acl: fix build and runtime for default target

Make ACL library to build/work on 'default' architecture:
- make rte_acl_classify_scalar really scalar
 (make sure it wouldn't use sse4 instrincts through resolve_priority()).
- Provide two versions of rte_acl_classify code path:
  rte_acl_classify_sse() - could be build and used only on systems with sse4.2
  and upper, return -ENOTSUP on lower arch.
  rte_acl_classify_scalar() - a slower version, but could be build and used
  on all systems.
- Addition of a new function rte_acl_classify_alg.  This function lets you
  specify an enum value to override the acl contexts default algorithm when doing
  a classification.  This allows an application to specify a classification
  algorithm without needing to publicize each method. I know there was concern
  over keeping those methods public, but we don't have a static ABI at the moment,
  so this seems to me a reasonable thing to do, as it gives us less of an ABI
  surface to worry about.
- keep common code shared between these two codepaths.

Signed-off-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
This commit is contained in:
Konstantin Ananyev 2014-09-01 16:28:44 +01:00 committed by Thomas Monjalon
parent 8fd8bebc05
commit 074f54ad03
11 changed files with 660 additions and 410 deletions

View File

@ -772,6 +772,15 @@ acx_init(void)
if (config.acx == NULL)
rte_exit(rte_errno, "failed to create ACL context\n");
/* set default classify method to scalar for this context. */
if (config.scalar) {
ret = rte_acl_set_ctx_classify(config.acx,
RTE_ACL_CLASSIFY_SCALAR);
if (ret != 0)
rte_exit(ret, "failed to setup classify method "
"for ACL context\n");
}
/* add ACL rules. */
f = fopen(config.rule_file, "r");
if (f == NULL)
@ -780,7 +789,7 @@ acx_init(void)
ret = add_cb_rules(f, config.acx);
if (ret != 0)
rte_exit(rte_errno, "failed to add rules into ACL context\n");
rte_exit(ret, "failed to add rules into ACL context\n");
fclose(f);
@ -815,13 +824,8 @@ search_ip5tuples_once(uint32_t categories, uint32_t step, int scalar)
v += config.trace_sz;
}
if (scalar != 0)
ret = rte_acl_classify_scalar(config.acx, data,
results, n, categories);
else
ret = rte_acl_classify(config.acx, data,
results, n, categories);
ret = rte_acl_classify(config.acx, data, results,
n, categories);
if (ret != 0)
rte_exit(ret, "classify for ipv%c_5tuples returns %d\n",

View File

@ -146,8 +146,9 @@ test_classify_run(struct rte_acl_ctx *acx)
}
/* make a quick check for scalar */
ret = rte_acl_classify_scalar(acx, data, results,
RTE_DIM(acl_test_data), RTE_ACL_MAX_CATEGORIES);
ret = rte_acl_classify_alg(acx, data, results,
RTE_DIM(acl_test_data), RTE_ACL_MAX_CATEGORIES,
RTE_ACL_CLASSIFY_SCALAR);
if (ret != 0) {
printf("Line %i: SSE classify failed!\n", __LINE__);
goto err;
@ -341,8 +342,8 @@ test_invalid_layout(void)
}
/* classify tuples */
ret = rte_acl_classify(acx, data, results,
RTE_DIM(results), 1);
ret = rte_acl_classify_alg(acx, data, results,
RTE_DIM(results), 1, RTE_ACL_CLASSIFY_SCALAR);
if (ret != 0) {
printf("Line %i: SSE classify failed!\n", __LINE__);
rte_acl_free(acx);
@ -360,8 +361,9 @@ test_invalid_layout(void)
}
/* classify tuples (scalar) */
ret = rte_acl_classify_scalar(acx, data, results,
RTE_DIM(results), 1);
ret = rte_acl_classify_alg(acx, data, results, RTE_DIM(results), 1,
RTE_ACL_CLASSIFY_SCALAR);
if (ret != 0) {
printf("Line %i: Scalar classify failed!\n", __LINE__);
rte_acl_free(acx);
@ -848,7 +850,8 @@ test_invalid_parameters(void)
/* scalar classify test */
/* cover zero categories in classify (should not fail) */
result = rte_acl_classify_scalar(acx, NULL, NULL, 0, 0);
result = rte_acl_classify_alg(acx, NULL, NULL, 0, 0,
RTE_ACL_CLASSIFY_SCALAR);
if (result != 0) {
printf("Line %i: Scalar classify with zero categories "
"failed!\n", __LINE__);
@ -857,7 +860,7 @@ test_invalid_parameters(void)
}
/* cover invalid but positive categories in classify */
result = rte_acl_classify_scalar(acx, NULL, NULL, 0, 3);
result = rte_acl_classify(acx, NULL, NULL, 0, 3);
if (result == 0) {
printf("Line %i: Scalar classify with 3 categories "
"should have failed!\n", __LINE__);

