net/bnxt: add shadow table capability with search

- Added Index Table shadow tables for searching
- Added Search API to allow reuse of Table entries

Signed-off-by: Mike Baucom <michael.baucom@broadcom.com>
Reviewed-by: Farah Smith <farah.smith@broadcom.com>
This commit is contained in:
Mike Baucom 2020-07-23 17:26:31 +05:30 committed by Ferruh Yigit
parent b389a7888e
commit 0a80226921
9 changed files with 1220 additions and 115 deletions

View File

@ -75,7 +75,6 @@ tf_open_session(struct tf *tfp,
/* Session vs session client is decided in
* tf_session_open_session()
*/
printf("TF_OPEN, %s\n", parms->ctrl_chan_name);
rc = tf_session_open_session(tfp, &oparms);
/* Logging handled by tf_session_open_session */
if (rc)
@ -953,6 +952,71 @@ tf_alloc_tbl_entry(struct tf *tfp,
return 0;
}
int
tf_search_tbl_entry(struct tf *tfp,
struct tf_search_tbl_entry_parms *parms)
{
int rc;
struct tf_session *tfs;
struct tf_dev_info *dev;
struct tf_tbl_alloc_search_parms sparms;
TF_CHECK_PARMS2(tfp, parms);
/* Retrieve the session information */
rc = tf_session_get_session(tfp, &tfs);
if (rc) {
TFP_DRV_LOG(ERR,
"%s: Failed to lookup session, rc:%s\n",
tf_dir_2_str(parms->dir),
strerror(-rc));
return rc;
}
/* Retrieve the device information */
rc = tf_session_get_device(tfs, &dev);
if (rc) {
TFP_DRV_LOG(ERR,
"%s: Failed to lookup device, rc:%s\n",
tf_dir_2_str(parms->dir),
strerror(-rc));
return rc;
}
if (dev->ops->tf_dev_alloc_search_tbl == NULL) {
rc = -EOPNOTSUPP;
TFP_DRV_LOG(ERR,
"%s: Operation not supported, rc:%s\n",
tf_dir_2_str(parms->dir),
strerror(-rc));
return rc;
}
memset(&sparms, 0, sizeof(struct tf_tbl_alloc_search_parms));
sparms.dir = parms->dir;
sparms.type = parms->type;
sparms.result = parms->result;
sparms.result_sz_in_bytes = parms->result_sz_in_bytes;
sparms.alloc = parms->alloc;
sparms.tbl_scope_id = parms->tbl_scope_id;
rc = dev->ops->tf_dev_alloc_search_tbl(tfp, &sparms);
if (rc) {
TFP_DRV_LOG(ERR,
"%s: TBL allocation failed, rc:%s\n",
tf_dir_2_str(parms->dir),
strerror(-rc));
return rc;
}
/* Return the outputs from the search */
parms->hit = sparms.hit;
parms->search_status = sparms.search_status;
parms->ref_cnt = sparms.ref_cnt;
parms->idx = sparms.idx;
return 0;
}
int
tf_free_tbl_entry(struct tf *tfp,
struct tf_free_tbl_entry_parms *parms)

View File

@ -291,9 +291,9 @@ enum tf_tcam_tbl_type {
};
/**
* TCAM SEARCH STATUS
* SEARCH STATUS
*/
enum tf_tcam_search_status {
enum tf_search_status {
/** The entry was not found, but an idx was allocated if requested. */
MISS,
/** The entry was found, and the result/idx are valid */
@ -1011,7 +1011,7 @@ struct tf_search_tcam_entry_parms {
/**
* [out] Search result status (hit, miss, reject)
*/
enum tf_tcam_search_status search_status;
enum tf_search_status search_status;
/**
* [out] Current refcnt after allocation
*/
@ -1285,6 +1285,79 @@ int tf_free_tcam_entry(struct tf *tfp,
* @ref tf_bulk_get_tbl_entry
*/
/**
* tf_alloc_tbl_entry parameter definition
*/
struct tf_search_tbl_entry_parms {
/**
* [in] Receive or transmit direction
*/
enum tf_dir dir;
/**
* [in] Type of the allocation
*/
enum tf_tbl_type type;
/**
* [in] Table scope identifier (ignored unless TF_TBL_TYPE_EXT)
*/
uint32_t tbl_scope_id;
/**
* [in] Result data to search for
*/
uint8_t *result;
/**
* [in] Result data size in bytes
*/
uint16_t result_sz_in_bytes;
/**
* [in] Allocate on miss.
*/
uint8_t alloc;
/**
* [out] Set if matching entry found
*/
uint8_t hit;
/**
* [out] Search result status (hit, miss, reject)
*/
enum tf_search_status search_status;
/**
* [out] Current ref count after allocation
*/
uint16_t ref_cnt;
/**
* [out] Idx of allocated entry or found entry
*/
uint32_t idx;
};
/**
* search Table Entry (experimental)
*
* This function searches the shadow copy of an index table for a matching
* entry. The result data must match for hit to be set. Only TruFlow core
* data is accessed. If shadow_copy is not enabled, an error is returned.
*
* Implementation:
*
* A hash is performed on the result data and mappe3d to a shadow copy entry
* where the result is populated. If the result matches the entry, hit is set,
* ref_cnt is incremented (if alloc), and the search status indicates what
* action the caller can take regarding setting the entry.
*
* search status should be used as follows:
* - On MISS, the caller should set the result into the returned index.
*
* - On REJECT, the caller should reject the flow since there are no resources.
*
* - On Hit, the matching index is returned to the caller. Additionally, the
* ref_cnt is updated.
*
* Also returns success or failure code.
*/
int tf_search_tbl_entry(struct tf *tfp,
struct tf_search_tbl_entry_parms *parms);
/**
* tf_alloc_tbl_entry parameter definition
*/

View File

@ -126,7 +126,7 @@ const struct tf_dev_ops tf_dev_ops_p4 = {
.tf_dev_alloc_ext_tbl = tf_tbl_ext_alloc,
.tf_dev_free_tbl = tf_tbl_free,
.tf_dev_free_ext_tbl = tf_tbl_ext_free,
.tf_dev_alloc_search_tbl = NULL,
.tf_dev_alloc_search_tbl = tf_tbl_alloc_search,
.tf_dev_set_tbl = tf_tbl_set,
.tf_dev_set_ext_tbl = tf_tbl_ext_common_set,
.tf_dev_get_tbl = tf_tbl_get,

