for delete */
entry = enic_action->rq_idx;
ret = vnic_dev_classifier(enic->vdev, CLSF_ADD, &entry, enic_filter,
enic_action);
if (!ret) {
flow->enic_filter_id = entry;
flow->enic_filter = *enic_filter;
} else {
rte_flow_error_set(error, ret, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "vnic_dev_classifier error");
rte_free(flow);
return NULL;
}
return flow;
}
/**
* Remove filter/action from the NIC.
*
* @param enic[in]
* Device structure pointer.
* @param filter_id[in]
* Id of NIC filter.
* @param enic_action[in]
* Internal NIC action structure pointer.
* @param error[out]
*/
static int
enic_flow_del_filter(struct enic *enic, u16 filter_id,
struct rte_flow_error *error)
{
int ret;
FLOW_TRACE();
ret = vnic_dev_classifier(enic->vdev, CLSF_DEL, &filter_id, NULL, NULL);
if (!ret)
rte_flow_error_set(error, ret, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "vnic_dev_classifier failed");
return ret;
}
/*
* The following functions are callbacks for Generic flow API.
*/
/**
* Validate a flow supported by the NIC.
*
* @see rte_flow_validate()
* @see rte_flow_ops
*/
static int
enic_flow_validate(struct rte_eth_dev *dev, const struct rte_flow_attr *attrs,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct filter_v2 enic_filter;
struct filter_action_v2 enic_action;
int ret;
FLOW_TRACE();
ret = enic_flow_parse(dev, attrs, pattern, actions, error,
&enic_filter, &enic_action);
if (!ret)
enic_dump_flow(&enic_action, &enic_filter);
return ret;
}
/**
* Create a flow supported by the NIC.
*
* @see rte_flow_create()
* @see rte_flow_ops
*/
static struct rte_flow *
enic_flow_create(struct rte_eth_dev *dev,
const struct rte_flow_attr *attrs,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
int ret;
struct filter_v2 enic_filter;
struct filter_action_v2 enic_action;
struct rte_flow *flow;
struct enic *enic = pmd_priv(dev);
FLOW_TRACE();
ret = enic_flow_parse(dev, attrs, pattern, actions, error, &enic_filter,
&enic_action);
if (ret < 0)
return NULL;
rte_spinlock_lock(&enic->flows_lock);
flow = enic_flow_add_filter(enic, &enic_filter, &enic_action,
error);
if (flow)
LIST_INSERT_HEAD(&enic->flows, flow, next);
rte_spinlock_unlock(&enic->flows_lock);
return flow;
}
/**
* Destroy a flow supported by the NIC.
*
* @see rte_flow_destroy()
* @see rte_flow_ops
*/
static int
enic_flow_destroy(struct rte_eth_dev *dev, struct rte_flow *flow,
__rte_unused struct rte_flow_error *error)
{
struct enic *enic = pmd_priv(dev);
FLOW_TRACE();
rte_spinlock_lock(&enic->flows_lock);
enic_flow_del_filter(enic, flow->enic_filter_id, error);
LIST_REMOVE(flow, next);
rte_spinlock_unlock(&enic->flows_lock);
return 0;
}
/**
* Flush all flows on the device.
*
* @see rte_flow_flush()
* @see rte_flow_ops
*/
static int
enic_flow_flush(struct rte_eth_dev *dev, struct rte_flow_error *error)
{
struct rte_flow *flow;
struct enic *enic = pmd_priv(dev);
FLOW_TRACE();
rte_spinlock_lock(&enic->flows_lock);
while (!LIST_EMPTY(&enic->flows)) {
flow = LIST_FIRST(&enic->flows);
enic_flow_del_filter(enic, flow->enic_filter_id, error);
LIST_REMOVE(flow, next);
}
rte_spinlock_unlock(&enic->flows_lock);
return 0;
}
/**
* Flow callback registration.
*
* @see rte_flow_ops
*/
const struct rte_flow_ops enic_flow_ops = {
.validate = enic_flow_validate,
.create = enic_flow_create,
.destroy = enic_flow_destroy,
.flush = enic_flow_flush,
};