View File

@ -278,15 +278,6 @@ send_single_packet(struct rte_mbuf *m, uint8_t port);
(in) = end + 1; \
} while (0)
#define CLASSIFY(context, data, res, num, cat) do { \
if (scalar) \
rte_acl_classify_scalar((context), (data), \
(res), (num), (cat)); \
else \
rte_acl_classify((context), (data), \
(res), (num), (cat)); \
} while (0)
/*
* ACL rules should have higher priorities than route ones to ensure ACL rule
* always be found when input packets have multi-matches in the database.
@ -1216,6 +1207,11 @@ setup_acl(struct rte_acl_rule *route_base,
if ((context = rte_acl_create(&acl_param)) == NULL)
rte_exit(EXIT_FAILURE, "Failed to create ACL context\n");
if (parm_config.scalar && rte_acl_set_ctx_classify(context,
RTE_ACL_CLASSIFY_SCALAR) != 0)
rte_exit(EXIT_FAILURE,
"Failed to setup classify method for ACL context\n");
if (rte_acl_add_rules(context, route_base, route_num) < 0)
rte_exit(EXIT_FAILURE, "add rules failed\n");
@ -1436,10 +1432,8 @@ main_loop(__attribute__((unused)) void *dummy)
int socketid;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1)
/ US_PER_S * BURST_TX_DRAIN_US;
int scalar = parm_config.scalar;
prev_tsc = 0;
lcore_id = rte_lcore_id();
qconf = &lcore_conf[lcore_id];
socketid = rte_lcore_to_socket_id(lcore_id);
@ -1503,7 +1497,8 @@ main_loop(__attribute__((unused)) void *dummy)
nb_rx);
if (acl_search.num_ipv4) {
CLASSIFY(acl_config.acx_ipv4[socketid],
rte_acl_classify(
acl_config.acx_ipv4[socketid],
acl_search.data_ipv4,
acl_search.res_ipv4,
acl_search.num_ipv4,
@ -1515,7 +1510,8 @@ main_loop(__attribute__((unused)) void *dummy)
}
if (acl_search.num_ipv6) {
CLASSIFY(acl_config.acx_ipv6[socketid],
rte_acl_classify(
acl_config.acx_ipv6[socketid],
acl_search.data_ipv6,
acl_search.res_ipv6,
acl_search.num_ipv6,

View File

@ -43,7 +43,10 @@ SRCS-$(CONFIG_RTE_LIBRTE_ACL) += tb_mem.c
SRCS-$(CONFIG_RTE_LIBRTE_ACL) += rte_acl.c
SRCS-$(CONFIG_RTE_LIBRTE_ACL) += acl_bld.c
SRCS-$(CONFIG_RTE_LIBRTE_ACL) += acl_gen.c
SRCS-$(CONFIG_RTE_LIBRTE_ACL) += acl_run.c
SRCS-$(CONFIG_RTE_LIBRTE_ACL) += acl_run_scalar.c
SRCS-$(CONFIG_RTE_LIBRTE_ACL) += acl_run_sse.c
CFLAGS_acl_run_sse.o += -msse4.1
# install this header file
SYMLINK-$(CONFIG_RTE_LIBRTE_ACL)-include := rte_acl_osdep.h

View File

@ -153,6 +153,7 @@ struct rte_acl_ctx {
/** Name of the ACL context. */
int32_t socket_id;
/** Socket ID to allocate memory from. */
enum rte_acl_classify_alg alg;
void *rules;
uint32_t max_rules;
uint32_t rule_sz;
@ -174,6 +175,20 @@ int rte_acl_gen(struct rte_acl_ctx *ctx, struct rte_acl_trie *trie,
struct rte_acl_bld_trie *node_bld_trie, uint32_t num_tries,
uint32_t num_categories, uint32_t data_index_sz, int match_num);
typedef int (*rte_acl_classify_t)
(const struct rte_acl_ctx *, const uint8_t **, uint32_t *, uint32_t, uint32_t);
/*
* Different implementations of ACL classify.
*/
int
rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t num, uint32_t categories);
int
rte_acl_classify_sse(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t num, uint32_t categories);
#ifdef __cplusplus
}
#endif /* __cplusplus */

View File

@ -31,7 +31,6 @@
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <nmmintrin.h>
#include <rte_acl.h>
#include "tb_mem.h"
#include "acl.h"
@ -1480,8 +1479,8 @@ acl_calc_wildness(struct rte_acl_build_rule *head,
switch (rule->config->defs[n].type) {
case RTE_ACL_FIELD_TYPE_BITMASK:
wild = (size -
_mm_popcnt_u32(fld->mask_range.u8)) /
wild = (size - __builtin_popcount(
fld->mask_range.u8)) /
size;
break;

