event/dlb2: optimize dequeue operation

Convert code to use x86 vector instructions, thereby significantly
improving dequeue performance.

Signed-off-by: Timothy McDaniel <timothy.mcdaniel@intel.com>
Signed-off-by: Harry van Haaren <harry.van.haaren@intel.com>
This commit is contained in:
Timothy McDaniel 2021-05-01 14:07:44 -05:00 committed by Jerin Jacob
parent 7c6cc633fc
commit 000a7b8e75
2 changed files with 414 additions and 53 deletions

View File

@ -375,6 +375,26 @@ set_default_depth_thresh(const char *key __rte_unused,
return 0;
}
static int
set_vector_opts_disab(const char *key __rte_unused,
const char *value,
void *opaque)
{
bool *dlb2_vector_opts_disabled = opaque;
if (value == NULL || opaque == NULL) {
DLB2_LOG_ERR("NULL pointer\n");
return -EINVAL;
}
if ((*value == 'y') || (*value == 'Y'))
*dlb2_vector_opts_disabled = true;
else
*dlb2_vector_opts_disabled = false;
return 0;
}
static int
set_qid_depth_thresh(const char *key __rte_unused,
const char *value,
@ -1240,6 +1260,37 @@ dlb2_event_enqueue_forward_burst_delayed(void *event_port,
const struct rte_event events[],
uint16_t num);
/* Generate the required bitmask for rotate-style expected QE gen bits.
* This requires a pattern of 1's and zeros, starting with expected as
* 1 bits, so when hardware writes 0's they're "new". This requires the
* ring size to be powers of 2 to wrap correctly.
*/
static void
dlb2_hw_cq_bitmask_init(struct dlb2_port *qm_port, uint32_t cq_depth)
{
uint64_t cq_build_mask = 0;
uint32_t i;
if (cq_depth > 64)
return; /* need to fall back to scalar code */
/*
* all 1's in first u64, all zeros in second is correct bit pattern to
* start. Special casing == 64 easier than adapting complex loop logic.
*/
if (cq_depth == 64) {
qm_port->cq_rolling_mask = 0;
qm_port->cq_rolling_mask_2 = -1;
return;
}
for (i = 0; i < 64; i += (cq_depth * 2))
cq_build_mask |= ((1ULL << cq_depth) - 1) << (i + cq_depth);
qm_port->cq_rolling_mask = cq_build_mask;
qm_port->cq_rolling_mask_2 = cq_build_mask;
}
static int
dlb2_hw_create_ldb_port(struct dlb2_eventdev *dlb2,
struct dlb2_eventdev_port *ev_port,
@ -1357,6 +1408,8 @@ dlb2_hw_create_ldb_port(struct dlb2_eventdev *dlb2,
/* starting value of gen bit - it toggles at wrap time */
qm_port->gen_bit = 1;
dlb2_hw_cq_bitmask_init(qm_port, qm_port->cq_depth);
qm_port->int_armed = false;
/* Save off for later use in info and lookup APIs. */
@ -1408,6 +1461,18 @@ dlb2_hw_create_ldb_port(struct dlb2_eventdev *dlb2,
dequeue_depth,
qm_port->credits);
}
qm_port->use_scalar = false;
#if (!defined RTE_ARCH_X86_64)
qm_port->use_scalar = true;
#else
if ((qm_port->cq_depth > 64) ||
(!rte_is_power_of_2(qm_port->cq_depth)) ||
(dlb2->vector_opts_disabled == true))
qm_port->use_scalar = true;
#endif
rte_spinlock_unlock(&handle->resource_lock);
return 0;
@ -1553,6 +1618,7 @@ dlb2_hw_create_dir_port(struct dlb2_eventdev *dlb2,