View File

@ -3,61 +3,783 @@
* All rights reserved.
*/
#include <rte_common.h>
#include "tf_common.h"
#include "tf_util.h"
#include "tfp.h"
#include "tf_core.h"
#include "tf_shadow_tbl.h"
#include "tf_hash.h"
/**
* Shadow table DB element
* The implementation includes 3 tables per table table type.
* - hash table
* - sized so that a minimum of 4 slots per shadow entry are available to
* minimize the likelihood of collisions.
* - shadow key table
* - sized to the number of entries requested and is directly indexed
* - the index is zero based and is the table index - the base address
* - the data associated with the entry is stored in the key table.
* - The stored key is actually the data associated with the entry.
* - shadow result table
* - the result table is stored separately since it only needs to be accessed
* when the key matches.
* - the result has a back pointer to the hash table via the hb handle. The
* hb handle is a 32 bit represention of the hash with a valid bit, bucket
* element index, and the hash index. It is necessary to store the hb handle
* with the result since subsequent removes only provide the table index.
*
* - Max entries is limited in the current implementation since bit 15 is the
* valid bit in the hash table.
* - A 16bit hash is calculated and masked based on the number of entries
* - 64b wide bucket is used and broken into 4x16bit elements.
* This decision is based on quicker bucket scanning to determine if any
* elements are in use.
* - bit 15 of each bucket element is the valid, this is done to prevent having
* to read the larger key/result data for determining VALID. It also aids
* in the more efficient scanning of the bucket for slot usage.
*/
struct tf_shadow_tbl_element {
/**
* Hash table
*/
void *hash;
/**
* Reference count, array of number of table type entries
*/
uint16_t *ref_count;
/*
* The maximum number of shadow entries supported. The value also doubles as
* the maximum number of hash buckets. There are only 15 bits of data per
* bucket to point to the shadow tables.
*/
#define TF_SHADOW_ENTRIES_MAX (1 << 15)
/* The number of elements(BE) per hash bucket (HB) */
#define TF_SHADOW_HB_NUM_ELEM (4)
#define TF_SHADOW_BE_VALID (1 << 15)
#define TF_SHADOW_BE_IS_VALID(be) (((be) & TF_SHADOW_BE_VALID) != 0)
/**
* The hash bucket handle is 32b
* - bit 31, the Valid bit
* - bit 29-30, the element
* - bits 0-15, the hash idx (is masked based on the allocated size)
*/
#define TF_SHADOW_HB_HANDLE_IS_VALID(hndl) (((hndl) & (1 << 31)) != 0)
#define TF_SHADOW_HB_HANDLE_CREATE(idx, be) ((1 << 31) | \
((be) << 29) | (idx))
#define TF_SHADOW_HB_HANDLE_BE_GET(hdl) (((hdl) >> 29) & \
(TF_SHADOW_HB_NUM_ELEM - 1))
#define TF_SHADOW_HB_HANDLE_HASH_GET(ctxt, hdl)((hdl) & \
(ctxt)->hash_ctxt.hid_mask)
/**
* The idx provided by the caller is within a region, so currently the base is
* either added or subtracted from the idx to ensure it can be used as a
* compressed index
*/
/* Convert the table index to a shadow index */
#define TF_SHADOW_IDX_TO_SHIDX(ctxt, idx) ((idx) - \
(ctxt)->shadow_ctxt.base_addr)
/* Convert the shadow index to a tbl index */
#define TF_SHADOW_SHIDX_TO_IDX(ctxt, idx) ((idx) + \
(ctxt)->shadow_ctxt.base_addr)
/* Simple helper masks for clearing en element from the bucket */
#define TF_SHADOW_BE0_MASK_CLEAR(hb) ((hb) & 0xffffffffffff0000ull)
#define TF_SHADOW_BE1_MASK_CLEAR(hb) ((hb) & 0xffffffff0000ffffull)
#define TF_SHADOW_BE2_MASK_CLEAR(hb) ((hb) & 0xffff0000ffffffffull)
#define TF_SHADOW_BE3_MASK_CLEAR(hb) ((hb) & 0x0000ffffffffffffull)
/**
* This should be coming from external, but for now it is assumed that no key
* is greater than 512 bits (64B). This makes allocation of the key table
* easier without having to allocate on the fly.
*/
#define TF_SHADOW_MAX_KEY_SZ 64
/*
* Local only defines for the internal data.
*/
/**
* tf_shadow_tbl_shadow_key_entry is the key entry of the key table.
* The key stored in the table is the result data of the index table.
*/
struct tf_shadow_tbl_shadow_key_entry {
uint8_t key[TF_SHADOW_MAX_KEY_SZ];
};
/**
* Shadow table DB definition
* tf_shadow_tbl_shadow_result_entry is the result table entry.
* The result table writes are broken into two phases:
* - The search phase, which stores the hb_handle and key size and
* - The set phase, which writes the refcnt
*/
struct tf_shadow_tbl_shadow_result_entry {
uint16_t key_size;
uint32_t refcnt;
uint32_t hb_handle;
};
/**
* tf_shadow_tbl_shadow_ctxt holds all information for accessing the key and
* result tables.
*/
struct tf_shadow_tbl_shadow_ctxt {
struct tf_shadow_tbl_shadow_key_entry *sh_key_tbl;
struct tf_shadow_tbl_shadow_result_entry *sh_res_tbl;
uint32_t base_addr;
uint16_t num_entries;
uint16_t alloc_idx;
};
/**
* tf_shadow_tbl_hash_ctxt holds all information related to accessing the hash
* table.
*/
struct tf_shadow_tbl_hash_ctxt {
uint64_t *hashtbl;
uint16_t hid_mask;
uint16_t hash_entries;
};
/**
* tf_shadow_tbl_ctxt holds the hash and shadow tables for the current shadow
* table db. This structure is per table table type as each table table has
* it's own shadow and hash table.
*/
struct tf_shadow_tbl_ctxt {
struct tf_shadow_tbl_shadow_ctxt shadow_ctxt;