268
lib/librte_acl/acl_run.h Normal file
View File

@ -0,0 +1,268 @@
/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _ACL_RUN_H_
#define _ACL_RUN_H_
#include <rte_acl.h>
#include "acl_vect.h"
#include "acl.h"
#define MAX_SEARCHES_SSE8 8
#define MAX_SEARCHES_SSE4 4
#define MAX_SEARCHES_SSE2 2
#define MAX_SEARCHES_SCALAR 2
#define GET_NEXT_4BYTES(prm, idx) \
(*((const int32_t *)((prm)[(idx)].data + *(prm)[idx].data_index++)))
#define RTE_ACL_NODE_INDEX ((uint32_t)~RTE_ACL_NODE_TYPE)
#define SCALAR_QRANGE_MULT 0x01010101
#define SCALAR_QRANGE_MASK 0x7f7f7f7f
#define SCALAR_QRANGE_MIN 0x80808080
/*
* Structure to manage N parallel trie traversals.
* The runtime trie traversal routines can process 8, 4, or 2 tries
* in parallel. Each packet may require multiple trie traversals (up to 4).
* This structure is used to fill the slots (0 to n-1) for parallel processing
* with the trie traversals needed for each packet.
*/
struct acl_flow_data {
uint32_t num_packets;
/* number of packets processed */
uint32_t started;
/* number of trie traversals in progress */
uint32_t trie;
/* current trie index (0 to N-1) */
uint32_t cmplt_size;
uint32_t total_packets;
uint32_t categories;
/* number of result categories per packet. */
/* maximum number of packets to process */
const uint64_t *trans;
const uint8_t **data;
uint32_t *results;
struct completion *last_cmplt;
struct completion *cmplt_array;
};
/*
* Structure to maintain running results for
* a single packet (up to 4 tries).
*/
struct completion {
uint32_t *results; /* running results. */
int32_t priority[RTE_ACL_MAX_CATEGORIES]; /* running priorities. */
uint32_t count; /* num of remaining tries */
/* true for allocated struct */
} __attribute__((aligned(XMM_SIZE)));
/*
* One parms structure for each slot in the search engine.
*/
struct parms {
const uint8_t *data;
/* input data for this packet */
const uint32_t *data_index;
/* data indirection for this trie */
struct completion *cmplt;
/* completion data for this packet */
};
/*
* Define an global idle node for unused engine slots
*/
static const uint32_t idle[UINT8_MAX + 1];
/*
* Allocate a completion structure to manage the tries for a packet.
*/
static inline struct completion *
alloc_completion(struct completion *p, uint32_t size, uint32_t tries,
uint32_t *results)
{
uint32_t n;
for (n = 0; n < size; n++) {
if (p[n].count == 0) {
/* mark as allocated and set number of tries. */
p[n].count = tries;
p[n].results = results;
return &(p[n]);
}
}
/* should never get here */
return NULL;
}
/*
* Resolve priority for a single result trie.
*/
static inline void
resolve_single_priority(uint64_t transition, int n,
const struct rte_acl_ctx *ctx, struct parms *parms,
const struct rte_acl_match_results *p)
{
if (parms[n].cmplt->count == ctx->num_tries ||
parms[n].cmplt->priority[0] <=
p[transition].priority[0]) {
parms[n].cmplt->priority[0] = p[transition].priority[0];
parms[n].cmplt->results[0] = p[transition].results[0];
}
}
/*
* Routine to fill a slot in the parallel trie traversal array (parms) from
* the list of packets (flows).
*/
static inline uint64_t
acl_start_next_trie(struct acl_flow_data *flows, struct parms *parms, int n,
const struct rte_acl_ctx *ctx)
{
uint64_t transition;
/* if there are any more packets to process */
if (flows->num_packets < flows->total_packets) {
parms[n].data = flows->data[flows->num_packets];
parms[n].data_index = ctx->trie[flows->trie].data_index;
/* if this is the first trie for this packet */
if (flows->trie == 0) {
flows->last_cmplt = alloc_completion(flows->cmplt_array,
flows->cmplt_size, ctx->num_tries,
flows->results +
flows->num_packets * flows->categories);
}
/* set completion parameters and starting index for this slot */
parms[n].cmplt = flows->last_cmplt;
transition =
flows->trans[parms[n].data[*parms[n].data_index++] +
ctx->trie[flows->trie].root_index];
/*
* if this is the last trie for this packet,
* then setup next packet.
*/
flows->trie++;
if (flows->trie >= ctx->num_tries) {
flows->trie = 0;
flows->num_packets++;
}
/* keep track of number of active trie traversals */
flows->started++;
/* no more tries to process, set slot to an idle position */
} else {
transition = ctx->idle;
parms[n].data = (const uint8_t *)idle;
parms[n].data_index = idle;
}
return transition;
}
static inline void
acl_set_flow(struct acl_flow_data *flows, struct completion *cmplt,
uint32_t cmplt_size, const uint8_t **data, uint32_t *results,
uint32_t data_num, uint32_t categories, const uint64_t *trans)
{
flows->num_packets = 0;
flows->started = 0;
flows->trie = 0;
flows->last_cmplt = NULL;
flows->cmplt_array = cmplt;
flows->total_packets = data_num;
flows->categories = categories;
flows->cmplt_size = cmplt_size;
flows->data = data;
flows->results = results;
flows->trans = trans;
}
typedef void (*resolve_priority_t)
(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
struct parms *parms, const struct rte_acl_match_results *p,
uint32_t categories);
/*
* Detect matches. If a match node transition is found, then this trie
* traversal is complete and fill the slot with the next trie
* to be processed.
*/
static inline uint64_t
acl_match_check(uint64_t transition, int slot,
const struct rte_acl_ctx *ctx, struct parms *parms,
struct acl_flow_data *flows, resolve_priority_t resolve_priority)
{
const struct rte_acl_match_results *p;
p = (const struct rte_acl_match_results *)
(flows->trans + ctx->match_index);
if (transition & RTE_ACL_NODE_MATCH) {
/* Remove flags from index and decrement active traversals */
transition &= RTE_ACL_NODE_INDEX;
flows->started--;
/* Resolve priorities for this trie and running results */
if (flows->categories == 1)
resolve_single_priority(transition, slot, ctx,
parms, p);
else
resolve_priority(transition, slot, ctx, parms,
p, flows->categories);
/* Count down completed tries for this search request */
parms[slot].cmplt->count--;
/* Fill the slot with the next trie or idle trie */
transition = acl_start_next_trie(flows, parms, slot, ctx);
} else if (transition == ctx->idle) {
/* reset indirection table for idle slots */
parms[slot].data_index = idle;
}
return transition;
}
#endif /* _ACL_RUN_H_ */

