app/compress-perf: refactor code

Code refactoring to separate validation from benchmarking part.
Added op's status checking after rte_compressdev_dequeue_burst
function.

Signed-off-by: Tomasz Jozwiak <tomaszx.jozwiak@intel.com>
Acked-by: Fiona Trahe <fiona.trahe@intel.com>
Acked-by: Lee Daly <lee.daly@intel.com>
Acked-by: Shally Verma <shally.verma@caviumnetworks.com>
This commit is contained in:
Tomasz Jozwiak 2018-12-12 13:08:05 +01:00 committed by Akhil Goyal
parent fedfef43c0
commit 0bf1e98f10
8 changed files with 718 additions and 355 deletions

View File

@ -12,5 +12,7 @@ CFLAGS += -O3
# all source are stored in SRCS-y
SRCS-y := main.c
SRCS-y += comp_perf_options_parse.c
SRCS-y += comp_perf_test_verify.c
SRCS-y += comp_perf_test_benchmark.c
include $(RTE_SDK)/mk/rte.app.mk

View File

@ -2,6 +2,9 @@
* Copyright(c) 2018 Intel Corporation
*/
#ifndef _COMP_PERF_OPS_
#define _COMP_PERF_OPS_
#define MAX_DRIVER_NAME 64
#define MAX_INPUT_FILE_NAME 64
#define MAX_LIST 32
@ -46,6 +49,13 @@ struct comp_test_data {
/* Store TSC duration for all levels (including level 0) */
uint64_t comp_tsc_duration[RTE_COMP_LEVEL_MAX + 1];
uint64_t decomp_tsc_duration[RTE_COMP_LEVEL_MAX + 1];
size_t comp_data_sz;
size_t decomp_data_sz;
double ratio;
double comp_gbps;
double decomp_gbps;
double comp_tsc_byte;
double decomp_tsc_byte;
};
int
@ -57,3 +67,5 @@ comp_perf_options_default(struct comp_test_data *test_data);
int
comp_perf_options_check(struct comp_test_data *test_data);
#endif