struct tf_shadow_tbl_hash_ctxt hash_ctxt;
};
/**
* tf_shadow_tbl_db is the allocated db structure returned as an opaque
* void * pointer to the caller during create db. It holds the pointers for
* each table associated with the db.
*/
struct tf_shadow_tbl_db {
/**
* The DB consists of an array of elements
*/
struct tf_shadow_tbl_element *db;
/* Each context holds the shadow and hash table information */
struct tf_shadow_tbl_ctxt *ctxt[TF_TBL_TYPE_MAX];
};
int
tf_shadow_tbl_create_db(struct tf_shadow_tbl_create_db_parms *parms __rte_unused)
/**
* Simple routine that decides what table types can be searchable.
*
*/
static int tf_shadow_tbl_is_searchable(enum tf_tbl_type type)
{
int rc = 0;
switch (type) {
case TF_TBL_TYPE_ACT_ENCAP_8B:
case TF_TBL_TYPE_ACT_ENCAP_16B:
case TF_TBL_TYPE_ACT_ENCAP_32B:
case TF_TBL_TYPE_ACT_ENCAP_64B:
case TF_TBL_TYPE_ACT_SP_SMAC:
case TF_TBL_TYPE_ACT_SP_SMAC_IPV4:
case TF_TBL_TYPE_ACT_SP_SMAC_IPV6:
case TF_TBL_TYPE_ACT_MODIFY_IPV4:
case TF_TBL_TYPE_ACT_MODIFY_SPORT:
case TF_TBL_TYPE_ACT_MODIFY_DPORT:
rc = 1;
break;
default:
rc = 0;
break;
};
return rc;
}
/**
* Returns the number of entries in the contexts shadow table.
*/
static inline uint16_t
tf_shadow_tbl_sh_num_entries_get(struct tf_shadow_tbl_ctxt *ctxt)
{
return ctxt->shadow_ctxt.num_entries;
}
/**
* Compare the give key with the key in the shadow table.
*
* Returns 0 if the keys match
*/
static int
tf_shadow_tbl_key_cmp(struct tf_shadow_tbl_ctxt *ctxt,
uint8_t *key,
uint16_t sh_idx,
uint16_t size)
{
if (size != ctxt->shadow_ctxt.sh_res_tbl[sh_idx].key_size ||
sh_idx >= tf_shadow_tbl_sh_num_entries_get(ctxt) || !key)
return -1;
return memcmp(key, ctxt->shadow_ctxt.sh_key_tbl[sh_idx].key, size);
}
/**
* Free the memory associated with the context.
*/
static void
tf_shadow_tbl_ctxt_delete(struct tf_shadow_tbl_ctxt *ctxt)
{
if (!ctxt)
return;
tfp_free(ctxt->hash_ctxt.hashtbl);
tfp_free(ctxt->shadow_ctxt.sh_key_tbl);
tfp_free(ctxt->shadow_ctxt.sh_res_tbl);
}
/**
* The TF Shadow TBL context is per TBL and holds all information relating to
* managing the shadow and search capability. This routine allocated data that
* needs to be deallocated by the tf_shadow_tbl_ctxt_delete prior when deleting
* the shadow db.
*/
static int
tf_shadow_tbl_ctxt_create(struct tf_shadow_tbl_ctxt *ctxt,
uint16_t num_entries,
uint16_t base_addr)
{
struct tfp_calloc_parms cparms;
uint16_t hash_size = 1;
uint16_t hash_mask;
int rc;
/* Hash table is a power of two that holds the number of entries */
if (num_entries > TF_SHADOW_ENTRIES_MAX) {
TFP_DRV_LOG(ERR, "Too many entries for shadow %d > %d\n",
num_entries,
TF_SHADOW_ENTRIES_MAX);
return -ENOMEM;
}
while (hash_size < num_entries)
hash_size = hash_size << 1;
hash_mask = hash_size - 1;
/* Allocate the hash table */
cparms.nitems = hash_size;
cparms.size = sizeof(uint64_t);
cparms.alignment = 0;
rc = tfp_calloc(&cparms);
if (rc)
goto error;
ctxt->hash_ctxt.hashtbl = cparms.mem_va;
ctxt->hash_ctxt.hid_mask = hash_mask;
ctxt->hash_ctxt.hash_entries = hash_size;
/* allocate the shadow tables */
/* allocate the shadow key table */
cparms.nitems = num_entries;
cparms.size = sizeof(struct tf_shadow_tbl_shadow_key_entry);
cparms.alignment = 0;
rc = tfp_calloc(&cparms);
if (rc)
goto error;
ctxt->shadow_ctxt.sh_key_tbl = cparms.mem_va;
/* allocate the shadow result table */
cparms.nitems = num_entries;
cparms.size = sizeof(struct tf_shadow_tbl_shadow_result_entry);
cparms.alignment = 0;
rc = tfp_calloc(&cparms);
if (rc)
goto error;
ctxt->shadow_ctxt.sh_res_tbl = cparms.mem_va;
ctxt->shadow_ctxt.num_entries = num_entries;
ctxt->shadow_ctxt.base_addr = base_addr;
return 0;
error:
tf_shadow_tbl_ctxt_delete(ctxt);
return -ENOMEM;
}
/**
* Get a shadow table context given the db and the table type
*/
static struct tf_shadow_tbl_ctxt *
tf_shadow_tbl_ctxt_get(struct tf_shadow_tbl_db *shadow_db,
enum tf_tbl_type type)
{
if (type >= TF_TBL_TYPE_MAX ||
!shadow_db ||
!shadow_db->ctxt[type])
return NULL;
return shadow_db->ctxt[type];
}
/**
* Sets the hash entry into the table given the table context, hash bucket
* handle, and shadow index.
*/
static inline int
tf_shadow_tbl_set_hash_entry(struct tf_shadow_tbl_ctxt *ctxt,
uint32_t hb_handle,
uint16_t sh_idx)
{
uint16_t hid = TF_SHADOW_HB_HANDLE_HASH_GET(ctxt, hb_handle);
uint16_t be = TF_SHADOW_HB_HANDLE_BE_GET(hb_handle);
uint64_t entry = sh_idx | TF_SHADOW_BE_VALID;
if (hid >= ctxt->hash_ctxt.hash_entries)
return -EINVAL;
ctxt->hash_ctxt.hashtbl[hid] |= entry << (be * 16);
return 0;
}
/**
* Clears the hash entry given the TBL context and hash bucket handle.
*/
static inline void
tf_shadow_tbl_clear_hash_entry(struct tf_shadow_tbl_ctxt *ctxt,
uint32_t hb_handle)
{
uint16_t hid, be;
uint64_t *bucket;
if (!TF_SHADOW_HB_HANDLE_IS_VALID(hb_handle))
return;
hid = TF_SHADOW_HB_HANDLE_HASH_GET(ctxt, hb_handle);
be = TF_SHADOW_HB_HANDLE_BE_GET(hb_handle);
bucket = &ctxt->hash_ctxt.hashtbl[hid];
switch (be) {
case 0:
*bucket = TF_SHADOW_BE0_MASK_CLEAR(*bucket);
break;
case 1:
*bucket = TF_SHADOW_BE1_MASK_CLEAR(*bucket);
break;
case 2:
*bucket = TF_SHADOW_BE2_MASK_CLEAR(*bucket);
break;
case 3:
*bucket = TF_SHADOW_BE2_MASK_CLEAR(*bucket);