View File

@ -0,0 +1,193 @@
/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "acl_run.h"
/*
* Resolve priority for multiple results (scalar version).
* This consists comparing the priority of the current traversal with the
* running set of results for the packet.
* For each result, keep a running array of the result (rule number) and
* its priority for each category.
*/
static inline void
resolve_priority_scalar(uint64_t transition, int n,
const struct rte_acl_ctx *ctx, struct parms *parms,
const struct rte_acl_match_results *p, uint32_t categories)
{
uint32_t i;
int32_t *saved_priority;
uint32_t *saved_results;
const int32_t *priority;
const uint32_t *results;
saved_results = parms[n].cmplt->results;
saved_priority = parms[n].cmplt->priority;
/* results and priorities for completed trie */
results = p[transition].results;
priority = p[transition].priority;
/* if this is not the first completed trie */
if (parms[n].cmplt->count != ctx->num_tries) {
for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
if (saved_priority[i] <= priority[i]) {
saved_priority[i] = priority[i];
saved_results[i] = results[i];
}
if (saved_priority[i + 1] <= priority[i + 1]) {
saved_priority[i + 1] = priority[i + 1];
saved_results[i + 1] = results[i + 1];
}
if (saved_priority[i + 2] <= priority[i + 2]) {
saved_priority[i + 2] = priority[i + 2];
saved_results[i + 2] = results[i + 2];
}
if (saved_priority[i + 3] <= priority[i + 3]) {
saved_priority[i + 3] = priority[i + 3];
saved_results[i + 3] = results[i + 3];
}
}
} else {
for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
saved_priority[i] = priority[i];
saved_priority[i + 1] = priority[i + 1];
saved_priority[i + 2] = priority[i + 2];
saved_priority[i + 3] = priority[i + 3];
saved_results[i] = results[i];
saved_results[i + 1] = results[i + 1];
saved_results[i + 2] = results[i + 2];
saved_results[i + 3] = results[i + 3];
}
}
}
/*
* When processing the transition, rather than using if/else
* construct, the offset is calculated for DFA and QRANGE and
* then conditionally added to the address based on node type.
* This is done to avoid branch mis-predictions. Since the
* offset is rather simple calculation it is more efficient
* to do the calculation and do a condition move rather than
* a conditional branch to determine which calculation to do.
*/
static inline uint32_t
scan_forward(uint32_t input, uint32_t max)
{
return (input == 0) ? max : rte_bsf32(input);
}
static inline uint64_t
scalar_transition(const uint64_t *trans_table, uint64_t transition,
uint8_t input)
{
uint32_t addr, index, ranges, x, a, b, c;
/* break transition into component parts */
ranges = transition >> (sizeof(index) * CHAR_BIT);
/* calc address for a QRANGE node */
c = input * SCALAR_QRANGE_MULT;
a = ranges | SCALAR_QRANGE_MIN;
index = transition & ~RTE_ACL_NODE_INDEX;
a -= (c & SCALAR_QRANGE_MASK);
b = c & SCALAR_QRANGE_MIN;
addr = transition ^ index;
a &= SCALAR_QRANGE_MIN;
a ^= (ranges ^ b) & (a ^ b);
x = scan_forward(a, 32) >> 3;
addr += (index == RTE_ACL_NODE_DFA) ? input : x;
/* pickup next transition */
transition = *(trans_table + addr);
return transition;
}
int
rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t num, uint32_t categories)
{
int n;
uint64_t transition0, transition1;
uint32_t input0, input1;
struct acl_flow_data flows;
uint64_t index_array[MAX_SEARCHES_SCALAR];
struct completion cmplt[MAX_SEARCHES_SCALAR];
struct parms parms[MAX_SEARCHES_SCALAR];
if (categories != 1 &&
((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
return -EINVAL;
acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, num,
categories, ctx->trans_table);
for (n = 0; n < MAX_SEARCHES_SCALAR; n++) {
cmplt[n].count = 0;
index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
}
transition0 = index_array[0];
transition1 = index_array[1];
while (flows.started > 0) {
input0 = GET_NEXT_4BYTES(parms, 0);
input1 = GET_NEXT_4BYTES(parms, 1);
for (n = 0; n < 4; n++) {
if (likely((transition0 & RTE_ACL_NODE_MATCH) == 0))
transition0 = scalar_transition(flows.trans,
transition0, (uint8_t)input0);
input0 >>= CHAR_BIT;
if (likely((transition1 & RTE_ACL_NODE_MATCH) == 0))
transition1 = scalar_transition(flows.trans,
transition1, (uint8_t)input1);
input1 >>= CHAR_BIT;
}
if ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
transition0 = acl_match_check(transition0,
0, ctx, parms, &flows, resolve_priority_scalar);
transition1 = acl_match_check(transition1,
1, ctx, parms, &flows, resolve_priority_scalar);
}
}
return 0;
}

