mem: remove single file segments

RTE_EAL_SINGLE_FILE_SEGMENTS was introduced with ivshmem integration.
Now that ivshmem was removed (commit c711ccb30987)
and a simple git grep shows no one else references it;
I think we can now remove it.

Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Acked-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com>
This commit is contained in:
Yuanhan Liu 2016-09-23 15:10:46 +08:00 committed by Thomas Monjalon
parent 5fc74c2e14
commit 016a23a81e
3 changed files with 3 additions and 288 deletions

View File

@ -97,17 +97,6 @@ eal_get_hugefile_path(char *buffer, size_t buflen, const char *hugedir, int f_id
return buffer;
}
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
static inline const char *
eal_get_hugefile_temp_path(char *buffer, size_t buflen, const char *hugedir, int f_id)
{
snprintf(buffer, buflen, TEMP_HUGEFILE_FMT, hugedir,
internal_config.hugefile_prefix, f_id);
buffer[buflen - 1] = '\0';
return buffer;
}
#endif
/** define the default filename prefix for the %s values above */
#define HUGEFILE_PREFIX_DEFAULT "rte"

View File

@ -52,9 +52,6 @@ struct hugepage_file {
int socket_id; /**< NUMA socket ID */
int file_id; /**< the '%d' in HUGEFILE_FMT */
int memseg_id; /**< the memory segment to which page belongs */
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
int repeated; /**< number of times the page size is repeated */
#endif
char filepath[MAX_HUGEPAGE_PATH]; /**< path to backing file on filesystem */
};