View File

@ -0,0 +1,308 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Intel Corporation
*/
#include <rte_malloc.h>
#include <rte_eal.h>
#include <rte_log.h>
#include <rte_cycles.h>
#include <rte_compressdev.h>
#include "comp_perf_test_benchmark.h"
static int
main_loop(struct comp_test_data *test_data, uint8_t level,
enum rte_comp_xform_type type)
{
uint8_t dev_id = test_data->cdev_id;
uint32_t i, iter, num_iter;
struct rte_comp_op **ops, **deq_ops;
void *priv_xform = NULL;
struct rte_comp_xform xform;
struct rte_mbuf **input_bufs, **output_bufs;
int res = 0;
int allocated = 0;
if (test_data == NULL || !test_data->burst_sz) {
RTE_LOG(ERR, USER1,
"Unknown burst size\n");
return -1;
}
ops = rte_zmalloc_socket(NULL,
2 * test_data->total_bufs * sizeof(struct rte_comp_op *),
0, rte_socket_id());
if (ops == NULL) {
RTE_LOG(ERR, USER1,
"Can't allocate memory for ops strucures\n");
return -1;
}
deq_ops = &ops[test_data->total_bufs];
if (type == RTE_COMP_COMPRESS) {
xform = (struct rte_comp_xform) {
.type = RTE_COMP_COMPRESS,
.compress = {
.algo = RTE_COMP_ALGO_DEFLATE,
.deflate.huffman = test_data->huffman_enc,
.level = level,
.window_size = test_data->window_sz,
.chksum = RTE_COMP_CHECKSUM_NONE,
.hash_algo = RTE_COMP_HASH_ALGO_NONE
}
};
input_bufs = test_data->decomp_bufs;
output_bufs = test_data->comp_bufs;
} else {
xform = (struct rte_comp_xform) {
.type = RTE_COMP_DECOMPRESS,
.decompress = {
.algo = RTE_COMP_ALGO_DEFLATE,
.chksum = RTE_COMP_CHECKSUM_NONE,
.window_size = test_data->window_sz,
.hash_algo = RTE_COMP_HASH_ALGO_NONE
}
};
input_bufs = test_data->comp_bufs;
output_bufs = test_data->decomp_bufs;
}
/* Create private xform */
if (rte_compressdev_private_xform_create(dev_id, &xform,
&priv_xform) < 0) {
RTE_LOG(ERR, USER1, "Private xform could not be created\n");
res = -1;
goto end;
}
uint64_t tsc_start, tsc_end, tsc_duration;
tsc_start = tsc_end = tsc_duration = 0;
tsc_start = rte_rdtsc();
num_iter = test_data->num_iter;
for (iter = 0; iter < num_iter; iter++) {
uint32_t total_ops = test_data->total_bufs;
uint32_t remaining_ops = test_data->total_bufs;
uint32_t total_deq_ops = 0;
uint32_t total_enq_ops = 0;
uint16_t ops_unused = 0;
uint16_t num_enq = 0;
uint16_t num_deq = 0;
while (remaining_ops > 0) {
uint16_t num_ops = RTE_MIN(remaining_ops,
test_data->burst_sz);
uint16_t ops_needed = num_ops - ops_unused;
/*
* Move the unused operations from the previous
* enqueue_burst call to the front, to maintain order
*/
if ((ops_unused > 0) && (num_enq > 0)) {
size_t nb_b_to_mov =
ops_unused * sizeof(struct rte_comp_op *);
memmove(ops, &ops[num_enq], nb_b_to_mov);
}
/* Allocate compression operations */
if (ops_needed && !rte_comp_op_bulk_alloc(
test_data->op_pool,
&ops[ops_unused],
ops_needed)) {
RTE_LOG(ERR, USER1,
"Could not allocate enough operations\n");
res = -1;
goto end;
}
allocated += ops_needed;
for (i = 0; i < ops_needed; i++) {
/*
* Calculate next buffer to attach to operation
*/
uint32_t buf_id = total_enq_ops + i +
ops_unused;
uint16_t op_id = ops_unused + i;
/* Reset all data in output buffers */
struct rte_mbuf *m = output_bufs[buf_id];
m->pkt_len = test_data->seg_sz * m->nb_segs;
while (m) {
m->data_len = m->buf_len - m->data_off;
m = m->next;
}
ops[op_id]->m_src = input_bufs[buf_id];
ops[op_id]->m_dst = output_bufs[buf_id];
ops[op_id]->src.offset = 0;
ops[op_id]->src.length =