View File

@ -31,24 +31,7 @@
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_acl.h>
#include "acl_vect.h"
#include "acl.h"
#define MAX_SEARCHES_SSE8 8
#define MAX_SEARCHES_SSE4 4
#define MAX_SEARCHES_SSE2 2
#define MAX_SEARCHES_SCALAR 2
#define GET_NEXT_4BYTES(prm, idx) \
(*((const int32_t *)((prm)[(idx)].data + *(prm)[idx].data_index++)))
#define RTE_ACL_NODE_INDEX ((uint32_t)~RTE_ACL_NODE_TYPE)
#define SCALAR_QRANGE_MULT 0x01010101
#define SCALAR_QRANGE_MASK 0x7f7f7f7f
#define SCALAR_QRANGE_MIN 0x80808080
#include "acl_run.h"
enum {
SHUFFLE32_SLOT1 = 0xe5,
@ -57,60 +40,6 @@ enum {
SHUFFLE32_SWAP64 = 0x4e,
};
/*
* Structure to manage N parallel trie traversals.
* The runtime trie traversal routines can process 8, 4, or 2 tries
* in parallel. Each packet may require multiple trie traversals (up to 4).
* This structure is used to fill the slots (0 to n-1) for parallel processing
* with the trie traversals needed for each packet.
*/
struct acl_flow_data {
uint32_t num_packets;
/* number of packets processed */
uint32_t started;
/* number of trie traversals in progress */
uint32_t trie;
/* current trie index (0 to N-1) */
uint32_t cmplt_size;
uint32_t total_packets;
uint32_t categories;
/* number of result categories per packet. */
/* maximum number of packets to process */
const uint64_t *trans;
const uint8_t **data;
uint32_t *results;
struct completion *last_cmplt;
struct completion *cmplt_array;
};
/*
* Structure to maintain running results for
* a single packet (up to 4 tries).
*/
struct completion {
uint32_t *results; /* running results. */
int32_t priority[RTE_ACL_MAX_CATEGORIES]; /* running priorities. */
uint32_t count; /* num of remaining tries */
/* true for allocated struct */
} __attribute__((aligned(XMM_SIZE)));
/*
* One parms structure for each slot in the search engine.
*/
struct parms {
const uint8_t *data;
/* input data for this packet */
const uint32_t *data_index;
/* data indirection for this trie */
struct completion *cmplt;
/* completion data for this packet */
};
/*
* Define an global idle node for unused engine slots
*/
static const uint32_t idle[UINT8_MAX + 1];
static const rte_xmm_t mm_type_quad_range = {
.u32 = {
RTE_ACL_NODE_QRANGE,
@ -185,57 +114,16 @@ static const rte_xmm_t mm_index_mask64 = {
},
};
/*
* Allocate a completion structure to manage the tries for a packet.
*/
static inline struct completion *
alloc_completion(struct completion *p, uint32_t size, uint32_t tries,
uint32_t *results)
{
uint32_t n;
for (n = 0; n < size; n++) {
if (p[n].count == 0) {
/* mark as allocated and set number of tries. */
p[n].count = tries;
p[n].results = results;
return &(p[n]);
}
}
/* should never get here */
return NULL;
}
/*
* Resolve priority for a single result trie.
* Resolve priority for multiple results (sse version).
* This consists comparing the priority of the current traversal with the
* running set of results for the packet.
* For each result, keep a running array of the result (rule number) and
* its priority for each category.
*/
static inline void
resolve_single_priority(uint64_t transition, int n,
const struct rte_acl_ctx *ctx, struct parms *parms,
const struct rte_acl_match_results *p)
{
if (parms[n].cmplt->count == ctx->num_tries ||
parms[n].cmplt->priority[0] <=
p[transition].priority[0]) {
parms[n].cmplt->priority[0] = p[transition].priority[0];
parms[n].cmplt->results[0] = p[transition].results[0];
}
parms[n].cmplt->count--;
}
/*
* Resolve priority for multiple results. This consists comparing
* the priority of the current traversal with the running set of
* results for the packet. For each result, keep a running array of
* the result (rule number) and its priority for each category.
*/
static inline void
resolve_priority(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
resolve_priority_sse(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
struct parms *parms, const struct rte_acl_match_results *p,
uint32_t categories)
{
@ -270,100 +158,6 @@ resolve_priority(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
MM_STOREU(saved_results, results);
MM_STOREU(saved_priority, priority);
}
/* Count down completed tries for this search request */
parms[n].cmplt->count--;
}
/*
* Routine to fill a slot in the parallel trie traversal array (parms) from
* the list of packets (flows).
*/
static inline uint64_t
acl_start_next_trie(struct acl_flow_data *flows, struct parms *parms, int n,
const struct rte_acl_ctx *ctx)
{
uint64_t transition;
/* if there are any more packets to process */
if (flows->num_packets < flows->total_packets) {
parms[n].data = flows->data[flows->num_packets];
parms[n].data_index = ctx->trie[flows->trie].data_index;
/* if this is the first trie for this packet */
if (flows->trie == 0) {
flows->last_cmplt = alloc_completion(flows->cmplt_array,
flows->cmplt_size, ctx->num_tries,
flows->results +
flows->num_packets * flows->categories);
}
/* set completion parameters and starting index for this slot */
parms[n].cmplt = flows->last_cmplt;
transition =
flows->trans[parms[n].data[*parms[n].data_index++] +
ctx->trie[flows->trie].root_index];
/*
* if this is the last trie for this packet,
* then setup next packet.
*/
flows->trie++;
if (flows->trie >= ctx->num_tries) {
flows->trie = 0;
flows->num_packets++;
}
/* keep track of number of active trie traversals */
flows->started++;
/* no more tries to process, set slot to an idle position */
} else {
transition = ctx->idle;
parms[n].data = (const uint8_t *)idle;
parms[n].data_index = idle;
}
return transition;
}
/*
* Detect matches. If a match node transition is found, then this trie
* traversal is complete and fill the slot with the next trie
* to be processed.
*/
static inline uint64_t
acl_match_check_transition(uint64_t transition, int slot,
const struct rte_acl_ctx *ctx, struct parms *parms,
struct acl_flow_data *flows)
{
const struct rte_acl_match_results *p;
p = (const struct rte_acl_match_results *)
(flows->trans + ctx->match_index);
if (transition & RTE_ACL_NODE_MATCH) {
/* Remove flags from index and decrement active traversals */
transition &= RTE_ACL_NODE_INDEX;
flows->started--;
/* Resolve priorities for this trie and running results */