qm_port->gen_bit_shift = __builtin_popcount(qm_port->cq_depth_mask);
/* starting value of gen bit - it toggles at wrap time */
qm_port->gen_bit = 1;
dlb2_hw_cq_bitmask_init(qm_port, qm_port->cq_depth);
qm_port->int_armed = false;
@ -1593,6 +1659,16 @@ dlb2_hw_create_dir_port(struct dlb2_eventdev *dlb2,
dequeue_depth,
credit_high_watermark);
}
#if (!defined RTE_ARCH_X86_64)
qm_port->use_scalar = true;
#else
if ((qm_port->cq_depth > 64) ||
(!rte_is_power_of_2(qm_port->cq_depth)) ||
(dlb2->vector_opts_disabled == true))
qm_port->use_scalar = true;
#endif
rte_spinlock_unlock(&handle->resource_lock);
return 0;
@ -2987,10 +3063,11 @@ dlb2_event_release(struct dlb2_eventdev *dlb2,
int j = 0;
/* Zero-out QEs */
qm_port->qe4[0].cmd_byte = 0;
qm_port->qe4[1].cmd_byte = 0;
qm_port->qe4[2].cmd_byte = 0;
qm_port->qe4[3].cmd_byte = 0;
_mm_storeu_si128((void *)&qm_port->qe4[0], _mm_setzero_si128());
_mm_storeu_si128((void *)&qm_port->qe4[1], _mm_setzero_si128());
_mm_storeu_si128((void *)&qm_port->qe4[2], _mm_setzero_si128());
_mm_storeu_si128((void *)&qm_port->qe4[3], _mm_setzero_si128());
for (; j < DLB2_NUM_QES_PER_CACHE_LINE && (i + j) < n; j++) {
int16_t thresh = qm_port->token_pop_thresh;
@ -3020,7 +3097,7 @@ dlb2_event_release(struct dlb2_eventdev *dlb2,
sw_credit_update:
/* each release returns one credit */
if (!ev_port->outstanding_releases) {
if (unlikely(!ev_port->outstanding_releases)) {
DLB2_LOG_ERR("%s: Outstanding releases underflowed.\n",
__func__);
return;
@ -3137,7 +3214,7 @@ dlb2_dequeue_wait(struct dlb2_eventdev *dlb2,
return 0;
}
static inline int
static __rte_noinline int
dlb2_process_dequeue_qes(struct dlb2_eventdev_port *ev_port,
struct dlb2_port *qm_port,
struct rte_event *events,
@ -3406,8 +3483,7 @@ dlb2_recv_qe_sparse(struct dlb2_port *qm_port, struct dlb2_dequeue_qe *qe)
cq_addr = dlb2_port[qm_port->id][PORT_TYPE(qm_port)].cq_base;
idx = qm_port->cq_idx;
idx = qm_port->cq_idx_unmasked & qm_port->cq_depth_mask;
/* Load the next 4 QEs */
addr[0] = (uintptr_t)&cq_addr[idx];
addr[1] = (uintptr_t)&cq_addr[(idx + 4) & qm_port->cq_depth_mask];
@ -3452,6 +3528,272 @@ dlb2_recv_qe_sparse(struct dlb2_port *qm_port, struct dlb2_dequeue_qe *qe)
return __builtin_popcount(gen_bits);
}
static inline void
_process_deq_qes_vec_impl(struct dlb2_port *qm_port,
struct rte_event *events,
__m128i v_qe_3,
__m128i v_qe_2,
__m128i v_qe_1,
__m128i v_qe_0,
__m128i v_qe_meta,
__m128i v_qe_status,
uint32_t valid_events)
{
/* Look up the event QIDs, using the hardware QIDs to index the
* port's QID mapping.
*
* Each v_qe_[0-4] is just a 16-byte load of the whole QE. It is
* passed along in registers as the QE data is required later.
*
* v_qe_meta is an u32 unpack of all 4x QEs. A.k.a, it contains one
* 32-bit slice of each QE, so makes up a full SSE register. This
* allows parallel processing of 4x QEs in a single register.