break;
default:
/*
* Since the BE_GET masks non-inclusive bits, this will not
* happen.
*/
break;
}
}
/**
* Clears the shadow key and result entries given the table context and
* shadow index.
*/
static void
tf_shadow_tbl_clear_sh_entry(struct tf_shadow_tbl_ctxt *ctxt,
uint16_t sh_idx)
{
struct tf_shadow_tbl_shadow_key_entry *sk_entry;
struct tf_shadow_tbl_shadow_result_entry *sr_entry;
if (sh_idx >= tf_shadow_tbl_sh_num_entries_get(ctxt))
return;
sk_entry = &ctxt->shadow_ctxt.sh_key_tbl[sh_idx];
sr_entry = &ctxt->shadow_ctxt.sh_res_tbl[sh_idx];
/*
* memset key/result to zero for now, possibly leave the data alone
* in the future and rely on the valid bit in the hash table.
*/
memset(sk_entry, 0, sizeof(struct tf_shadow_tbl_shadow_key_entry));
memset(sr_entry, 0, sizeof(struct tf_shadow_tbl_shadow_result_entry));
}
/**
* Binds the allocated tbl index with the hash and shadow tables.
* The entry will be incomplete until the set has happened with the result
* data.
*/
int
tf_shadow_tbl_bind_index(struct tf_shadow_tbl_bind_index_parms *parms)
{
int rc;
uint16_t idx, len;
struct tf_shadow_tbl_ctxt *ctxt;
struct tf_shadow_tbl_db *shadow_db;
struct tf_shadow_tbl_shadow_key_entry *sk_entry;
struct tf_shadow_tbl_shadow_result_entry *sr_entry;
if (!parms || !TF_SHADOW_HB_HANDLE_IS_VALID(parms->hb_handle) ||
!parms->data) {
TFP_DRV_LOG(ERR, "Invalid parms\n");
return -EINVAL;
}
shadow_db = (struct tf_shadow_tbl_db *)parms->shadow_db;
ctxt = tf_shadow_tbl_ctxt_get(shadow_db, parms->type);
if (!ctxt) {
TFP_DRV_LOG(DEBUG, "%s no ctxt for table\n",
tf_tbl_type_2_str(parms->type));
return -EINVAL;
}
idx = TF_SHADOW_IDX_TO_SHIDX(ctxt, parms->idx);
len = parms->data_sz_in_bytes;
if (idx >= tf_shadow_tbl_sh_num_entries_get(ctxt) ||
len > TF_SHADOW_MAX_KEY_SZ) {
TFP_DRV_LOG(ERR, "%s:%s Invalid len (%d) > %d || oob idx %d\n",
tf_dir_2_str(parms->dir),
tf_tbl_type_2_str(parms->type),
len,
TF_SHADOW_MAX_KEY_SZ, idx);
return -EINVAL;
}
rc = tf_shadow_tbl_set_hash_entry(ctxt, parms->hb_handle, idx);
if (rc)
return -EINVAL;
sk_entry = &ctxt->shadow_ctxt.sh_key_tbl[idx];
sr_entry = &ctxt->shadow_ctxt.sh_res_tbl[idx];
/* For tables, the data is the key */
memcpy(sk_entry->key, parms->data, len);
/* Write the result table */
sr_entry->key_size = len;
sr_entry->hb_handle = parms->hb_handle;
sr_entry->refcnt = 1;
return 0;
}
/**
* Deletes hash/shadow information if no more references.
*
* Returns 0 - The caller should delete the table entry in hardware.
* Returns non-zero - The number of references to the entry
*/
int
tf_shadow_tbl_remove(struct tf_shadow_tbl_remove_parms *parms)
{
uint16_t idx;
uint32_t hb_handle;
struct tf_shadow_tbl_ctxt *ctxt;
struct tf_shadow_tbl_db *shadow_db;
struct tf_tbl_free_parms *fparms;
struct tf_shadow_tbl_shadow_result_entry *sr_entry;
if (!parms || !parms->fparms) {
TFP_DRV_LOG(ERR, "Invalid parms\n");
return -EINVAL;
}
fparms = parms->fparms;
if (!tf_shadow_tbl_is_searchable(fparms->type))
return 0;
/*
* Initialize the ref count to zero. The default would be to remove
* the entry.
*/
fparms->ref_cnt = 0;
shadow_db = (struct tf_shadow_tbl_db *)parms->shadow_db;
ctxt = tf_shadow_tbl_ctxt_get(shadow_db, fparms->type);
if (!ctxt) {
TFP_DRV_LOG(DEBUG, "%s no ctxt for table\n",
tf_tbl_type_2_str(fparms->type));
return 0;
}
idx = TF_SHADOW_IDX_TO_SHIDX(ctxt, fparms->idx);
if (idx >= tf_shadow_tbl_sh_num_entries_get(ctxt)) {
TFP_DRV_LOG(DEBUG, "%s %d >= %d\n",
tf_tbl_type_2_str(fparms->type),
fparms->idx,
tf_shadow_tbl_sh_num_entries_get(ctxt));
return 0;
}
sr_entry = &ctxt->shadow_ctxt.sh_res_tbl[idx];
if (sr_entry->refcnt <= 1) {
hb_handle = sr_entry->hb_handle;
tf_shadow_tbl_clear_hash_entry(ctxt, hb_handle);
tf_shadow_tbl_clear_sh_entry(ctxt, idx);
} else {
sr_entry->refcnt--;
fparms->ref_cnt = sr_entry->refcnt;
}
return 0;
}
int
tf_shadow_tbl_free_db(struct tf_shadow_tbl_free_db_parms *parms __rte_unused)
tf_shadow_tbl_search(struct tf_shadow_tbl_search_parms *parms)
{
uint16_t len;
uint64_t bucket;
uint32_t i, hid32;
struct tf_shadow_tbl_ctxt *ctxt;
struct tf_shadow_tbl_db *shadow_db;
uint16_t hid16, hb_idx, hid_mask, shtbl_idx, shtbl_key, be_valid;
struct tf_tbl_alloc_search_parms *sparms;
uint32_t be_avail = TF_SHADOW_HB_NUM_ELEM;
if (!parms || !parms->sparms) {
TFP_DRV_LOG(ERR, "tbl search with invalid parms\n");
return -EINVAL;
}
sparms = parms->sparms;
/* Check that caller was supposed to call search */
if (!tf_shadow_tbl_is_searchable(sparms->type))
return -EINVAL;
/* Initialize return values to invalid */
sparms->hit = 0;
sparms->search_status = REJECT;
parms->hb_handle = 0;
sparms->ref_cnt = 0;
shadow_db = (struct tf_shadow_tbl_db *)parms->shadow_db;
ctxt = tf_shadow_tbl_ctxt_get(shadow_db, sparms->type);
if (!ctxt) {
TFP_DRV_LOG(ERR, "%s Unable to get tbl mgr context\n",
tf_tbl_type_2_str(sparms->type));
return -EINVAL;
}
len = sparms->result_sz_in_bytes;
if (len > TF_SHADOW_MAX_KEY_SZ || !sparms->result || !len) {
TFP_DRV_LOG(ERR, "%s:%s Invalid parms %d : %p\n",
tf_dir_2_str(sparms->dir),
tf_tbl_type_2_str(sparms->type),
len,
sparms->result);
return -EINVAL;
}
/*
* Calculate the crc32
* Fold it to create a 16b value
* Reduce it to fit the table
*/