rte_pktmbuf_pkt_len(input_bufs[buf_id]);
ops[op_id]->dst.offset = 0;
ops[op_id]->flush_flag = RTE_COMP_FLUSH_FINAL;
ops[op_id]->input_chksum = buf_id;
ops[op_id]->private_xform = priv_xform;
}
num_enq = rte_compressdev_enqueue_burst(dev_id, 0, ops,
num_ops);
if (num_enq == 0) {
struct rte_compressdev_stats stats;
rte_compressdev_stats_get(dev_id, &stats);
if (stats.enqueue_err_count) {
res = -1;
goto end;
}
}
ops_unused = num_ops - num_enq;
remaining_ops -= num_enq;
total_enq_ops += num_enq;
num_deq = rte_compressdev_dequeue_burst(dev_id, 0,
deq_ops,
test_data->burst_sz);
total_deq_ops += num_deq;
if (iter == num_iter - 1) {
for (i = 0; i < num_deq; i++) {
struct rte_comp_op *op = deq_ops[i];
if (op->status !=
RTE_COMP_OP_STATUS_SUCCESS) {
RTE_LOG(ERR, USER1,
"Some operations were not successful\n");
goto end;
}
struct rte_mbuf *m = op->m_dst;
m->pkt_len = op->produced;
uint32_t remaining_data = op->produced;
uint16_t data_to_append;
while (remaining_data > 0) {
data_to_append =
RTE_MIN(remaining_data,
test_data->seg_sz);
m->data_len = data_to_append;
remaining_data -=
data_to_append;
m = m->next;
}
}
}
rte_mempool_put_bulk(test_data->op_pool,
(void **)deq_ops, num_deq);
allocated -= num_deq;
}
/* Dequeue the last operations */
while (total_deq_ops < total_ops) {
num_deq = rte_compressdev_dequeue_burst(dev_id, 0,
deq_ops, test_data->burst_sz);
if (num_deq == 0) {
struct rte_compressdev_stats stats;
rte_compressdev_stats_get(dev_id, &stats);
if (stats.dequeue_err_count) {
res = -1;
goto end;
}
}
total_deq_ops += num_deq;
if (iter == num_iter - 1) {
for (i = 0; i < num_deq; i++) {
struct rte_comp_op *op = deq_ops[i];
if (op->status !=
RTE_COMP_OP_STATUS_SUCCESS) {
RTE_LOG(ERR, USER1,
"Some operations were not successful\n");
goto end;
}
struct rte_mbuf *m = op->m_dst;
m->pkt_len = op->produced;
uint32_t remaining_data = op->produced;
uint16_t data_to_append;
while (remaining_data > 0) {
data_to_append =
RTE_MIN(remaining_data,
test_data->seg_sz);
m->data_len = data_to_append;
remaining_data -=
data_to_append;
m = m->next;
}
}
}
rte_mempool_put_bulk(test_data->op_pool,
(void **)deq_ops, num_deq);
allocated -= num_deq;
}
}
tsc_end = rte_rdtsc();
tsc_duration = tsc_end - tsc_start;
if (type == RTE_COMP_COMPRESS)
test_data->comp_tsc_duration[level] =
tsc_duration / num_iter;
else
test_data->decomp_tsc_duration[level] =
tsc_duration / num_iter;
end:
rte_mempool_put_bulk(test_data->op_pool, (void **)ops, allocated);
rte_compressdev_private_xform_free(dev_id, priv_xform);
rte_free(ops);
return res;
}
int
cperf_benchmark(struct comp_test_data *test_data, uint8_t level)
{
int i, ret = EXIT_SUCCESS;
/*
* Run the tests twice, discarding the first performance
* results, before the cache is warmed up
*/
for (i = 0; i < 2; i++) {
if (main_loop(test_data, level, RTE_COMP_COMPRESS) < 0) {
ret = EXIT_FAILURE;
goto end;
}
}
for (i = 0; i < 2; i++) {
if (main_loop(test_data, level, RTE_COMP_DECOMPRESS) < 0) {
ret = EXIT_FAILURE;
goto end;
}
}
test_data->comp_tsc_byte =
(double)(test_data->comp_tsc_duration[level]) /
test_data->input_data_sz;
test_data->decomp_tsc_byte =
(double)(test_data->decomp_tsc_duration[level]) /
test_data->input_data_sz;
test_data->comp_gbps = rte_get_tsc_hz() / test_data->comp_tsc_byte * 8 /
1000000000;
test_data->decomp_gbps = rte_get_tsc_hz() / test_data->decomp_tsc_byte
* 8 / 1000000000;
end:
return ret;
}

