baseband/acc100: add queue configuration

Adding function to create and configure queues for
the device. Still no capability.

Signed-off-by: Nicolas Chautru <nicolas.chautru@intel.com>
Reviewed-by: Rosen Xu <rosen.xu@intel.com>
Acked-by: Liu Tianjiao <tianjiao.liu@intel.com>
Acked-by: Maxime Coquelin <maxime.coquelin@redhat.com>
This commit is contained in:
Nicolas Chautru 2020-10-05 15:12:43 -07:00 committed by Akhil Goyal
parent 9200ffa5cd
commit 060e767293
2 changed files with 489 additions and 3 deletions

View File

@ -26,6 +26,22 @@ RTE_LOG_REGISTER(acc100_logtype, pmd.bb.acc100, DEBUG);
RTE_LOG_REGISTER(acc100_logtype, pmd.bb.acc100, NOTICE);
#endif
/* Write to MMIO register address */
static inline void
mmio_write(void *addr, uint32_t value)
{
*((volatile uint32_t *)(addr)) = rte_cpu_to_le_32(value);
}
/* Write a register of a ACC100 device */
static inline void
acc100_reg_write(struct acc100_device *d, uint32_t offset, uint32_t payload)
{
void *reg_addr = RTE_PTR_ADD(d->mmio_base, offset);
mmio_write(reg_addr, payload);
usleep(ACC100_LONG_WAIT);
}
/* Read a register of a ACC100 device */
static inline uint32_t
acc100_reg_read(struct acc100_device *d, uint32_t offset)
@ -36,6 +52,22 @@ acc100_reg_read(struct acc100_device *d, uint32_t offset)
return rte_le_to_cpu_32(ret);
}
/* Basic Implementation of Log2 for exact 2^N */
static inline uint32_t
log2_basic(uint32_t value)
{
return (value == 0) ? 0 : rte_bsf32(value);
}
/* Calculate memory alignment offset assuming alignment is 2^N */
static inline uint32_t
calc_mem_alignment_offset(void *unaligned_virt_mem, uint32_t alignment)
{
rte_iova_t unaligned_phy_mem = rte_malloc_virt2iova(unaligned_virt_mem);
return (uint32_t)(alignment -
(unaligned_phy_mem & (alignment-1)));
}
/* Calculate the offset of the enqueue register */
static inline uint32_t
queue_offset(bool pf_device, uint8_t vf_id, uint8_t qgrp_id, uint16_t aq_id)
@ -208,10 +240,416 @@ fetch_acc100_config(struct rte_bbdev *dev)
acc100_conf->q_dl_5g.aq_depth_log2);
}
/* Free 64MB memory used for software rings */
static int
acc100_dev_close(struct rte_bbdev *dev __rte_unused)
static void
free_base_addresses(void **base_addrs, int size)
{
int i;
for (i = 0; i < size; i++)
rte_free(base_addrs[i]);
}
static inline uint32_t
get_desc_len(void)
{
return sizeof(union acc100_dma_desc);
}
/* Allocate the 2 * 64MB block for the sw rings */
static int
alloc_2x64mb_sw_rings_mem(struct rte_bbdev *dev, struct acc100_device *d,
int socket)
{
uint32_t sw_ring_size = ACC100_SIZE_64MBYTE;
d->sw_rings_base = rte_zmalloc_socket(dev->device->driver->name,
2 * sw_ring_size, RTE_CACHE_LINE_SIZE, socket);
if (d->sw_rings_base == NULL) {
rte_bbdev_log(ERR, "Failed to allocate memory for %s:%u",
dev->device->driver->name,
dev->data->dev_id);