*/
__m128i v_qid_done = {0};
int hw_qid0 = _mm_extract_epi8(v_qe_meta, 2);
int hw_qid1 = _mm_extract_epi8(v_qe_meta, 6);
int hw_qid2 = _mm_extract_epi8(v_qe_meta, 10);
int hw_qid3 = _mm_extract_epi8(v_qe_meta, 14);
int ev_qid0 = qm_port->qid_mappings[hw_qid0];
int ev_qid1 = qm_port->qid_mappings[hw_qid1];
int ev_qid2 = qm_port->qid_mappings[hw_qid2];
int ev_qid3 = qm_port->qid_mappings[hw_qid3];
v_qid_done = _mm_insert_epi8(v_qid_done, ev_qid0, 2);
v_qid_done = _mm_insert_epi8(v_qid_done, ev_qid1, 6);
v_qid_done = _mm_insert_epi8(v_qid_done, ev_qid2, 10);
v_qid_done = _mm_insert_epi8(v_qid_done, ev_qid3, 14);
/* Schedule field remapping using byte shuffle
* - Full byte containing sched field handled here (op, rsvd are zero)
* - Note sanitizing the register requires two masking ANDs:
* 1) to strip prio/msg_type from byte for correct shuffle lookup
* 2) to strip any non-sched-field lanes from any results to OR later
* - Final byte result is >> 10 to another byte-lane inside the u32.
* This makes the final combination OR easier to make the rte_event.
*/
__m128i v_sched_done;
__m128i v_sched_bits;
{
static const uint8_t sched_type_map[16] = {
[DLB2_SCHED_ATOMIC] = RTE_SCHED_TYPE_ATOMIC,
[DLB2_SCHED_UNORDERED] = RTE_SCHED_TYPE_PARALLEL,
[DLB2_SCHED_ORDERED] = RTE_SCHED_TYPE_ORDERED,
[DLB2_SCHED_DIRECTED] = RTE_SCHED_TYPE_ATOMIC,
};
static const uint8_t sched_and_mask[16] = {
0x00, 0x00, 0x00, 0x03,
0x00, 0x00, 0x00, 0x03,
0x00, 0x00, 0x00, 0x03,
0x00, 0x00, 0x00, 0x03,
};
const __m128i v_sched_map = _mm_loadu_si128(
(const __m128i *)sched_type_map);
__m128i v_sched_mask = _mm_loadu_si128(
(const __m128i *)&sched_and_mask);
v_sched_bits = _mm_and_si128(v_qe_meta, v_sched_mask);
__m128i v_sched_remapped = _mm_shuffle_epi8(v_sched_map,
v_sched_bits);
__m128i v_preshift = _mm_and_si128(v_sched_remapped,
v_sched_mask);
v_sched_done = _mm_srli_epi32(v_preshift, 10);
}
/* Priority handling
* - QE provides 3 bits of priority
* - Shift << 3 to move to MSBs for byte-prio in rte_event
* - Mask bits to avoid pollution, leaving only 3 prio MSBs in reg
*/
__m128i v_prio_done;
{
static const uint8_t prio_mask[16] = {
0x00, 0x00, 0x00, 0x07 << 5,
0x00, 0x00, 0x00, 0x07 << 5,
0x00, 0x00, 0x00, 0x07 << 5,
0x00, 0x00, 0x00, 0x07 << 5,
};
__m128i v_prio_mask = _mm_loadu_si128(
(const __m128i *)prio_mask);
__m128i v_prio_shifted = _mm_slli_epi32(v_qe_meta, 3);
v_prio_done = _mm_and_si128(v_prio_shifted, v_prio_mask);
}
/* Event Sub/Type handling:
* we want to keep the lower 12 bits of each QE. Shift up by 20 bits
* to get the sub/ev type data into rte_event location, clearing the
* lower 20 bits in the process.