hid32 = tf_hash_calc_crc32(sparms->result, len);
hid16 = (uint16_t)(((hid32 >> 16) & 0xffff) ^ (hid32 & 0xffff));
hid_mask = ctxt->hash_ctxt.hid_mask;
hb_idx = hid16 & hid_mask;
bucket = ctxt->hash_ctxt.hashtbl[hb_idx];
if (!bucket) {
/* empty bucket means a miss and available entry */
sparms->search_status = MISS;
parms->hb_handle = TF_SHADOW_HB_HANDLE_CREATE(hb_idx, 0);
sparms->idx = 0;
return 0;
}
/* Set the avail to max so we can detect when there is an avail entry */
be_avail = TF_SHADOW_HB_NUM_ELEM;
for (i = 0; i < TF_SHADOW_HB_NUM_ELEM; i++) {
shtbl_idx = (uint16_t)((bucket >> (i * 16)) & 0xffff);
be_valid = TF_SHADOW_BE_IS_VALID(shtbl_idx);
if (!be_valid) {
/* The element is avail, keep going */
be_avail = i;
continue;
}
/* There is a valid entry, compare it */
shtbl_key = shtbl_idx & ~TF_SHADOW_BE_VALID;
if (!tf_shadow_tbl_key_cmp(ctxt,
sparms->result,
shtbl_key,
len)) {
/*
* It matches, increment the ref count if the caller
* requested allocation and return the info
*/
if (sparms->alloc)
ctxt->shadow_ctxt.sh_res_tbl[shtbl_key].refcnt =
ctxt->shadow_ctxt.sh_res_tbl[shtbl_key].refcnt + 1;
sparms->hit = 1;
sparms->search_status = HIT;
parms->hb_handle =
TF_SHADOW_HB_HANDLE_CREATE(hb_idx, i);
sparms->idx = TF_SHADOW_SHIDX_TO_IDX(ctxt, shtbl_key);
sparms->ref_cnt =
ctxt->shadow_ctxt.sh_res_tbl[shtbl_key].refcnt;
return 0;
}
}
/* No hits, return avail entry if exists */
if (be_avail < TF_SHADOW_HB_NUM_ELEM) {
/*
* There is an available hash entry, so return MISS and the
* hash handle for the subsequent bind.
*/
parms->hb_handle = TF_SHADOW_HB_HANDLE_CREATE(hb_idx, be_avail);
sparms->search_status = MISS;
sparms->hit = 0;
sparms->idx = 0;
} else {
/* No room for the entry in the hash table, must REJECT */
sparms->search_status = REJECT;
}
return 0;
}
int
tf_shadow_tbl_search(struct tf_shadow_tbl_search_parms *parms __rte_unused)
tf_shadow_tbl_insert(struct tf_shadow_tbl_insert_parms *parms)
{
uint16_t idx;
struct tf_shadow_tbl_ctxt *ctxt;
struct tf_tbl_set_parms *sparms;
struct tf_shadow_tbl_db *shadow_db;
struct tf_shadow_tbl_shadow_result_entry *sr_entry;
if (!parms || !parms->sparms) {
TFP_DRV_LOG(ERR, "Null parms\n");
return -EINVAL;
}
sparms = parms->sparms;
if (!sparms->data || !sparms->data_sz_in_bytes) {
TFP_DRV_LOG(ERR, "%s:%s No result to set.\n",
tf_dir_2_str(sparms->dir),
tf_tbl_type_2_str(sparms->type));
return -EINVAL;
}
shadow_db = (struct tf_shadow_tbl_db *)parms->shadow_db;
ctxt = tf_shadow_tbl_ctxt_get(shadow_db, sparms->type);
if (!ctxt) {
/* We aren't tracking this table, so return success */
TFP_DRV_LOG(DEBUG, "%s Unable to get tbl mgr context\n",
tf_tbl_type_2_str(sparms->type));
return 0;
}
idx = TF_SHADOW_IDX_TO_SHIDX(ctxt, sparms->idx);
if (idx >= tf_shadow_tbl_sh_num_entries_get(ctxt)) {
TFP_DRV_LOG(ERR, "%s:%s Invalid idx(0x%x)\n",
tf_dir_2_str(sparms->dir),
tf_tbl_type_2_str(sparms->type),
sparms->idx);
return -EINVAL;
}
/* Write the result table, the key/hash has been written already */
sr_entry = &ctxt->shadow_ctxt.sh_res_tbl[idx];
/*
* If the handle is not valid, the bind was never called. We aren't
* tracking this entry.
*/
if (!TF_SHADOW_HB_HANDLE_IS_VALID(sr_entry->hb_handle))
return 0;
return 0;
}
int
tf_shadow_tbl_insert(struct tf_shadow_tbl_insert_parms *parms __rte_unused)
tf_shadow_tbl_free_db(struct tf_shadow_tbl_free_db_parms *parms)
{
struct tf_shadow_tbl_db *shadow_db;
int i;
TF_CHECK_PARMS1(parms);
shadow_db = (struct tf_shadow_tbl_db *)parms->shadow_db;
if (!shadow_db) {
TFP_DRV_LOG(DEBUG, "Shadow db is NULL cannot be freed\n");
return -EINVAL;
}
for (i = 0; i < TF_TBL_TYPE_MAX; i++) {
if (shadow_db->ctxt[i]) {
tf_shadow_tbl_ctxt_delete(shadow_db->ctxt[i]);
tfp_free(shadow_db->ctxt[i]);
}
}
tfp_free(shadow_db);
return 0;
}
int
tf_shadow_tbl_remove(struct tf_shadow_tbl_remove_parms *parms __rte_unused)
/**
* Allocate the table resources for search and allocate
*
*/
int tf_shadow_tbl_create_db(struct tf_shadow_tbl_create_db_parms *parms)
{
int rc;
int i;
uint16_t base;
struct tfp_calloc_parms cparms;
struct tf_shadow_tbl_db *shadow_db = NULL;
TF_CHECK_PARMS1(parms);
/* Build the shadow DB per the request */
cparms.nitems = 1;
cparms.size = sizeof(struct tf_shadow_tbl_db);
cparms.alignment = 0;
rc = tfp_calloc(&cparms);
if (rc)
return rc;
shadow_db = (void *)cparms.mem_va;
for (i = 0; i < TF_TBL_TYPE_MAX; i++) {
/* If the element didn't request an allocation no need
* to create a pool nor verify if we got a reservation.
*/
if (!parms->cfg->alloc_cnt[i] ||
!tf_shadow_tbl_is_searchable(i)) {
shadow_db->ctxt[i] = NULL;
continue;
}
cparms.nitems = 1;
cparms.size = sizeof(struct tf_shadow_tbl_ctxt);
cparms.alignment = 0;
rc = tfp_calloc(&cparms);
if (rc)
goto error;
shadow_db->ctxt[i] = cparms.mem_va;
base = parms->cfg->base_addr[i];
rc = tf_shadow_tbl_ctxt_create(shadow_db->ctxt[i],
parms->cfg->alloc_cnt[i],
base);
if (rc)
goto error;
}
*parms->shadow_db = (void *)shadow_db;
TFP_DRV_LOG(INFO,
"TF SHADOW TABLE - initialized\n");
return 0;
error:
for (i = 0; i < TF_TBL_TYPE_MAX; i++) {
if (shadow_db->ctxt[i]) {
tf_shadow_tbl_ctxt_delete(shadow_db->ctxt[i]);
tfp_free(shadow_db->ctxt[i]);
}
}
tfp_free(shadow_db);
return -ENOMEM;
}