return -ENOMEM;
}
uint32_t next_64mb_align_offset = calc_mem_alignment_offset(
d->sw_rings_base, ACC100_SIZE_64MBYTE);
d->sw_rings = RTE_PTR_ADD(d->sw_rings_base, next_64mb_align_offset);
d->sw_rings_iova = rte_malloc_virt2iova(d->sw_rings_base) +
next_64mb_align_offset;
d->sw_ring_size = ACC100_MAX_QUEUE_DEPTH * get_desc_len();
d->sw_ring_max_depth = ACC100_MAX_QUEUE_DEPTH;
return 0;
}
/* Attempt to allocate minimised memory space for sw rings */
static void
alloc_sw_rings_min_mem(struct rte_bbdev *dev, struct acc100_device *d,
uint16_t num_queues, int socket)
{
rte_iova_t sw_rings_base_iova, next_64mb_align_addr_iova;
uint32_t next_64mb_align_offset;
rte_iova_t sw_ring_iova_end_addr;
void *base_addrs[ACC100_SW_RING_MEM_ALLOC_ATTEMPTS];
void *sw_rings_base;
int i = 0;
uint32_t q_sw_ring_size = ACC100_MAX_QUEUE_DEPTH * get_desc_len();
uint32_t dev_sw_ring_size = q_sw_ring_size * num_queues;
/* Find an aligned block of memory to store sw rings */
while (i < ACC100_SW_RING_MEM_ALLOC_ATTEMPTS) {
/*
* sw_ring allocated memory is guaranteed to be aligned to
* q_sw_ring_size at the condition that the requested size is
* less than the page size
*/
sw_rings_base = rte_zmalloc_socket(
dev->device->driver->name,
dev_sw_ring_size, q_sw_ring_size, socket);
if (sw_rings_base == NULL) {
rte_bbdev_log(ERR,
"Failed to allocate memory for %s:%u",
dev->device->driver->name,
dev->data->dev_id);
break;
}
sw_rings_base_iova = rte_malloc_virt2iova(sw_rings_base);
next_64mb_align_offset = calc_mem_alignment_offset(
sw_rings_base, ACC100_SIZE_64MBYTE);
next_64mb_align_addr_iova = sw_rings_base_iova +
next_64mb_align_offset;
sw_ring_iova_end_addr = sw_rings_base_iova + dev_sw_ring_size;
/* Check if the end of the sw ring memory block is before the
* start of next 64MB aligned mem address
*/
if (sw_ring_iova_end_addr < next_64mb_align_addr_iova) {
d->sw_rings_iova = sw_rings_base_iova;
d->sw_rings = sw_rings_base;
d->sw_rings_base = sw_rings_base;
d->sw_ring_size = q_sw_ring_size;
d->sw_ring_max_depth = ACC100_MAX_QUEUE_DEPTH;
break;
}
/* Store the address of the unaligned mem block */
base_addrs[i] = sw_rings_base;
i++;
}
/* Free all unaligned blocks of mem allocated in the loop */
free_base_addresses(base_addrs, i);
}
/* Allocate 64MB memory used for all software rings */
static int
acc100_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
{
uint32_t phys_low, phys_high, payload;
struct acc100_device *d = dev->data->dev_private;
const struct acc100_registry_addr *reg_addr;
if (d->pf_device && !d->acc100_conf.pf_mode_en) {
rte_bbdev_log(NOTICE,
"%s has PF mode disabled. This PF can't be used.",
dev->data->name);
return -ENODEV;
}
alloc_sw_rings_min_mem(dev, d, num_queues, socket_id);
/* If minimal memory space approach failed, then allocate