*/
__m128i v_types_done;
{
static const uint8_t event_mask[16] = {
0x0f, 0x00, 0x00, 0x00,
0x0f, 0x00, 0x00, 0x00,
0x0f, 0x00, 0x00, 0x00,
0x0f, 0x00, 0x00, 0x00,
};
static const uint8_t sub_event_mask[16] = {
0xff, 0x00, 0x00, 0x00,
0xff, 0x00, 0x00, 0x00,
0xff, 0x00, 0x00, 0x00,
0xff, 0x00, 0x00, 0x00,
};
static const uint8_t flow_mask[16] = {
0xff, 0xff, 0x00, 0x00,
0xff, 0xff, 0x00, 0x00,
0xff, 0xff, 0x00, 0x00,
0xff, 0xff, 0x00, 0x00,
};
__m128i v_event_mask = _mm_loadu_si128(
(const __m128i *)event_mask);
__m128i v_sub_event_mask = _mm_loadu_si128(
(const __m128i *)sub_event_mask);
__m128i v_flow_mask = _mm_loadu_si128(
(const __m128i *)flow_mask);
__m128i v_sub = _mm_srli_epi32(v_qe_meta, 8);
v_sub = _mm_and_si128(v_sub, v_sub_event_mask);
__m128i v_type = _mm_and_si128(v_qe_meta, v_event_mask);
v_type = _mm_slli_epi32(v_type, 8);
v_types_done = _mm_or_si128(v_type, v_sub);
v_types_done = _mm_slli_epi32(v_types_done, 20);
__m128i v_flow = _mm_and_si128(v_qe_status, v_flow_mask);
v_types_done = _mm_or_si128(v_types_done, v_flow);
}
/* Combine QID, Sched and Prio fields, then Shift >> 8 bits to align
* with the rte_event, allowing unpacks to move/blend with payload.
*/
__m128i v_q_s_p_done;
{
__m128i v_qid_sched = _mm_or_si128(v_qid_done, v_sched_done);
__m128i v_q_s_prio = _mm_or_si128(v_qid_sched, v_prio_done);
v_q_s_p_done = _mm_srli_epi32(v_q_s_prio, 8);
}
__m128i v_unpk_ev_23, v_unpk_ev_01, v_ev_2, v_ev_3, v_ev_0, v_ev_1;
/* Unpack evs into u64 metadata, then indiv events */
v_unpk_ev_23 = _mm_unpackhi_epi32(v_types_done, v_q_s_p_done);
v_unpk_ev_01 = _mm_unpacklo_epi32(v_types_done, v_q_s_p_done);
switch (valid_events) {
case 4:
v_ev_3 = _mm_blend_epi16(v_unpk_ev_23, v_qe_3, 0x0F);
v_ev_3 = _mm_alignr_epi8(v_ev_3, v_ev_3, 8);
_mm_storeu_si128((__m128i *)&events[3], v_ev_3);
/* fallthrough */
case 3:
v_ev_2 = _mm_unpacklo_epi64(v_unpk_ev_23, v_qe_2);
_mm_storeu_si128((__m128i *)&events[2], v_ev_2);
/* fallthrough */
case 2:
v_ev_1 = _mm_blend_epi16(v_unpk_ev_01, v_qe_1, 0x0F);
v_ev_1 = _mm_alignr_epi8(v_ev_1, v_ev_1, 8);
_mm_storeu_si128((__m128i *)&events[1], v_ev_1);
/* fallthrough */
case 1:
v_ev_0 = _mm_unpacklo_epi64(v_unpk_ev_01, v_qe_0);
_mm_storeu_si128((__m128i *)&events[0], v_ev_0);
}
}
static __rte_always_inline int
dlb2_recv_qe_sparse_vec(struct dlb2_port *qm_port, void *events,
uint32_t max_events)
{
/* Using unmasked idx for perf, and masking manually */
uint16_t idx = qm_port->cq_idx_unmasked;
volatile struct dlb2_dequeue_qe *cq_addr;
cq_addr = dlb2_port[qm_port->id][PORT_TYPE(qm_port)].cq_base;
uintptr_t qe_ptr_3 = (uintptr_t)&cq_addr[(idx + 12) &
qm_port->cq_depth_mask];
uintptr_t qe_ptr_2 = (uintptr_t)&cq_addr[(idx + 8) &
qm_port->cq_depth_mask];
uintptr_t qe_ptr_1 = (uintptr_t)&cq_addr[(idx + 4) &
qm_port->cq_depth_mask];
uintptr_t qe_ptr_0 = (uintptr_t)&cq_addr[(idx + 0) &