View File

@ -8,8 +8,6 @@
#include "tf_core.h"
struct tf;
/**
* The Shadow Table module provides shadow DB handling for table based
* TF types. A shadow DB provides the capability that allows for reuse
@ -32,37 +30,40 @@ struct tf;
*/
struct tf_shadow_tbl_cfg_parms {
/**
* TF Table type
*/
enum tf_tbl_type type;
/**
* Number of entries the Shadow DB needs to hold
* [in] The number of elements in the alloc_cnt and base_addr
* For now, it should always be equal to TF_TBL_TYPE_MAX
*/
int num_entries;
/**
* Element width for this table type
* [in] Resource allocation count array
* This array content originates from the tf_session_resources
* that is passed in on session open
* Array size is TF_TBL_TYPE_MAX
*/
int element_width;
uint16_t *alloc_cnt;
/**
* [in] The base index for each table
*/
uint16_t base_addr[TF_TBL_TYPE_MAX];
};
/**
* Shadow table DB creation parameters
*/
struct tf_shadow_tbl_create_db_parms {
/**
* [in] Receive or transmit direction
*/
enum tf_dir dir;
/**
* [in] Configuration information for the shadow db
*/
struct tf_shadow_tbl_cfg_parms *cfg;
/**
* [in] Number of elements in the parms structure
*/
uint16_t num_elements;
/**
* [out] Shadow table DB handle
*/
void *tf_shadow_tbl_db;
void **shadow_db;
};
/**
@ -70,9 +71,9 @@ struct tf_shadow_tbl_create_db_parms {
*/
struct tf_shadow_tbl_free_db_parms {
/**
* Shadow table DB handle
* [in] Shadow table DB handle
*/
void *tf_shadow_tbl_db;
void *shadow_db;
};
/**
@ -82,27 +83,49 @@ struct tf_shadow_tbl_search_parms {
/**
* [in] Shadow table DB handle
*/
void *tf_shadow_tbl_db;
void *shadow_db;
/**
* [in] Table type
* [in,out] The search parms from tf core
*/
enum tf_tbl_type type;
/**
* [in] Pointer to entry blob value in remap table to match
*/
uint8_t *entry;
/**
* [in] Size of the entry blob passed in bytes
*/
uint16_t entry_sz;
/**
* [out] Index of the found element returned if hit
*/
uint16_t *index;
struct tf_tbl_alloc_search_parms *sparms;
/**
* [out] Reference count incremented if hit
*/
uint16_t *ref_cnt;
uint32_t hb_handle;
};
/**
* Shadow Table bind index parameters
*/
struct tf_shadow_tbl_bind_index_parms {
/**
* [in] Shadow tcam DB handle
*/
void *shadow_db;
/**
* [in] receive or transmit direction
*/
enum tf_dir dir;
/**
* [in] TCAM table type
*/
enum tf_tbl_type type;
/**
* [in] index of the entry to program
*/
uint16_t idx;
/**
* [in] struct containing key
*/
uint8_t *data;
/**
* [in] data size in bytes
*/
uint16_t data_sz_in_bytes;
/**
* [in] The hash bucket handled returned from the search
*/
uint32_t hb_handle;
};
/**
@ -112,27 +135,11 @@ struct tf_shadow_tbl_insert_parms {
/**
* [in] Shadow table DB handle
*/
void *tf_shadow_tbl_db;
void *shadow_db;
/**
* [in] Tbl type
* [in] The insert parms from tf core
*/
enum tf_tbl_type type;
/**
* [in] Pointer to entry blob value in remap table to match
*/
uint8_t *entry;
/**
* [in] Size of the entry blob passed in bytes
*/
uint16_t entry_sz;
/**
* [in] Entry to update
*/
uint16_t index;
/**
* [out] Reference count after insert
*/
uint16_t *ref_cnt;
struct tf_tbl_set_parms *sparms;
};
/**
@ -142,19 +149,11 @@ struct tf_shadow_tbl_remove_parms {
/**
* [in] Shadow table DB handle
*/
void *tf_shadow_tbl_db;
void *shadow_db;
/**
* [in] Tbl type
* [in] The free parms from tf core
*/
enum tf_tbl_type type;
/**
* [in] Entry to update
*/
uint16_t index;
/**
* [out] Reference count after removal
*/
uint16_t *ref_cnt;
struct tf_tbl_free_parms *fparms;
};
/**
@ -206,9 +205,26 @@ int tf_shadow_tbl_free_db(struct tf_shadow_tbl_free_db_parms *parms);
* Returns
* - (0) if successful, element was found.
* - (-EINVAL) on failure.
*
* If there is a miss, but there is room for insertion, the hb_handle returned
* is used for insertion during the bind index API
*/
int tf_shadow_tbl_search(struct tf_shadow_tbl_search_parms *parms);
/**
* Bind Shadow table db hash and result tables with result from search/alloc
*
* [in] parms
* Pointer to the search parameters
*
* Returns
* - (0) if successful
* - (-EINVAL) on failure.
*
* This is only called after a MISS in the search returns a hb_handle
*/
int tf_shadow_tbl_bind_index(struct tf_shadow_tbl_bind_index_parms *parms);
/**
* Inserts an element into the Shadow table DB. Will fail if the
* elements ref_count is different from 0. Ref_count after insert will