View File

@ -0,0 +1,13 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Intel Corporation
*/
#ifndef _COMP_PERF_TEST_BENCHMARK_
#define _COMP_PERF_TEST_BENCHMARK_
#include "comp_perf_options.h"
int
cperf_benchmark(struct comp_test_data *test_data, uint8_t level);
#endif

View File

@ -0,0 +1,353 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Intel Corporation
*/
#include <rte_malloc.h>
#include <rte_eal.h>
#include <rte_log.h>
#include <rte_compressdev.h>
#include "comp_perf_test_verify.h"
static int
main_loop(struct comp_test_data *test_data, uint8_t level,
enum rte_comp_xform_type type,
uint8_t *output_data_ptr,
size_t *output_data_sz)
{
uint8_t dev_id = test_data->cdev_id;
uint32_t i, iter, num_iter;
struct rte_comp_op **ops, **deq_ops;
void *priv_xform = NULL;
struct rte_comp_xform xform;
size_t output_size = 0;
struct rte_mbuf **input_bufs, **output_bufs;
int res = 0;
int allocated = 0;
if (test_data == NULL || !test_data->burst_sz) {
RTE_LOG(ERR, USER1,
"Unknown burst size\n");
return -1;
}
ops = rte_zmalloc_socket(NULL,
2 * test_data->total_bufs * sizeof(struct rte_comp_op *),
0, rte_socket_id());
if (ops == NULL) {
RTE_LOG(ERR, USER1,
"Can't allocate memory for ops strucures\n");
return -1;
}
deq_ops = &ops[test_data->total_bufs];
if (type == RTE_COMP_COMPRESS) {
xform = (struct rte_comp_xform) {
.type = RTE_COMP_COMPRESS,
.compress = {
.algo = RTE_COMP_ALGO_DEFLATE,
.deflate.huffman = test_data->huffman_enc,
.level = level,
.window_size = test_data->window_sz,
.chksum = RTE_COMP_CHECKSUM_NONE,
.hash_algo = RTE_COMP_HASH_ALGO_NONE
}
};
input_bufs = test_data->decomp_bufs;
output_bufs = test_data->comp_bufs;
} else {
xform = (struct rte_comp_xform) {
.type = RTE_COMP_DECOMPRESS,
.decompress = {
.algo = RTE_COMP_ALGO_DEFLATE,
.chksum = RTE_COMP_CHECKSUM_NONE,
.window_size = test_data->window_sz,
.hash_algo = RTE_COMP_HASH_ALGO_NONE
}
};
input_bufs = test_data->comp_bufs;
output_bufs = test_data->decomp_bufs;
}
/* Create private xform */
if (rte_compressdev_private_xform_create(dev_id, &xform,
&priv_xform) < 0) {
RTE_LOG(ERR, USER1, "Private xform could not be created\n");
res = -1;
goto end;
}
num_iter = 1;
for (iter = 0; iter < num_iter; iter++) {
uint32_t total_ops = test_data->total_bufs;
uint32_t remaining_ops = test_data->total_bufs;
uint32_t total_deq_ops = 0;
uint32_t total_enq_ops = 0;
uint16_t ops_unused = 0;
uint16_t num_enq = 0;
uint16_t num_deq = 0;
output_size = 0;
while (remaining_ops > 0) {
uint16_t num_ops = RTE_MIN(remaining_ops,
test_data->burst_sz);
uint16_t ops_needed = num_ops - ops_unused;
/*
* Move the unused operations from the previous
* enqueue_burst call to the front, to maintain order
*/
if ((ops_unused > 0) && (num_enq > 0)) {
size_t nb_b_to_mov =
ops_unused * sizeof(struct rte_comp_op *);
memmove(ops, &ops[num_enq], nb_b_to_mov);
}
/* Allocate compression operations */
if (ops_needed && !rte_comp_op_bulk_alloc(
test_data->op_pool,
&ops[ops_unused],
ops_needed)) {
RTE_LOG(ERR, USER1,
"Could not allocate enough operations\n");
res = -1;
goto end;
}
allocated += ops_needed;
for (i = 0; i < ops_needed; i++) {
/*
* Calculate next buffer to attach to operation
*/
uint32_t buf_id = total_enq_ops + i +
ops_unused;
uint16_t op_id = ops_unused + i;
/* Reset all data in output buffers */
struct rte_mbuf *m = output_bufs[buf_id];
m->pkt_len = test_data->seg_sz * m->nb_segs;
while (m) {
m->data_len = m->buf_len - m->data_off;
m = m->next;
}
ops[op_id]->m_src = input_bufs[buf_id];
ops[op_id]->m_dst = output_bufs[buf_id];
ops[op_id]->src.offset = 0;
ops[op_id]->src.length =
rte_pktmbuf_pkt_len(input_bufs[buf_id]);
ops[op_id]->dst.offset = 0;
ops[op_id]->flush_flag = RTE_COMP_FLUSH_FINAL;
ops[op_id]->input_chksum = buf_id;
ops[op_id]->private_xform = priv_xform;
}
num_enq = rte_compressdev_enqueue_burst(dev_id, 0, ops,
num_ops);
if (num_enq == 0) {
struct rte_compressdev_stats stats;
rte_compressdev_stats_get(dev_id, &stats);
if (stats.enqueue_err_count) {