qm_port->cq_depth_mask];
/* Load QEs from CQ: use compiler barriers to avoid load reordering */
__m128i v_qe_3 = _mm_loadu_si128((const __m128i *)qe_ptr_3);
rte_compiler_barrier();
__m128i v_qe_2 = _mm_loadu_si128((const __m128i *)qe_ptr_2);
rte_compiler_barrier();
__m128i v_qe_1 = _mm_loadu_si128((const __m128i *)qe_ptr_1);
rte_compiler_barrier();
__m128i v_qe_0 = _mm_loadu_si128((const __m128i *)qe_ptr_0);
/* Generate the pkt_shuffle mask;
* - Avoids load in otherwise load-heavy section of code
* - Moves bytes 3,7,11,15 (gen bit bytes) to LSB bytes in XMM
*/
const uint32_t stat_shuf_bytes = (15 << 24) | (11 << 16) | (7 << 8) | 3;
__m128i v_zeros = _mm_setzero_si128();
__m128i v_ffff = _mm_cmpeq_epi8(v_zeros, v_zeros);
__m128i v_stat_shuf_mask = _mm_insert_epi32(v_ffff, stat_shuf_bytes, 0);
/* Extract u32 components required from the QE
* - QE[64 to 95 ] for metadata (qid, sched, prio, event type, ...)
* - QE[96 to 127] for status (cq gen bit, error)
*
* Note that stage 1 of the unpacking is re-used for both u32 extracts
*/
__m128i v_qe_02 = _mm_unpackhi_epi32(v_qe_0, v_qe_2);
__m128i v_qe_13 = _mm_unpackhi_epi32(v_qe_1, v_qe_3);
__m128i v_qe_status = _mm_unpackhi_epi32(v_qe_02, v_qe_13);
__m128i v_qe_meta = _mm_unpacklo_epi32(v_qe_02, v_qe_13);
/* Status byte (gen_bit, error) handling:
* - Shuffle to lanes 0,1,2,3, clear all others
* - Shift right by 7 for gen bit to MSB, movemask to scalar
* - Shift right by 2 for error bit to MSB, movemask to scalar
*/
__m128i v_qe_shuffled = _mm_shuffle_epi8(v_qe_status, v_stat_shuf_mask);
__m128i v_qes_shift_gen_bit = _mm_slli_epi32(v_qe_shuffled, 7);
int32_t qe_gen_bits = _mm_movemask_epi8(v_qes_shift_gen_bit) & 0xf;
/* Expected vs Reality of QE Gen bits
* - cq_rolling_mask provides expected bits
* - QE loads, unpacks/shuffle and movemask provides reality
* - XOR of the two gives bitmask of new packets
* - POPCNT to get the number of new events
*/
uint64_t rolling = qm_port->cq_rolling_mask & 0xF;
uint64_t qe_xor_bits = (qe_gen_bits ^ rolling);
uint32_t count_new = __builtin_popcount(qe_xor_bits);
count_new = RTE_MIN(count_new, max_events);
if (!count_new)
return 0;
/* emulate a 128 bit rotate using 2x 64-bit numbers and bit-shifts */
uint64_t m_rshift = qm_port->cq_rolling_mask >> count_new;
uint64_t m_lshift = qm_port->cq_rolling_mask << (64 - count_new);
uint64_t m2_rshift = qm_port->cq_rolling_mask_2 >> count_new;
uint64_t m2_lshift = qm_port->cq_rolling_mask_2 << (64 - count_new);
/* shifted out of m2 into MSB of m */
qm_port->cq_rolling_mask = (m_rshift | m2_lshift);
/* shifted out of m "looped back" into MSB of m2 */
qm_port->cq_rolling_mask_2 = (m2_rshift | m_lshift);
/* Prefetch the next QEs - should run as IPC instead of cycles */
rte_prefetch0(&cq_addr[(idx + 16) & qm_port->cq_depth_mask]);
rte_prefetch0(&cq_addr[(idx + 20) & qm_port->cq_depth_mask]);