* the 2 * 64MB block for the sw rings
*/
if (d->sw_rings == NULL)
alloc_2x64mb_sw_rings_mem(dev, d, socket_id);
if (d->sw_rings == NULL) {
rte_bbdev_log(NOTICE,
"Failure allocating sw_rings memory");
return -ENODEV;
}
/* Configure ACC100 with the base address for DMA descriptor rings
* Same descriptor rings used for UL and DL DMA Engines
* Note : Assuming only VF0 bundle is used for PF mode
*/
phys_high = (uint32_t)(d->sw_rings_iova >> 32);
phys_low = (uint32_t)(d->sw_rings_iova & ~(ACC100_SIZE_64MBYTE-1));
/* Choose correct registry addresses for the device type */
if (d->pf_device)
reg_addr = &pf_reg_addr;
else
reg_addr = &vf_reg_addr;
/* Read the populated cfg from ACC100 registers */
fetch_acc100_config(dev);
/* Release AXI from PF */
if (d->pf_device)
acc100_reg_write(d, HWPfDmaAxiControl, 1);
acc100_reg_write(d, reg_addr->dma_ring_ul5g_hi, phys_high);
acc100_reg_write(d, reg_addr->dma_ring_ul5g_lo, phys_low);
acc100_reg_write(d, reg_addr->dma_ring_dl5g_hi, phys_high);
acc100_reg_write(d, reg_addr->dma_ring_dl5g_lo, phys_low);
acc100_reg_write(d, reg_addr->dma_ring_ul4g_hi, phys_high);
acc100_reg_write(d, reg_addr->dma_ring_ul4g_lo, phys_low);
acc100_reg_write(d, reg_addr->dma_ring_dl4g_hi, phys_high);
acc100_reg_write(d, reg_addr->dma_ring_dl4g_lo, phys_low);
/*
* Configure Ring Size to the max queue ring size
* (used for wrapping purpose)
*/
payload = log2_basic(d->sw_ring_size / 64);
acc100_reg_write(d, reg_addr->ring_size, payload);
/* Configure tail pointer for use when SDONE enabled */
d->tail_ptrs = rte_zmalloc_socket(
dev->device->driver->name,
ACC100_NUM_QGRPS * ACC100_NUM_AQS * sizeof(uint32_t),
RTE_CACHE_LINE_SIZE, socket_id);
if (d->tail_ptrs == NULL) {
rte_bbdev_log(ERR, "Failed to allocate tail ptr for %s:%u",
dev->device->driver->name,
dev->data->dev_id);
rte_free(d->sw_rings);
return -ENOMEM;
}
d->tail_ptr_iova = rte_malloc_virt2iova(d->tail_ptrs);
phys_high = (uint32_t)(d->tail_ptr_iova >> 32);
phys_low = (uint32_t)(d->tail_ptr_iova);
acc100_reg_write(d, reg_addr->tail_ptrs_ul5g_hi, phys_high);
acc100_reg_write(d, reg_addr->tail_ptrs_ul5g_lo, phys_low);
acc100_reg_write(d, reg_addr->tail_ptrs_dl5g_hi, phys_high);
acc100_reg_write(d, reg_addr->tail_ptrs_dl5g_lo, phys_low);
acc100_reg_write(d, reg_addr->tail_ptrs_ul4g_hi, phys_high);
acc100_reg_write(d, reg_addr->tail_ptrs_ul4g_lo, phys_low);
acc100_reg_write(d, reg_addr->tail_ptrs_dl4g_hi, phys_high);
acc100_reg_write(d, reg_addr->tail_ptrs_dl4g_lo, phys_low);
d->harq_layout = rte_zmalloc_socket("HARQ Layout",
ACC100_HARQ_LAYOUT * sizeof(*d->harq_layout),
RTE_CACHE_LINE_SIZE, dev->data->socket_id);
if (d->harq_layout == NULL) {
rte_bbdev_log(ERR, "Failed to allocate harq_layout for %s:%u",
dev->device->driver->name,
dev->data->dev_id);
rte_free(d->sw_rings);
return -ENOMEM;
}