res = -1;
goto end;
}
}
ops_unused = num_ops - num_enq;
remaining_ops -= num_enq;
total_enq_ops += num_enq;
num_deq = rte_compressdev_dequeue_burst(dev_id, 0,
deq_ops,
test_data->burst_sz);
total_deq_ops += num_deq;
for (i = 0; i < num_deq; i++) {
struct rte_comp_op *op = deq_ops[i];
if (op->status != RTE_COMP_OP_STATUS_SUCCESS) {
RTE_LOG(ERR, USER1,
"Some operations were not successful\n");
goto end;
}
const void *read_data_addr =
rte_pktmbuf_read(op->m_dst, 0,
op->produced, output_data_ptr);
if (read_data_addr == NULL) {
RTE_LOG(ERR, USER1,
"Could not copy buffer in destination\n");
res = -1;
goto end;
}
if (read_data_addr != output_data_ptr)
rte_memcpy(output_data_ptr,
rte_pktmbuf_mtod(op->m_dst,
uint8_t *),
op->produced);
output_data_ptr += op->produced;
output_size += op->produced;
}
if (iter == num_iter - 1) {
for (i = 0; i < num_deq; i++) {
struct rte_comp_op *op = deq_ops[i];
struct rte_mbuf *m = op->m_dst;
m->pkt_len = op->produced;
uint32_t remaining_data = op->produced;
uint16_t data_to_append;
while (remaining_data > 0) {
data_to_append =
RTE_MIN(remaining_data,
test_data->seg_sz);
m->data_len = data_to_append;
remaining_data -=
data_to_append;
m = m->next;
}
}
}
rte_mempool_put_bulk(test_data->op_pool,
(void **)deq_ops, num_deq);
allocated -= num_deq;
}
/* Dequeue the last operations */
while (total_deq_ops < total_ops) {
num_deq = rte_compressdev_dequeue_burst(dev_id, 0,
deq_ops, test_data->burst_sz);
if (num_deq == 0) {
struct rte_compressdev_stats stats;
rte_compressdev_stats_get(dev_id, &stats);
if (stats.dequeue_err_count) {
res = -1;
goto end;
}
}
total_deq_ops += num_deq;
for (i = 0; i < num_deq; i++) {
struct rte_comp_op *op = deq_ops[i];
if (op->status != RTE_COMP_OP_STATUS_SUCCESS) {
RTE_LOG(ERR, USER1,
"Some operations were not successful\n");
goto end;
}
const void *read_data_addr =
rte_pktmbuf_read(op->m_dst,
op->dst.offset,
op->produced, output_data_ptr);
if (read_data_addr == NULL) {
RTE_LOG(ERR, USER1,
"Could not copy buffer in destination\n");
res = -1;
goto end;
}
if (read_data_addr != output_data_ptr)
rte_memcpy(output_data_ptr,
rte_pktmbuf_mtod(
op->m_dst, uint8_t *),
op->produced);
output_data_ptr += op->produced;
output_size += op->produced;
}
if (iter == num_iter - 1) {
for (i = 0; i < num_deq; i++) {
struct rte_comp_op *op = deq_ops[i];
struct rte_mbuf *m = op->m_dst;
m->pkt_len = op->produced;
uint32_t remaining_data = op->produced;
uint16_t data_to_append;
while (remaining_data > 0) {
data_to_append =
RTE_MIN(remaining_data,
test_data->seg_sz);
m->data_len = data_to_append;
remaining_data -=
data_to_append;
m = m->next;
}
}
}
rte_mempool_put_bulk(test_data->op_pool,
(void **)deq_ops, num_deq);
allocated -= num_deq;
}
}
if (output_data_sz)
*output_data_sz = output_size;
end:
rte_mempool_put_bulk(test_data->op_pool, (void **)ops, allocated);
rte_compressdev_private_xform_free(dev_id, priv_xform);
rte_free(ops);
return res;
}
int
cperf_verification(struct comp_test_data *test_data, uint8_t level)
{
int ret = EXIT_SUCCESS;
test_data->ratio = 0;
if (main_loop(test_data, level, RTE_COMP_COMPRESS,
test_data->compressed_data,
&test_data->comp_data_sz) < 0) {
ret = EXIT_FAILURE;
goto end;
}
if (main_loop(test_data, level, RTE_COMP_DECOMPRESS,
test_data->decompressed_data,
&test_data->decomp_data_sz) < 0) {
ret = EXIT_FAILURE;
goto end;
}
if (test_data->decomp_data_sz != test_data->input_data_sz) {
RTE_LOG(ERR, USER1,
"Decompressed data length not equal to input data length\n");
RTE_LOG(ERR, USER1,
"Decompressed size = %zu, expected = %zu\n",
test_data->decomp_data_sz, test_data->input_data_sz);
ret = EXIT_FAILURE;
goto end;
} else {
if (memcmp(test_data->decompressed_data,
test_data->input_data,
test_data->input_data_sz) != 0) {
RTE_LOG(ERR, USER1,
"Decompressed data is not the same as file data\n");
ret = EXIT_FAILURE;
goto end;
}
}
test_data->ratio = (double) test_data->comp_data_sz /
test_data->input_data_sz * 100;
end:
return ret;
}