View File

@ -376,25 +376,15 @@ map_all_hugepages(struct hugepage_file *hugepg_tbl,
void *vma_addr = NULL;
size_t vma_len = 0;
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
RTE_SET_USED(vma_len);
#endif
for (i = 0; i < hpi->num_pages[0]; i++) {
uint64_t hugepage_sz = hpi->hugepage_sz;
if (orig) {
hugepg_tbl[i].file_id = i;
hugepg_tbl[i].size = hugepage_sz;
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
eal_get_hugefile_temp_path(hugepg_tbl[i].filepath,
sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
hugepg_tbl[i].file_id);
#else
eal_get_hugefile_path(hugepg_tbl[i].filepath,
sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
hugepg_tbl[i].file_id);
#endif
hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0';
}
#ifndef RTE_ARCH_64
@ -408,8 +398,6 @@ map_all_hugepages(struct hugepage_file *hugepg_tbl,
continue;
}
#endif
#ifndef RTE_EAL_SINGLE_FILE_SEGMENTS
else if (vma_len == 0) {
unsigned j, num_pages;
@ -439,7 +427,6 @@ map_all_hugepages(struct hugepage_file *hugepg_tbl,
if (vma_addr == NULL)
vma_len = hugepage_sz;
}
#endif
/* try to create hugepage file */
fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0600);
@ -505,169 +492,6 @@ map_all_hugepages(struct hugepage_file *hugepg_tbl,
return i;
}
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
/*
* Remaps all hugepages into single file segments
*/
static int
remap_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
{
int fd;
unsigned i = 0, j, num_pages, page_idx = 0;
void *vma_addr = NULL, *old_addr = NULL, *page_addr = NULL;
size_t vma_len = 0;
size_t hugepage_sz = hpi->hugepage_sz;
size_t total_size, offset;
char filepath[MAX_HUGEPAGE_PATH];
phys_addr_t physaddr;
int socket;
while (i < hpi->num_pages[0]) {
#ifndef RTE_ARCH_64
/* for 32-bit systems, don't remap 1G pages and 16G pages,
* just reuse original map address as final map address.
*/
if ((hugepage_sz == RTE_PGSIZE_1G)
|| (hugepage_sz == RTE_PGSIZE_16G)) {
hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
hugepg_tbl[i].orig_va = NULL;
i++;
continue;
}
#endif
/* reserve a virtual area for next contiguous
* physical block: count the number of
* contiguous physical pages. */
for (j = i+1; j < hpi->num_pages[0] ; j++) {
#ifdef RTE_ARCH_PPC_64
/* The physical addresses are sorted in descending
* order on PPC64 */
if (hugepg_tbl[j].physaddr !=
hugepg_tbl[j-1].physaddr - hugepage_sz)
break;
#else
if (hugepg_tbl[j].physaddr !=
hugepg_tbl[j-1].physaddr + hugepage_sz)
break;
#endif
}
num_pages = j - i;
vma_len = num_pages * hugepage_sz;
socket = hugepg_tbl[i].socket_id;
/* get the biggest virtual memory area up to
* vma_len. If it fails, vma_addr is NULL, so
* let the kernel provide the address. */
vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
/* If we can't find a big enough virtual area, work out how many pages
* we are going to get */
if (vma_addr == NULL)
j = i + 1;
else if (vma_len != num_pages * hugepage_sz) {
num_pages = vma_len / hugepage_sz;
j = i + num_pages;
}
hugepg_tbl[page_idx].file_id = page_idx;
eal_get_hugefile_path(filepath,
sizeof(filepath),
hpi->hugedir,
hugepg_tbl[page_idx].file_id);
/* try to create hugepage file */
fd = open(filepath, O_CREAT | O_RDWR, 0600);
if (fd < 0) {
RTE_LOG(ERR, EAL, "%s(): open failed: %s\n", __func__, strerror(errno));
return -1;
}
total_size = 0;
for (;i < j; i++) {
/* unmap current segment */
if (total_size > 0)
munmap(vma_addr, total_size);
/* unmap original page */
munmap(hugepg_tbl[i].orig_va, hugepage_sz);
unlink(hugepg_tbl[i].filepath);
total_size += hugepage_sz;
old_addr = vma_addr;
/* map new, bigger segment, and populate page tables,
* the kernel fills this segment with zeros */
vma_addr = mmap(vma_addr, total_size,
PROT_READ | PROT_WRITE, MAP_SHARED | MAP_POPULATE, fd, 0);
if (vma_addr == MAP_FAILED || vma_addr != old_addr) {
RTE_LOG(ERR, EAL, "%s(): mmap failed: %s\n", __func__, strerror(errno));
close(fd);
return -1;
}
}
/* set shared flock on the file. */
if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
RTE_LOG(ERR, EAL, "%s(): Locking file failed:%s \n",
__func__, strerror(errno));
close(fd);
return -1;
}
snprintf(hugepg_tbl[page_idx].filepath, MAX_HUGEPAGE_PATH, "%s",
filepath);
physaddr = rte_mem_virt2phy(vma_addr);
if (physaddr == RTE_BAD_PHYS_ADDR)
return -1;
hugepg_tbl[page_idx].final_va = vma_addr;
hugepg_tbl[page_idx].physaddr = physaddr;
hugepg_tbl[page_idx].repeated = num_pages;
hugepg_tbl[page_idx].socket_id = socket;
close(fd);
/* verify the memory segment - that is, check that every VA corresponds
* to the physical address we expect to see
*/
for (offset = 0; offset < vma_len; offset += hugepage_sz) {
uint64_t expected_physaddr;
expected_physaddr = hugepg_tbl[page_idx].physaddr + offset;
page_addr = RTE_PTR_ADD(vma_addr, offset);
physaddr = rte_mem_virt2phy(page_addr);
if (physaddr != expected_physaddr) {
RTE_LOG(ERR, EAL, "Segment sanity check failed: wrong physaddr "
"at %p (offset 0x%" PRIx64 ": 0x%" PRIx64
" (expected 0x%" PRIx64 ")\n",
page_addr, offset, physaddr, expected_physaddr);
return -1;
}
}
page_idx++;
}
/* zero out the rest */
memset(&hugepg_tbl[page_idx], 0, (hpi->num_pages[0] - page_idx) * sizeof(struct hugepage_file));
return page_idx;
}
#else/* RTE_EAL_SINGLE_FILE_SEGMENTS=n */
/* Unmap all hugepages from original mapping */
static int
unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