if (flows->categories == 1)
resolve_single_priority(transition, slot, ctx,
parms, p);
else
resolve_priority(transition, slot, ctx, parms, p,
flows->categories);
/* Fill the slot with the next trie or idle trie */
transition = acl_start_next_trie(flows, parms, slot, ctx);
} else if (transition == ctx->idle) {
/* reset indirection table for idle slots */
parms[slot].data_index = idle;
}
return transition;
}
/*
@ -382,10 +176,10 @@ acl_process_matches(xmm_t *indicies, int slot, const struct rte_acl_ctx *ctx,
*indicies = MM_SHUFFLE32(*indicies, SHUFFLE32_SWAP64);
transition2 = MM_CVT64(*indicies);
transition1 = acl_match_check_transition(transition1, slot, ctx,
parms, flows);
transition2 = acl_match_check_transition(transition2, slot + 1, ctx,
parms, flows);
transition1 = acl_match_check(transition1, slot, ctx,
parms, flows, resolve_priority_sse);
transition2 = acl_match_check(transition2, slot + 1, ctx,
parms, flows, resolve_priority_sse);
/* update indicies with new transitions. */
*indicies = MM_SET64(transition2, transition1);
@ -551,28 +345,10 @@ transition4(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
return MM_SRL32(next_input, 8);
}
static inline void
acl_set_flow(struct acl_flow_data *flows, struct completion *cmplt,
uint32_t cmplt_size, const uint8_t **data, uint32_t *results,
uint32_t data_num, uint32_t categories, const uint64_t *trans)
{
flows->num_packets = 0;
flows->started = 0;
flows->trie = 0;
flows->last_cmplt = NULL;
flows->cmplt_array = cmplt;
flows->total_packets = data_num;
flows->categories = categories;
flows->cmplt_size = cmplt_size;
flows->data = data;
flows->results = results;
flows->trans = trans;
}
/*
* Execute trie traversal with 8 traversals in parallel
*/
static inline void
static inline int
search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t total_packets, uint32_t categories)
{
@ -676,12 +452,14 @@ search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
acl_match_check_x4(4, ctx, parms, &flows,
&indicies3, &indicies4, mm_match_mask.m);
}
return 0;
}
/*
* Execute trie traversal with 4 traversals in parallel
*/
static inline void
static inline int
search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, int total_packets, uint32_t categories)
{
@ -740,6 +518,8 @@ search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
acl_match_check_x4(0, ctx, parms, &flows,
&indicies1, &indicies2, mm_match_mask.m);
}
return 0;
}
static inline xmm_t
@ -769,7 +549,7 @@ transition2(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
/*
* Execute trie traversal with 2 traversals in parallel.
*/
static inline void
static inline int
search_sse_2(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t total_packets, uint32_t categories)
{
@ -825,108 +605,12 @@ search_sse_2(const struct rte_acl_ctx *ctx, const uint8_t **data,
acl_match_check_x2(0, ctx, parms, &flows, &indicies,
mm_match_mask64.m);
}
}
/*
* When processing the transition, rather than using if/else
* construct, the offset is calculated for DFA and QRANGE and
* then conditionally added to the address based on node type.
* This is done to avoid branch mis-predictions. Since the
* offset is rather simple calculation it is more efficient
* to do the calculation and do a condition move rather than
* a conditional branch to determine which calculation to do.
*/
static inline uint32_t
scan_forward(uint32_t input, uint32_t max)
{
return (input == 0) ? max : rte_bsf32(input);
}
static inline uint64_t
scalar_transition(const uint64_t *trans_table, uint64_t transition,
uint8_t input)
{
uint32_t addr, index, ranges, x, a, b, c;
/* break transition into component parts */
ranges = transition >> (sizeof(index) * CHAR_BIT);
/* calc address for a QRANGE node */
c = input * SCALAR_QRANGE_MULT;
a = ranges | SCALAR_QRANGE_MIN;
index = transition & ~RTE_ACL_NODE_INDEX;
a -= (c & SCALAR_QRANGE_MASK);
b = c & SCALAR_QRANGE_MIN;
addr = transition ^ index;
a &= SCALAR_QRANGE_MIN;
a ^= (ranges ^ b) & (a ^ b);
x = scan_forward(a, 32) >> 3;
addr += (index == RTE_ACL_NODE_DFA) ? input : x;
/* pickup next transition */
transition = *(trans_table + addr);
return transition;
}
int
rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t num, uint32_t categories)
{
int n;
uint64_t transition0, transition1;
uint32_t input0, input1;
struct acl_flow_data flows;
uint64_t index_array[MAX_SEARCHES_SCALAR];
struct completion cmplt[MAX_SEARCHES_SCALAR];
struct parms parms[MAX_SEARCHES_SCALAR];
if (categories != 1 &&
((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
return -EINVAL;
acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, num,
categories, ctx->trans_table);
for (n = 0; n < MAX_SEARCHES_SCALAR; n++) {
cmplt[n].count = 0;
index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
}
transition0 = index_array[0];
transition1 = index_array[1];
while (flows.started > 0) {
input0 = GET_NEXT_4BYTES(parms, 0);
input1 = GET_NEXT_4BYTES(parms, 1);
for (n = 0; n < 4; n++) {
if (likely((transition0 & RTE_ACL_NODE_MATCH) == 0))
transition0 = scalar_transition(flows.trans,
transition0, (uint8_t)input0);
input0 >>= CHAR_BIT;
if (likely((transition1 & RTE_ACL_NODE_MATCH) == 0))
transition1 = scalar_transition(flows.trans,
transition1, (uint8_t)input1);
input1 >>= CHAR_BIT;
}
if ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
transition0 = acl_match_check_transition(transition0,
0, ctx, parms, &flows);
transition1 = acl_match_check_transition(transition1,
1, ctx, parms, &flows);
}
}
return 0;
}
int
rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data,
rte_acl_classify_sse(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t num, uint32_t categories)
{
if (categories != 1 &&
@ -934,11 +618,9 @@ rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data,
return -EINVAL;
if (likely(num >= MAX_SEARCHES_SSE8))
search_sse_8(ctx, data, results, num, categories);
return search_sse_8(ctx, data, results, num, categories);
else if (num >= MAX_SEARCHES_SSE4)
search_sse_4(ctx, data, results, num, categories);
return search_sse_4(ctx, data, results, num, categories);
else
search_sse_2(ctx, data, results, num, categories);
return 0;
return search_sse_2(ctx, data, results, num, categories);
}