/* Mark as configured properly */
d->configured = true;
rte_bbdev_log_debug(
"ACC100 (%s) configured sw_rings = %p, sw_rings_iova = %#"
PRIx64, dev->data->name, d->sw_rings, d->sw_rings_iova);
return 0;
}
/* Free memory used for software rings */
static int
acc100_dev_close(struct rte_bbdev *dev)
{
struct acc100_device *d = dev->data->dev_private;
if (d->sw_rings_base != NULL) {
rte_free(d->tail_ptrs);
rte_free(d->sw_rings_base);
d->sw_rings_base = NULL;
}
/* Ensure all in flight HW transactions are completed */
usleep(ACC100_LONG_WAIT);
return 0;
}
/**
* Report a ACC100 queue index which is free
* Return 0 to 16k for a valid queue_idx or -1 when no queue is available
* Note : Only supporting VF0 Bundle for PF mode
*/
static int
acc100_find_free_queue_idx(struct rte_bbdev *dev,
const struct rte_bbdev_queue_conf *conf)
{
struct acc100_device *d = dev->data->dev_private;
int op_2_acc[5] = {0, UL_4G, DL_4G, UL_5G, DL_5G};
int acc = op_2_acc[conf->op_type];
struct rte_acc100_queue_topology *qtop = NULL;
qtopFromAcc(&qtop, acc, &(d->acc100_conf));
if (qtop == NULL)
return -1;
/* Identify matching QGroup Index which are sorted in priority order */
uint16_t group_idx = qtop->first_qgroup_index;
group_idx += conf->priority;
if (group_idx >= ACC100_NUM_QGRPS ||
conf->priority >= qtop->num_qgroups) {
rte_bbdev_log(INFO, "Invalid Priority on %s, priority %u",
dev->data->name, conf->priority);
return -1;
}
/* Find a free AQ_idx */
uint16_t aq_idx;
for (aq_idx = 0; aq_idx < qtop->num_aqs_per_groups; aq_idx++) {
if (((d->q_assigned_bit_map[group_idx] >> aq_idx) & 0x1) == 0) {
/* Mark the Queue as assigned */
d->q_assigned_bit_map[group_idx] |= (1 << aq_idx);
/* Report the AQ Index */
return (group_idx << ACC100_GRP_ID_SHIFT) + aq_idx;
}
}
rte_bbdev_log(INFO, "Failed to find free queue on %s, priority %u",
dev->data->name, conf->priority);
return -1;
}
/* Setup ACC100 queue */
static int
acc100_queue_setup(struct rte_bbdev *dev, uint16_t queue_id,
const struct rte_bbdev_queue_conf *conf)
{
struct acc100_device *d = dev->data->dev_private;
struct acc100_queue *q;
int16_t q_idx;
/* Allocate the queue data structure. */
q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q),
RTE_CACHE_LINE_SIZE, conf->socket);
if (q == NULL) {
rte_bbdev_log(ERR, "Failed to allocate queue memory");
return -ENOMEM;
}
if (d == NULL) {
rte_bbdev_log(ERR, "Undefined device");
return -ENODEV;
}
q->d = d;
q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * queue_id));
q->ring_addr_iova = d->sw_rings_iova + (d->sw_ring_size * queue_id);
/* Prepare the Ring with default descriptor format */
union acc100_dma_desc *desc = NULL;
unsigned int desc_idx, b_idx;
int fcw_len = (conf->op_type == RTE_BBDEV_OP_LDPC_ENC ?
ACC100_FCW_LE_BLEN : (conf->op_type == RTE_BBDEV_OP_TURBO_DEC ?