View File

@ -0,0 +1,13 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Intel Corporation
*/
#ifndef _COMP_PERF_TEST_VERIFY_
#define _COMP_PERF_TEST_VERIFY_
#include "comp_perf_options.h"
int
cperf_verification(struct comp_test_data *test_data, uint8_t level);
#endif

View File

@ -5,10 +5,11 @@
#include <rte_malloc.h>
#include <rte_eal.h>
#include <rte_log.h>
#include <rte_cycles.h>
#include <rte_compressdev.h>
#include "comp_perf_options.h"
#include "comp_perf_test_verify.h"
#include "comp_perf_test_benchmark.h"
#define NUM_MAX_XFORMS 16
#define NUM_MAX_INFLIGHT_OPS 512
@ -442,287 +443,7 @@ free_bufs(struct comp_test_data *test_data)
}
}
static int
main_loop(struct comp_test_data *test_data, uint8_t level,
enum rte_comp_xform_type type,
uint8_t *output_data_ptr,
size_t *output_data_sz,
unsigned int benchmarking)
{
uint8_t dev_id = test_data->cdev_id;
uint32_t i, iter, num_iter;
struct rte_comp_op **ops, **deq_ops;
void *priv_xform = NULL;
struct rte_comp_xform xform;
size_t output_size = 0;
struct rte_mbuf **input_bufs, **output_bufs;
int res = 0;
int allocated = 0;
if (test_data == NULL || !test_data->burst_sz) {
RTE_LOG(ERR, USER1,
"Unknown burst size\n");
return -1;
}
ops = rte_zmalloc_socket(NULL,
2 * test_data->total_bufs * sizeof(struct rte_comp_op *),
0, rte_socket_id());
if (ops == NULL) {
RTE_LOG(ERR, USER1,
"Can't allocate memory for ops strucures\n");
return -1;
}
deq_ops = &ops[test_data->total_bufs];
if (type == RTE_COMP_COMPRESS) {
xform = (struct rte_comp_xform) {
.type = RTE_COMP_COMPRESS,
.compress = {
.algo = RTE_COMP_ALGO_DEFLATE,
.deflate.huffman = test_data->huffman_enc,
.level = level,
.window_size = test_data->window_sz,
.chksum = RTE_COMP_CHECKSUM_NONE,
.hash_algo = RTE_COMP_HASH_ALGO_NONE
}
};
input_bufs = test_data->decomp_bufs;
output_bufs = test_data->comp_bufs;
} else {
xform = (struct rte_comp_xform) {
.type = RTE_COMP_DECOMPRESS,
.decompress = {
.algo = RTE_COMP_ALGO_DEFLATE,
.chksum = RTE_COMP_CHECKSUM_NONE,
.window_size = test_data->window_sz,
.hash_algo = RTE_COMP_HASH_ALGO_NONE
}
};
input_bufs = test_data->comp_bufs;
output_bufs = test_data->decomp_bufs;
}
/* Create private xform */
if (rte_compressdev_private_xform_create(dev_id, &xform,
&priv_xform) < 0) {
RTE_LOG(ERR, USER1, "Private xform could not be created\n");
res = -1;
goto end;
}
uint64_t tsc_start, tsc_end, tsc_duration;
tsc_start = tsc_end = tsc_duration = 0;
if (benchmarking) {
tsc_start = rte_rdtsc();
num_iter = test_data->num_iter;
} else
num_iter = 1;
for (iter = 0; iter < num_iter; iter++) {
uint32_t total_ops = test_data->total_bufs;
uint32_t remaining_ops = test_data->total_bufs;
uint32_t total_deq_ops = 0;
uint32_t total_enq_ops = 0;
uint16_t ops_unused = 0;
uint16_t num_enq = 0;
uint16_t num_deq = 0;
output_size = 0;
while (remaining_ops > 0) {
uint16_t num_ops = RTE_MIN(remaining_ops,
test_data->burst_sz);
uint16_t ops_needed = num_ops - ops_unused;
/*
* Move the unused operations from the previous
* enqueue_burst call to the front, to maintain order
*/
if ((ops_unused > 0) && (num_enq > 0)) {
size_t nb_b_to_mov =
ops_unused * sizeof(struct rte_comp_op *);
memmove(ops, &ops[num_enq], nb_b_to_mov);
}
/* Allocate compression operations */
if (ops_needed && !rte_comp_op_bulk_alloc(
test_data->op_pool,
&ops[ops_unused],
ops_needed)) {
RTE_LOG(ERR, USER1,
"Could not allocate enough operations\n");
res = -1;
goto end;
}
allocated += ops_needed;