View File

@ -38,6 +38,58 @@
TAILQ_HEAD(rte_acl_list, rte_tailq_entry);
static const rte_acl_classify_t classify_fns[] = {
[RTE_ACL_CLASSIFY_DEFAULT] = rte_acl_classify_scalar,
[RTE_ACL_CLASSIFY_SCALAR] = rte_acl_classify_scalar,
[RTE_ACL_CLASSIFY_SSE] = rte_acl_classify_sse,
};
/* by default, use always avaialbe scalar code path. */
static enum rte_acl_classify_alg rte_acl_default_classify =
RTE_ACL_CLASSIFY_SCALAR;
static void
rte_acl_set_default_classify(enum rte_acl_classify_alg alg)
{
rte_acl_default_classify = alg;
}
extern int
rte_acl_set_ctx_classify(struct rte_acl_ctx *ctx, enum rte_acl_classify_alg alg)
{
if (ctx == NULL || (uint32_t)alg >= RTE_DIM(classify_fns))
return -EINVAL;
ctx->alg = alg;
return 0;
}
static void __attribute__((constructor))
rte_acl_init(void)
{
enum rte_acl_classify_alg alg = RTE_ACL_CLASSIFY_DEFAULT;
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1))
alg = RTE_ACL_CLASSIFY_SSE;
rte_acl_set_default_classify(alg);
}
int
rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t num, uint32_t categories)
{
return classify_fns[ctx->alg](ctx, data, results, num, categories);
}
int
rte_acl_classify_alg(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t num, uint32_t categories,
enum rte_acl_classify_alg alg)
{
return classify_fns[alg](ctx, data, results, num, categories);
}
struct rte_acl_ctx *
rte_acl_find_existing(const char *name)
{
@ -165,6 +217,7 @@ rte_acl_create(const struct rte_acl_param *param)
ctx->max_rules = param->max_rule_num;
ctx->rule_sz = param->rule_size;
ctx->socket_id = param->socket_id;
ctx->alg = rte_acl_default_classify;
snprintf(ctx->name, sizeof(ctx->name), "%s", param->name);
te->data = (void *) ctx;
@ -261,6 +314,8 @@ rte_acl_dump(const struct rte_acl_ctx *ctx)
if (!ctx)
return;
printf("acl context <%s>@%p\n", ctx->name, ctx);
printf(" socket_id=%"PRId32"\n", ctx->socket_id);
printf(" alg=%"PRId32"\n", ctx->alg);
printf(" max_rules=%"PRIu32"\n", ctx->max_rules);
printf(" rule_size=%"PRIu32"\n", ctx->rule_sz);
printf(" num_rules=%"PRIu32"\n", ctx->num_rules);