rte_prefetch0(&cq_addr[(idx + 24) & qm_port->cq_depth_mask]);
rte_prefetch0(&cq_addr[(idx + 28) & qm_port->cq_depth_mask]);
/* Convert QEs from XMM regs to events and store events directly */
_process_deq_qes_vec_impl(qm_port, events, v_qe_3, v_qe_2, v_qe_1,
v_qe_0, v_qe_meta, v_qe_status, count_new);
return count_new;
}
static inline void
dlb2_inc_cq_idx(struct dlb2_port *qm_port, int cnt)
{
@ -3469,25 +3811,15 @@ dlb2_hw_dequeue_sparse(struct dlb2_eventdev *dlb2,
uint16_t max_num,
uint64_t dequeue_timeout_ticks)
{
uint64_t timeout;
uint64_t start_ticks = 0ULL;
struct dlb2_port *qm_port;
int num = 0;
bool use_scalar;
uint64_t timeout;
qm_port = &ev_port->qm_port;
use_scalar = qm_port->use_scalar;
/* We have a special implementation for waiting. Wait can be:
* 1) no waiting at all
* 2) busy poll only
* 3) wait for interrupt. If wakeup and poll time
* has expired, then return to caller
* 4) umonitor/umwait repeatedly up to poll time
*/
/* If configured for per dequeue wait, then use wait value provided
* to this API. Otherwise we must use the global
* value from eventdev config time.
*/
if (!dlb2->global_dequeue_wait)
timeout = dequeue_timeout_ticks;
else
@ -3495,35 +3827,41 @@ dlb2_hw_dequeue_sparse(struct dlb2_eventdev *dlb2,
start_ticks = rte_get_timer_cycles();
use_scalar = use_scalar || (max_num & 0x3);
while (num < max_num) {
struct dlb2_dequeue_qe qes[DLB2_NUM_QES_PER_CACHE_LINE];
int num_avail;
/* Copy up to 4 QEs from the current cache line into qes */
num_avail = dlb2_recv_qe_sparse(qm_port, qes);
/* But don't process more than the user requested */
num_avail = RTE_MIN(num_avail, max_num - num);
dlb2_inc_cq_idx(qm_port, num_avail << 2);
if (num_avail == DLB2_NUM_QES_PER_CACHE_LINE)
num += dlb2_process_dequeue_four_qes(ev_port,
qm_port,
&events[num],
&qes[0]);
else if (num_avail)
num += dlb2_process_dequeue_qes(ev_port,
qm_port,
&events[num],
&qes[0],
num_avail);
else if ((timeout == 0) || (num > 0))
/* Not waiting in any form, or 1+ events received? */
break;
else if (dlb2_dequeue_wait(dlb2, ev_port, qm_port,
timeout, start_ticks))
break;
if (use_scalar) {
num_avail = dlb2_recv_qe_sparse(qm_port, qes);
num_avail = RTE_MIN(num_avail, max_num - num);
dlb2_inc_cq_idx(qm_port, num_avail << 2);
if (num_avail == DLB2_NUM_QES_PER_CACHE_LINE)
num += dlb2_process_dequeue_four_qes(ev_port,
qm_port,
&events[num],
&qes[0]);
else if (num_avail)
num += dlb2_process_dequeue_qes(ev_port,
qm_port,
&events[num],
&qes[0],
num_avail);
} else { /* !use_scalar */
num_avail = dlb2_recv_qe_sparse_vec(qm_port,
&events[num],
max_num - num);
num += num_avail;
dlb2_inc_cq_idx(qm_port, num_avail << 2);
DLB2_INC_STAT(ev_port->stats.traffic.rx_ok, num_avail);
}
if (!num_avail) {
if (num > 0)
break;
else if (dlb2_dequeue_wait(dlb2, ev_port, qm_port,
timeout, start_ticks))
break;
}
}
qm_port->owed_tokens += num;