for (i = 0; i < ops_needed; i++) {
/*
* Calculate next buffer to attach to operation
*/
uint32_t buf_id = total_enq_ops + i +
ops_unused;
uint16_t op_id = ops_unused + i;
/* Reset all data in output buffers */
struct rte_mbuf *m = output_bufs[buf_id];
m->pkt_len = test_data->seg_sz * m->nb_segs;
while (m) {
m->data_len = m->buf_len - m->data_off;
m = m->next;
}
ops[op_id]->m_src = input_bufs[buf_id];
ops[op_id]->m_dst = output_bufs[buf_id];
ops[op_id]->src.offset = 0;
ops[op_id]->src.length =
rte_pktmbuf_pkt_len(input_bufs[buf_id]);
ops[op_id]->dst.offset = 0;
ops[op_id]->flush_flag = RTE_COMP_FLUSH_FINAL;
ops[op_id]->input_chksum = buf_id;
ops[op_id]->private_xform = priv_xform;
}
num_enq = rte_compressdev_enqueue_burst(dev_id, 0, ops,
num_ops);
ops_unused = num_ops - num_enq;
remaining_ops -= num_enq;
total_enq_ops += num_enq;
num_deq = rte_compressdev_dequeue_burst(dev_id, 0,
deq_ops,
test_data->burst_sz);
total_deq_ops += num_deq;
if (benchmarking == 0) {
for (i = 0; i < num_deq; i++) {
struct rte_comp_op *op = deq_ops[i];
const void *read_data_addr =
rte_pktmbuf_read(op->m_dst, 0,
op->produced, output_data_ptr);
if (read_data_addr == NULL) {
RTE_LOG(ERR, USER1,
"Could not copy buffer in destination\n");
res = -1;
goto end;
}
if (read_data_addr != output_data_ptr)
rte_memcpy(output_data_ptr,
rte_pktmbuf_mtod(
op->m_dst, uint8_t *),
op->produced);
output_data_ptr += op->produced;
output_size += op->produced;
}
}
if (iter == num_iter - 1) {
for (i = 0; i < num_deq; i++) {
struct rte_comp_op *op = deq_ops[i];
struct rte_mbuf *m = op->m_dst;
m->pkt_len = op->produced;
uint32_t remaining_data = op->produced;
uint16_t data_to_append;
while (remaining_data > 0) {
data_to_append =
RTE_MIN(remaining_data,
test_data->seg_sz);
m->data_len = data_to_append;
remaining_data -=
data_to_append;
m = m->next;
}
}
}
rte_mempool_put_bulk(test_data->op_pool,
(void **)deq_ops, num_deq);
allocated -= num_deq;
}
/* Dequeue the last operations */
while (total_deq_ops < total_ops) {
num_deq = rte_compressdev_dequeue_burst(dev_id, 0,
deq_ops, test_data->burst_sz);
total_deq_ops += num_deq;
if (benchmarking == 0) {
for (i = 0; i < num_deq; i++) {
struct rte_comp_op *op = deq_ops[i];
const void *read_data_addr =
rte_pktmbuf_read(op->m_dst,
op->dst.offset,
op->produced,
output_data_ptr);
if (read_data_addr == NULL) {
RTE_LOG(ERR, USER1,
"Could not copy buffer in destination\n");
res = -1;
goto end;
}
if (read_data_addr != output_data_ptr)
rte_memcpy(output_data_ptr,
rte_pktmbuf_mtod(
op->m_dst, uint8_t *),
op->produced);
output_data_ptr += op->produced;
output_size += op->produced;
}
}
if (iter == num_iter - 1) {
for (i = 0; i < num_deq; i++) {
struct rte_comp_op *op = deq_ops[i];
struct rte_mbuf *m = op->m_dst;
m->pkt_len = op->produced;
uint32_t remaining_data = op->produced;
uint16_t data_to_append;
while (remaining_data > 0) {
data_to_append =
RTE_MIN(remaining_data,
test_data->seg_sz);
m->data_len = data_to_append;
remaining_data -=
data_to_append;
m = m->next;
}
}
}
rte_mempool_put_bulk(test_data->op_pool,
(void **)deq_ops, num_deq);
allocated -= num_deq;
}
}
if (benchmarking) {
tsc_end = rte_rdtsc();
tsc_duration = tsc_end - tsc_start;
if (type == RTE_COMP_COMPRESS)
test_data->comp_tsc_duration[level] =
tsc_duration / num_iter;
else
test_data->decomp_tsc_duration[level] =
tsc_duration / num_iter;
}
if (benchmarking == 0 && output_data_sz)
*output_data_sz = output_size;
end:
rte_mempool_put_bulk(test_data->op_pool, (void **)ops, allocated);
rte_compressdev_private_xform_free(dev_id, priv_xform);
rte_free(ops);
return res;
}
int
main(int argc, char **argv)
@ -745,6 +466,7 @@ main(int argc, char **argv)
rte_exit(EXIT_FAILURE, "Cannot reserve memory in socket %d\n",
rte_socket_id());
ret = EXIT_SUCCESS;
cleanup = ST_TEST_DATA;
comp_perf_options_default(test_data);
@ -787,9 +509,6 @@ main(int argc, char **argv)
else
level = test_data->level.list[0];
size_t comp_data_sz;
size_t decomp_data_sz;
printf("Burst size = %u\n", test_data->burst_sz);
printf("File size = %zu\n", test_data->input_data_sz);
@ -800,84 +519,27 @@ main(int argc, char **argv)
cleanup = ST_DURING_TEST;
while (level <= test_data->level.max) {
/*
* Run a first iteration, to verify compression and
* get the compression ratio for the level
*/
if (main_loop(test_data, level, RTE_COMP_COMPRESS,
test_data->compressed_data,
&comp_data_sz, 0) < 0) {
ret = EXIT_FAILURE;
goto end;
}
if (main_loop(test_data, level, RTE_COMP_DECOMPRESS,
test_data->decompressed_data,
&decomp_data_sz, 0) < 0) {
ret = EXIT_FAILURE;
goto end;
}
if (decomp_data_sz != test_data->input_data_sz) {
RTE_LOG(ERR, USER1,
"Decompressed data length not equal to input data length\n");
RTE_LOG(ERR, USER1,
"Decompressed size = %zu, expected = %zu\n",
decomp_data_sz, test_data->input_data_sz);
ret = EXIT_FAILURE;
goto end;
} else {
if (memcmp(test_data->decompressed_data,
test_data->input_data,
test_data->input_data_sz) != 0) {
RTE_LOG(ERR, USER1,
"Decompressed data is not the same as file data\n");
ret = EXIT_FAILURE;
goto end;
}
}
double ratio = (double) comp_data_sz /
test_data->input_data_sz * 100;
if (cperf_verification(test_data, level) != EXIT_SUCCESS)
break;
/*
* Run the tests twice, discarding the first performance
* results, before the cache is warmed up
* Run benchmarking test
*/
for (i = 0; i < 2; i++) {
if (main_loop(test_data, level, RTE_COMP_COMPRESS,
NULL, NULL, 1) < 0) {
ret = EXIT_FAILURE;
goto end;
}
}
for (i = 0; i < 2; i++) {
if (main_loop(test_data, level, RTE_COMP_DECOMPRESS,
NULL, NULL, 1) < 0) {
ret = EXIT_FAILURE;
goto end;
}
}
uint64_t comp_tsc_duration =
test_data->comp_tsc_duration[level];
double comp_tsc_byte = (double)comp_tsc_duration /
test_data->input_data_sz;
double comp_gbps = rte_get_tsc_hz() / comp_tsc_byte * 8 /
1000000000;
uint64_t decomp_tsc_duration =
test_data->decomp_tsc_duration[level];
double decomp_tsc_byte = (double)decomp_tsc_duration /
test_data->input_data_sz;
double decomp_gbps = rte_get_tsc_hz() / decomp_tsc_byte * 8 /
1000000000;
if (cperf_benchmark(test_data, level) != EXIT_SUCCESS)
break;
printf("%6u%12zu%17.2f%19"PRIu64"%21.2f"
"%15.2f%21"PRIu64"%23.2f%16.2f\n",
level, comp_data_sz, ratio, comp_tsc_duration,
comp_tsc_byte, comp_gbps, decomp_tsc_duration,
decomp_tsc_byte, decomp_gbps);
level, test_data->comp_data_sz, test_data->ratio,
test_data->comp_tsc_duration[level],
test_data->comp_tsc_byte, test_data->comp_gbps,
test_data->decomp_tsc_duration[level],
test_data->decomp_tsc_byte, test_data->decomp_gbps);
if (test_data->level.inc != 0)
level += test_data->level.inc;
@ -888,8 +550,6 @@ main(int argc, char **argv)
}
}
ret = EXIT_SUCCESS;
end:
switch (cleanup) {

View File

@ -3,5 +3,7 @@
allow_experimental_apis = true
sources = files('comp_perf_options_parse.c',
'main.c')
'main.c',
'comp_perf_test_verify.c',
'comp_perf_test_benchmark.c')
deps = ['compressdev']