View File

@ -259,43 +259,16 @@ void
rte_acl_reset(struct rte_acl_ctx *ctx);
/**
* Search for a matching ACL rule for each input data buffer.
* Each input data buffer can have up to *categories* matches.
* That implies that results array should be big enough to hold
* (categories * num) elements.
* Also categories parameter should be either one or multiple of
* RTE_ACL_RESULTS_MULTIPLIER and can't be bigger than RTE_ACL_MAX_CATEGORIES.
* If more than one rule is applicable for given input buffer and
* given category, then rule with highest priority will be returned as a match.
* Note, that it is a caller responsibility to ensure that input parameters
* are valid and point to correct memory locations.
*
* @param ctx
* ACL context to search with.
* @param data
* Array of pointers to input data buffers to perform search.
* Note that all fields in input data buffers supposed to be in network
* byte order (MSB).
* @param results
* Array of search results, *categories* results per each input data buffer.
* @param num
* Number of elements in the input data buffers array.
* @param categories
* Number of maximum possible matches for each input buffer, one possible
* match per category.
* @return
* zero on successful completion.
* -EINVAL for incorrect arguments.
* Avaialble implementations of ACL classify.
*/
int
rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t num, uint32_t categories);
enum rte_acl_classify_alg {
RTE_ACL_CLASSIFY_DEFAULT = 0,
RTE_ACL_CLASSIFY_SCALAR = 1, /**< generic implementation. */
RTE_ACL_CLASSIFY_SSE = 2, /**< requries SSE4.1 support. */
};
/**
* Perform scalar search for a matching ACL rule for each input data buffer.
* Note, that while the search itself will avoid explicit use of SSE/AVX
* intrinsics, code for comparing matching results/priorities sill might use
* vector intrinsics (for categories > 1).
* Perform search for a matching ACL rule for each input data buffer.
* Each input data buffer can have up to *categories* matches.
* That implies that results array should be big enough to hold
* (categories * num) elements.
@ -323,9 +296,68 @@ rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data,
* zero on successful completion.
* -EINVAL for incorrect arguments.
*/
int
rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t num, uint32_t categories);
extern int
rte_acl_classify(const struct rte_acl_ctx *ctx,
const uint8_t **data,
uint32_t *results, uint32_t num,
uint32_t categories);
/**
* Perform search using specified algorithm for a matching ACL rule for
* each input data buffer.
* Each input data buffer can have up to *categories* matches.
* That implies that results array should be big enough to hold
* (categories * num) elements.
* Also categories parameter should be either one or multiple of
* RTE_ACL_RESULTS_MULTIPLIER and can't be bigger than RTE_ACL_MAX_CATEGORIES.
* If more than one rule is applicable for given input buffer and
* given category, then rule with highest priority will be returned as a match.
* Note, that it is a caller's responsibility to ensure that input parameters
* are valid and point to correct memory locations.
*
* @param ctx
* ACL context to search with.
* @param data
* Array of pointers to input data buffers to perform search.
* Note that all fields in input data buffers supposed to be in network
* byte order (MSB).
* @param results
* Array of search results, *categories* results per each input data buffer.
* @param num
* Number of elements in the input data buffers array.
* @param categories
* Number of maximum possible matches for each input buffer, one possible
* match per category.
* @param alg
* Algorithm to be used for the search.
* It is the caller responibility to ensure that the value refers to the
* existing algorithm, and that it could be run on the given CPU.
* @return
* zero on successful completion.
* -EINVAL for incorrect arguments.
*/
extern int
rte_acl_classify_alg(const struct rte_acl_ctx *ctx,
const uint8_t **data,
uint32_t *results, uint32_t num,
uint32_t categories,
enum rte_acl_classify_alg alg);
/*
* Override the default classifier function for a given ACL context.
* @param ctx
* ACL context to change classify function for.
* @param alg
* New default classify algorithm for given ACL context.
* It is the caller responibility to ensure that the value refers to the
* existing algorithm, and that it could be run on the given CPU.
* @return
* - -EINVAL if the parameters are invalid.
* - Zero if operation completed successfully.
*/
extern int
rte_acl_set_ctx_classify(struct rte_acl_ctx *ctx,
enum rte_acl_classify_alg alg);
/**
* Dump an ACL context structure to the console.