@ -4083,6 +4421,7 @@ dlb2_primary_eventdev_probe(struct rte_eventdev *dev,
dlb2->poll_interval = dlb2_args->poll_interval;
dlb2->sw_credit_quanta = dlb2_args->sw_credit_quanta;
dlb2->default_depth_thresh = dlb2_args->default_depth_thresh;
dlb2->vector_opts_disabled = dlb2_args->vector_opts_disabled;
err = dlb2_iface_open(&dlb2->qm_instance, name);
if (err < 0) {
@ -4186,6 +4525,7 @@ dlb2_parse_params(const char *params,
DLB2_POLL_INTERVAL_ARG,
DLB2_SW_CREDIT_QUANTA_ARG,
DLB2_DEPTH_THRESH_ARG,
DLB2_VECTOR_OPTS_DISAB_ARG,
NULL };
if (params != NULL && params[0] != '\0') {
@ -4299,6 +4639,17 @@ dlb2_parse_params(const char *params,
return ret;
}
ret = rte_kvargs_process(kvlist,
DLB2_VECTOR_OPTS_DISAB_ARG,
set_vector_opts_disab,
&dlb2_args->vector_opts_disabled);
if (ret != 0) {
DLB2_LOG_ERR("%s: Error parsing vector opts disabled",
name);
rte_kvargs_free(kvlist);
return ret;
}
rte_kvargs_free(kvlist);
}
}

View File

@ -38,6 +38,7 @@
#define DLB2_POLL_INTERVAL_ARG "poll_interval"
#define DLB2_SW_CREDIT_QUANTA_ARG "sw_credit_quanta"
#define DLB2_DEPTH_THRESH_ARG "default_depth_thresh"
#define DLB2_VECTOR_OPTS_DISAB_ARG "vector_opts_disable"
/* Begin HW related defines and structs */
@ -205,9 +206,9 @@ enum dlb2_enqueue_type {
/* hw-specific format - do not change */
struct dlb2_event_type {
uint8_t major:4;
uint8_t unused:4;
uint8_t sub;
uint16_t major:4;
uint16_t unused:4;
uint16_t sub:8;
};
union dlb2_opaque_data {
@ -351,6 +352,12 @@ struct dlb2_port {
uint16_t cq_idx_unmasked;
uint16_t cq_depth_mask;
uint16_t gen_bit_shift;
uint64_t cq_rolling_mask; /*
* rotate to always have right expected
* gen bits
*/
uint64_t cq_rolling_mask_2;
void *cq_addr_cached; /* avoid multiple refs */
enum dlb2_port_state state;
enum dlb2_configuration_state config_state;
int num_mapped_qids;
@ -360,6 +367,7 @@ struct dlb2_port {
struct dlb2_cq_pop_qe *consume_qe;
struct dlb2_eventdev *dlb2; /* back ptr */
struct dlb2_eventdev_port *ev_port; /* back ptr */
bool use_scalar; /* force usage of scalar code */
};
/* Per-process per-port mmio and memory pointers */
@ -513,9 +521,9 @@ struct dlb2_queue {
uint32_t num_qid_inflights; /* User config */
uint32_t num_atm_inflights; /* User config */
enum dlb2_configuration_state config_state;
int sched_type; /* LB queue only */
uint32_t id;
bool is_directed;
int sched_type; /* LB queue only */
uint8_t id;
bool is_directed;
};
struct dlb2_eventdev_queue {
@ -558,6 +566,7 @@ struct dlb2_eventdev {
uint32_t new_event_limit;
int max_num_events_override;
int num_dir_credits_override;
bool vector_opts_disabled;
volatile enum dlb2_run_state run_state;
uint16_t num_dir_queues; /* total num of evdev dir queues requested */
union {
@ -617,6 +626,7 @@ struct dlb2_devargs {
int poll_interval;
int sw_credit_quanta;
int default_depth_thresh;
bool vector_opts_disabled;
};
/* End Eventdev related defines and structs */