ACC100_FCW_TD_BLEN : ACC100_FCW_LD_BLEN));
for (desc_idx = 0; desc_idx < d->sw_ring_max_depth; desc_idx++) {
desc = q->ring_addr + desc_idx;
desc->req.word0 = ACC100_DMA_DESC_TYPE;
desc->req.word1 = 0; /**< Timestamp */
desc->req.word2 = 0;
desc->req.word3 = 0;
uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
desc->req.data_ptrs[0].blen = fcw_len;
desc->req.data_ptrs[0].blkid = ACC100_DMA_BLKID_FCW;
desc->req.data_ptrs[0].last = 0;
desc->req.data_ptrs[0].dma_ext = 0;
for (b_idx = 1; b_idx < ACC100_DMA_MAX_NUM_POINTERS - 1;
b_idx++) {
desc->req.data_ptrs[b_idx].blkid = ACC100_DMA_BLKID_IN;
desc->req.data_ptrs[b_idx].last = 1;
desc->req.data_ptrs[b_idx].dma_ext = 0;
b_idx++;
desc->req.data_ptrs[b_idx].blkid =
ACC100_DMA_BLKID_OUT_ENC;
desc->req.data_ptrs[b_idx].last = 1;
desc->req.data_ptrs[b_idx].dma_ext = 0;
}
/* Preset some fields of LDPC FCW */
desc->req.fcw_ld.FCWversion = ACC100_FCW_VER;
desc->req.fcw_ld.gain_i = 1;
desc->req.fcw_ld.gain_h = 1;
}
q->lb_in = rte_zmalloc_socket(dev->device->driver->name,
RTE_CACHE_LINE_SIZE,
RTE_CACHE_LINE_SIZE, conf->socket);
if (q->lb_in == NULL) {
rte_bbdev_log(ERR, "Failed to allocate lb_in memory");
rte_free(q);
return -ENOMEM;
}
q->lb_in_addr_iova = rte_malloc_virt2iova(q->lb_in);
q->lb_out = rte_zmalloc_socket(dev->device->driver->name,
RTE_CACHE_LINE_SIZE,
RTE_CACHE_LINE_SIZE, conf->socket);
if (q->lb_out == NULL) {
rte_bbdev_log(ERR, "Failed to allocate lb_out memory");
rte_free(q->lb_in);
rte_free(q);
return -ENOMEM;
}
q->lb_out_addr_iova = rte_malloc_virt2iova(q->lb_out);
/*
* Software queue ring wraps synchronously with the HW when it reaches
* the boundary of the maximum allocated queue size, no matter what the
* sw queue size is. This wrapping is guarded by setting the wrap_mask
* to represent the maximum queue size as allocated at the time when
* the device has been setup (in configure()).
*
* The queue depth is set to the queue size value (conf->queue_size).
* This limits the occupancy of the queue at any point of time, so that
* the queue does not get swamped with enqueue requests.
*/
q->sw_ring_depth = conf->queue_size;
q->sw_ring_wrap_mask = d->sw_ring_max_depth - 1;
q->op_type = conf->op_type;
q_idx = acc100_find_free_queue_idx(dev, conf);
if (q_idx == -1) {
rte_free(q->lb_in);
rte_free(q->lb_out);
rte_free(q);
return -1;
}
q->qgrp_id = (q_idx >> ACC100_GRP_ID_SHIFT) & 0xF;
q->vf_id = (q_idx >> ACC100_VF_ID_SHIFT) & 0x3F;
q->aq_id = q_idx & 0xF;
q->aq_depth = (conf->op_type == RTE_BBDEV_OP_TURBO_DEC) ?