@ -681,7 +505,6 @@ unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info
}
return 0;
}
#endif /* RTE_EAL_SINGLE_FILE_SEGMENTS */
/*
* Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
@ -875,12 +698,6 @@ unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
for (page = 0; page < nrpages; page++) {
struct hugepage_file *hp = &hugepg_tbl[page];
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
/* if this page was already cleared */
if (hp->final_va == NULL)
continue;
#endif
/* find a page that matches the criteria */
if ((hp->size == hpi[size].hugepage_sz) &&
(hp->socket_id == (int) socket)) {
@ -889,11 +706,7 @@ unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
if (pages_found == hpi[size].num_pages[socket]) {
uint64_t unmap_len;
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
unmap_len = hp->size * hp->repeated;
#else
unmap_len = hp->size;
#endif
/* get start addr and len of the remaining segment */
munmap(hp->final_va, (size_t) unmap_len);
@ -904,50 +717,10 @@ unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
__func__, hp->filepath, strerror(errno));
return -1;
}
}
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
/* else, check how much do we need to map */
else {
int nr_pg_left =
hpi[size].num_pages[socket] - pages_found;
/* if we need enough memory to fit into the segment */
if (hp->repeated <= nr_pg_left) {
pages_found += hp->repeated;
}
/* truncate the segment */
else {
uint64_t final_size = nr_pg_left * hp->size;
uint64_t seg_size = hp->repeated * hp->size;
void * unmap_va = RTE_PTR_ADD(hp->final_va,
final_size);
int fd;
munmap(unmap_va, seg_size - final_size);
fd = open(hp->filepath, O_RDWR);
if (fd < 0) {
RTE_LOG(ERR, EAL, "Cannot open %s: %s\n",
hp->filepath, strerror(errno));
return -1;
}
if (ftruncate(fd, final_size) < 0) {
RTE_LOG(ERR, EAL, "Cannot truncate %s: %s\n",
hp->filepath, strerror(errno));
return -1;
}
close(fd);
pages_found += nr_pg_left;
hp->repeated = nr_pg_left;
}
}
#else
/* else, lock the page and skip */
else
} else {
/* lock the page and skip */
pages_found++;
#endif
}
} /* match page */
} /* foreach page */
@ -1177,9 +950,6 @@ rte_eal_hugepage_init(void)
int i, j, new_memseg;
int nr_hugefiles, nr_hugepages = 0;
void *addr;
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
int new_pages_count[MAX_HUGEPAGE_SIZES];
#endif
test_proc_pagemap_readable();
@ -1260,13 +1030,6 @@ rte_eal_hugepage_init(void)
pages_old = hpi->num_pages[0];
pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi, 1);
if (pages_new < pages_old) {
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
RTE_LOG(ERR, EAL,
"%d not %d hugepages of size %u MB allocated\n",
pages_new, pages_old,
(unsigned)(hpi->hugepage_sz / 0x100000));
goto fail;
#else
RTE_LOG(DEBUG, EAL,
"%d not %d hugepages of size %u MB allocated\n",
pages_new, pages_old,
@ -1278,7 +1041,6 @@ rte_eal_hugepage_init(void)
hpi->num_pages[0] = pages_new;
if (pages_new == 0)
continue;
#endif
}
/* find physical addresses and sockets for each hugepage */
@ -1297,18 +1059,6 @@ rte_eal_hugepage_init(void)
qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
sizeof(struct hugepage_file), cmp_physaddr);
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
/* remap all hugepages into single file segments */
new_pages_count[i] = remap_all_hugepages(&tmp_hp[hp_offset], hpi);
if (new_pages_count[i] < 0){
RTE_LOG(DEBUG, EAL, "Failed to remap %u MB pages\n",
(unsigned)(hpi->hugepage_sz / 0x100000));
goto fail;
}
/* we have processed a num of hugepages of this size, so inc offset */
hp_offset += new_pages_count[i];
#else
/* remap all hugepages */
if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 0) !=
hpi->num_pages[0]) {
@ -1323,7 +1073,6 @@ rte_eal_hugepage_init(void)
/* we have processed a num of hugepages of this size, so inc offset */
hp_offset += hpi->num_pages[0];
#endif
}
huge_recover_sigbus();
@ -1331,14 +1080,7 @@ rte_eal_hugepage_init(void)
if (internal_config.memory == 0 && internal_config.force_sockets == 0)
internal_config.memory = eal_get_hugepage_mem_size();
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
nr_hugefiles = 0;
for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
nr_hugefiles += new_pages_count[i];
}
#else
nr_hugefiles = nr_hugepages;
#endif
/* clean out the numbers of pages */
@ -1356,12 +1098,7 @@ rte_eal_hugepage_init(void)
for (j = 0; j < nb_hpsizes; j++) {
if (tmp_hp[i].size ==
internal_config.hugepage_info[j].hugepage_sz) {
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
internal_config.hugepage_info[j].num_pages[socket] +=
tmp_hp[i].repeated;
#else
internal_config.hugepage_info[j].num_pages[socket]++;
#endif
}
}
}
@ -1475,11 +1212,7 @@ rte_eal_hugepage_init(void)
mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
mcfg->memseg[j].addr = hugepage[i].final_va;
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
mcfg->memseg[j].len = hugepage[i].size * hugepage[i].repeated;
#else
mcfg->memseg[j].len = hugepage[i].size;
#endif
mcfg->memseg[j].socket_id = hugepage[i].socket_id;
mcfg->memseg[j].hugepage_sz = hugepage[i].size;
}
@ -1646,11 +1379,7 @@ rte_eal_hugepage_attach(void)
hp[i].filepath);
goto error;
}
#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
mapping_size = hp[i].size * hp[i].repeated;
#else
mapping_size = hp[i].size;
#endif
addr = mmap(RTE_PTR_ADD(base_addr, offset),
mapping_size, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);