View File

@ -373,6 +373,12 @@ tf_shadow_tcam_clear_hash_entry(struct tf_shadow_tcam_ctxt *ctxt,
case 3:
*bucket = TF_SHADOW_TCAM_BE2_MASK_CLEAR(*bucket);
break;
default:
/*
* Since the BE_GET masks non-inclusive bits, this will not
* happen.
*/
break;
}
}

View File

@ -13,6 +13,9 @@
#include "tf_util.h"
#include "tf_msg.h"
#include "tfp.h"
#include "tf_shadow_tbl.h"
#include "tf_session.h"
#include "tf_device.h"
struct tf;
@ -25,7 +28,7 @@ static void *tbl_db[TF_DIR_MAX];
/**
* Table Shadow DBs
*/
/* static void *shadow_tbl_db[TF_DIR_MAX]; */
static void *shadow_tbl_db[TF_DIR_MAX];
/**
* Init flag, set on bind and cleared on unbind
@ -35,14 +38,19 @@ static uint8_t init;
/**
* Shadow init flag, set on bind and cleared on unbind
*/
/* static uint8_t shadow_init; */
static uint8_t shadow_init;
int
tf_tbl_bind(struct tf *tfp,
struct tf_tbl_cfg_parms *parms)
{
int rc;
int i;
int rc, d, i;
struct tf_rm_alloc_info info;
struct tf_rm_free_db_parms fparms;
struct tf_shadow_tbl_free_db_parms fshadow;
struct tf_rm_get_alloc_info_parms ainfo;
struct tf_shadow_tbl_cfg_parms shadow_cfg;
struct tf_shadow_tbl_create_db_parms shadow_cdb;
struct tf_rm_create_db_parms db_cfg = { 0 };
TF_CHECK_PARMS2(tfp, parms);
@ -58,26 +66,86 @@ tf_tbl_bind(struct tf *tfp,
db_cfg.num_elements = parms->num_elements;
db_cfg.cfg = parms->cfg;
for (i = 0; i < TF_DIR_MAX; i++) {
db_cfg.dir = i;
db_cfg.alloc_cnt = parms->resources->tbl_cnt[i].cnt;
db_cfg.rm_db = &tbl_db[i];
for (d = 0; d < TF_DIR_MAX; d++) {
db_cfg.dir = d;
db_cfg.alloc_cnt = parms->resources->tbl_cnt[d].cnt;
db_cfg.rm_db = &tbl_db[d];
rc = tf_rm_create_db(tfp, &db_cfg);
if (rc) {
TFP_DRV_LOG(ERR,
"%s: Table DB creation failed\n",
tf_dir_2_str(i));
tf_dir_2_str(d));
return rc;
}
}
/* Initialize the Shadow Table. */
if (parms->shadow_copy) {
for (d = 0; d < TF_DIR_MAX; d++) {
memset(&shadow_cfg, 0, sizeof(shadow_cfg));
memset(&shadow_cdb, 0, sizeof(shadow_cdb));
/* Get the base addresses of the tables */
for (i = 0; i < TF_TBL_TYPE_MAX; i++) {
memset(&info, 0, sizeof(info));
if (!parms->resources->tbl_cnt[d].cnt[i])
continue;
ainfo.rm_db = tbl_db[d];
ainfo.db_index = i;
ainfo.info = &info;
rc = tf_rm_get_info(&ainfo);
if (rc)
goto error;
shadow_cfg.base_addr[i] = info.entry.start;
}
/* Create the shadow db */
shadow_cfg.alloc_cnt =
parms->resources->tbl_cnt[d].cnt;
shadow_cfg.num_entries = parms->num_elements;
shadow_cdb.shadow_db = &shadow_tbl_db[d];
shadow_cdb.cfg = &shadow_cfg;
rc = tf_shadow_tbl_create_db(&shadow_cdb);
if (rc) {
TFP_DRV_LOG(ERR,
"Shadow TBL DB creation failed "
"rc=%d\n", rc);
goto error;
}
}
shadow_init = 1;
}
init = 1;
TFP_DRV_LOG(INFO,
"Table Type - initialized\n");
return 0;
error:
for (d = 0; d < TF_DIR_MAX; d++) {
memset(&fparms, 0, sizeof(fparms));
fparms.dir = d;
fparms.rm_db = tbl_db[d];
/* Ignoring return here since we are in the error case */
(void)tf_rm_free_db(tfp, &fparms);
if (parms->shadow_copy) {
fshadow.shadow_db = shadow_tbl_db[d];
tf_shadow_tbl_free_db(&fshadow);
shadow_tbl_db[d] = NULL;
}
tbl_db[d] = NULL;
}
shadow_init = 0;
init = 0;
return rc;
}
int
@ -86,6 +154,7 @@ tf_tbl_unbind(struct tf *tfp)
int rc;
int i;
struct tf_rm_free_db_parms fparms = { 0 };
struct tf_shadow_tbl_free_db_parms fshadow;
TF_CHECK_PARMS1(tfp);
@ -104,9 +173,17 @@ tf_tbl_unbind(struct tf *tfp)
return rc;
tbl_db[i] = NULL;
if (shadow_init) {
memset(&fshadow, 0, sizeof(fshadow));
fshadow.shadow_db = shadow_tbl_db[i];
tf_shadow_tbl_free_db(&fshadow);
shadow_tbl_db[i] = NULL;
}
}
init = 0;
shadow_init = 0;
return 0;
}
@ -153,6 +230,7 @@ tf_tbl_free(struct tf *tfp __rte_unused,
int rc;
struct tf_rm_is_allocated_parms aparms = { 0 };
struct tf_rm_free_parms fparms = { 0 };
struct tf_shadow_tbl_remove_parms shparms;
int allocated = 0;
TF_CHECK_PARMS2(tfp, parms);
@ -182,6 +260,36 @@ tf_tbl_free(struct tf *tfp __rte_unused,
return -EINVAL;
}
/*
* The Shadow mgmt, if enabled, determines if the entry needs
* to be deleted.
*/
if (shadow_init) {
memset(&shparms, 0, sizeof(shparms));
shparms.shadow_db = shadow_tbl_db[parms->dir];
shparms.fparms = parms;
rc = tf_shadow_tbl_remove(&shparms);
if (rc) {
/*
* Should not get here, log it and let the entry be
* deleted.
*/
TFP_DRV_LOG(ERR, "%s: Shadow free fail, "
"type:%d index:%d deleting the entry.\n",
tf_dir_2_str(parms->dir),
parms->type,
parms->idx);
} else {
/*
* If the entry still has references, just return the
* ref count to the caller. No need to remove entry
* from rm.
*/
if (parms->ref_cnt >= 1)
return rc;
}
}
/* Free requested element */
fparms.rm_db = tbl_db[parms->dir];
fparms.db_index = parms->type;
@ -200,10 +308,124 @@ tf_tbl_free(struct tf *tfp __rte_unused,
}
int
tf_tbl_alloc_search(struct tf *tfp __rte_unused,
struct tf_tbl_alloc_search_parms *parms __rte_unused)
tf_tbl_alloc_search(struct tf *tfp,
struct tf_tbl_alloc_search_parms *parms)
{
return 0;
int rc, frc;
uint32_t idx;
struct tf_session *tfs;
struct tf_dev_info *dev;
struct tf_tbl_alloc_parms aparms;
struct tf_shadow_tbl_search_parms sparms;
struct tf_shadow_tbl_bind_index_parms bparms;
struct tf_tbl_free_parms fparms;
TF_CHECK_PARMS2(tfp, parms);
if (!shadow_init || !shadow_tbl_db[parms->dir]) {
TFP_DRV_LOG(ERR, "%s: Shadow TBL not initialized.\n",
tf_dir_2_str(parms->dir));
return -EINVAL;
}
memset(&sparms, 0, sizeof(sparms));
sparms.sparms = parms;
sparms.shadow_db = shadow_tbl_db[parms->dir];
rc = tf_shadow_tbl_search(&sparms);
if (rc)
return rc;
/*
* The app didn't request us to alloc the entry, so return now.
* The hit should have been updated in the original search parm.
*/
if (!parms->alloc || parms->search_status != MISS)
return rc;
/* Retrieve the session information */
rc = tf_session_get_session(tfp, &tfs);
if (rc) {
TFP_DRV_LOG(ERR,
"%s: Failed to lookup session, rc:%s\n",
tf_dir_2_str(parms->dir),
strerror(-rc));
return rc;
}
/* Retrieve the device information */
rc = tf_session_get_device(tfs, &dev);
if (rc) {
TFP_DRV_LOG(ERR,
"%s: Failed to lookup device, rc:%s\n",
tf_dir_2_str(parms->dir),
strerror(-rc));
return rc;
}
/* Allocate the index */
if (dev->ops->tf_dev_alloc_tbl == NULL) {
rc = -EOPNOTSUPP;
TFP_DRV_LOG(ERR,
"%s: Operation not supported, rc:%s\n",
tf_dir_2_str(parms->dir),
strerror(-rc));
return -EOPNOTSUPP;
}
memset(&aparms, 0, sizeof(aparms));
aparms.dir = parms->dir;
aparms.type = parms->type;
aparms.tbl_scope_id = parms->tbl_scope_id;
aparms.idx = &idx;
rc = dev->ops->tf_dev_alloc_tbl(tfp, &aparms);
if (rc) {
TFP_DRV_LOG(ERR,
"%s: Table allocation failed, rc:%s\n",
tf_dir_2_str(parms->dir),
strerror(-rc));
return rc;
}
/* Bind the allocated index to the data */
memset(&bparms, 0, sizeof(bparms));
bparms.shadow_db = shadow_tbl_db[parms->dir];
bparms.dir = parms->dir;
bparms.type = parms->type;
bparms.idx = idx;
bparms.data = parms->result;
bparms.data_sz_in_bytes = parms->result_sz_in_bytes;
bparms.hb_handle = sparms.hb_handle;
rc = tf_shadow_tbl_bind_index(&bparms);
if (rc) {
/* Error binding entry, need to free the allocated idx */
if (dev->ops->tf_dev_free_tbl == NULL) {
rc = -EOPNOTSUPP;
TFP_DRV_LOG(ERR,
"%s: Operation not supported, rc:%s\n",
tf_dir_2_str(parms->dir),
strerror(-rc));
return rc;
}
memset(&fparms, 0, sizeof(fparms));
fparms.dir = parms->dir;
fparms.type = parms->type;
fparms.idx = idx;
frc = dev->ops->tf_dev_free_tbl(tfp, &fparms);
if (frc) {
TFP_DRV_LOG(ERR,
"%s: Failed free index allocated during "
"search. rc=%s\n",
tf_dir_2_str(parms->dir),
strerror(-frc));
/* return the original failure. */
return rc;
}
}
parms->idx = idx;
return rc;
}
int