(1 << d->acc100_conf.q_ul_4g.aq_depth_log2) :
(1 << d->acc100_conf.q_dl_4g.aq_depth_log2);
q->mmio_reg_enqueue = RTE_PTR_ADD(d->mmio_base,
queue_offset(d->pf_device,
q->vf_id, q->qgrp_id, q->aq_id));
rte_bbdev_log_debug(
"Setup dev%u q%u: qgrp_id=%u, vf_id=%u, aq_id=%u, aq_depth=%u, mmio_reg_enqueue=%p",
dev->data->dev_id, queue_id, q->qgrp_id, q->vf_id,
q->aq_id, q->aq_depth, q->mmio_reg_enqueue);
dev->data->queues[queue_id].queue_private = q;
return 0;
}
/* Release ACC100 queue */
static int
acc100_queue_release(struct rte_bbdev *dev, uint16_t q_id)
{
struct acc100_device *d = dev->data->dev_private;
struct acc100_queue *q = dev->data->queues[q_id].queue_private;
if (q != NULL) {
/* Mark the Queue as un-assigned */
d->q_assigned_bit_map[q->qgrp_id] &= (0xFFFFFFFF -
(1 << q->aq_id));
rte_free(q->lb_in);
rte_free(q->lb_out);
rte_free(q);
dev->data->queues[q_id].queue_private = NULL;
}
return 0;
}
@ -262,8 +700,11 @@ acc100_dev_info_get(struct rte_bbdev *dev,
}
static const struct rte_bbdev_ops acc100_bbdev_ops = {
.setup_queues = acc100_setup_queues,
.close = acc100_dev_close,
.info_get = acc100_dev_info_get,
.queue_setup = acc100_queue_setup,
.queue_release = acc100_queue_release,
};
/* ACC100 PCI PF address map */

View File

@ -522,11 +522,56 @@ static const struct acc100_registry_addr vf_reg_addr = {
.ddr_range = HWVfDmaDdrBaseRangeRoVf,
};
/* Structure associated with each queue. */
struct __rte_cache_aligned acc100_queue {
union acc100_dma_desc *ring_addr; /* Virtual address of sw ring */
rte_iova_t ring_addr_iova; /* IOVA address of software ring */
uint32_t sw_ring_head; /* software ring head */
uint32_t sw_ring_tail; /* software ring tail */
/* software ring size (descriptors, not bytes) */
uint32_t sw_ring_depth;
/* mask used to wrap enqueued descriptors on the sw ring */
uint32_t sw_ring_wrap_mask;
/* MMIO register used to enqueue descriptors */
void *mmio_reg_enqueue;
uint8_t vf_id; /* VF ID (max = 63) */
uint8_t qgrp_id; /* Queue Group ID */
uint16_t aq_id; /* Atomic Queue ID */
uint16_t aq_depth; /* Depth of atomic queue */
uint32_t aq_enqueued; /* Count how many "batches" have been enqueued */
uint32_t aq_dequeued; /* Count how many "batches" have been dequeued */
uint32_t irq_enable; /* Enable ops dequeue interrupts if set to 1 */
struct rte_mempool *fcw_mempool; /* FCW mempool */
enum rte_bbdev_op_type op_type; /* Type of this Queue: TE or TD */
/* Internal Buffers for loopback input */
uint8_t *lb_in;
uint8_t *lb_out;
rte_iova_t lb_in_addr_iova;
rte_iova_t lb_out_addr_iova;
struct acc100_device *d;
};
/* Private data structure for each ACC100 device */
struct acc100_device {
void *mmio_base; /**< Base address of MMIO registers (BAR0) */
void *sw_rings_base; /* Base addr of un-aligned memory for sw rings */
void *sw_rings; /* 64MBs of 64MB aligned memory for sw rings */
rte_iova_t sw_rings_iova; /* IOVA address of sw_rings */
/* Virtual address of the info memory routed to the this function under
* operation, whether it is PF or VF.
*/
union acc100_harq_layout_data *harq_layout;
uint32_t sw_ring_size;
uint32_t ddr_size; /* Size in kB */
uint32_t *tail_ptrs; /* Base address of response tail pointer buffer */
rte_iova_t tail_ptr_iova; /* IOVA address of tail pointers */
/* Max number of entries available for each queue in device, depending
* on how many queues are enabled with configure()
*/
uint32_t sw_ring_max_depth;
struct rte_acc100_conf acc100_conf; /* ACC100 Initial configuration */
/* Bitmap capturing which Queues have already been assigned */
uint16_t q_assigned_bit_map[ACC100_NUM_QGRPS];
bool pf_device; /**< True if this is a PF ACC100 device */
bool configured; /**< True if this ACC100 device is configured */
};