View File

@ -144,29 +144,31 @@ struct tf_tbl_alloc_search_parms {
*/
uint32_t tbl_scope_id;
/**
* [in] Enable search for matching entry. If the table type is
* internal the shadow copy will be searched before
* alloc. Session must be configured with shadow copy enabled.
*/
uint8_t search_enable;
/**
* [in] Result data to search for (if search_enable)
* [in] Result data to search for
*/
uint8_t *result;
/**
* [in] Result data size in bytes (if search_enable)
* [in] Result data size in bytes
*/
uint16_t result_sz_in_bytes;
/**
* [in] Whether or not to allocate on MISS, 1 is allocate.
*/
uint8_t alloc;
/**
* [out] If search_enable, set if matching entry found
*/
uint8_t hit;
/**
* [out] Current ref count after allocation (if search_enable)
* [out] The status of the search (REJECT, MISS, HIT)
*/
enum tf_search_status search_status;
/**
* [out] Current ref count after allocation
*/
uint16_t ref_cnt;
/**
* [out] Idx of allocated entry or found entry (if search_enable)
* [out] Idx of allocated entry or found entry
*/
uint32_t idx;
};

View File

@ -134,7 +134,7 @@ struct tf_tcam_alloc_search_parms {
/**
* [out] Search result status (hit, miss, reject)
*/
enum tf_tcam_search_status search_status;
enum tf_search_status search_status;
/**
* [out] Current refcnt after allocation
*/