test/member: add functional and perf tests

This patch adds functional and performance tests for membership
library.

Signed-off-by: Yipeng Wang <yipeng1.wang@intel.com>
Reviewed-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
This commit is contained in:
Yipeng Wang 2017-10-03 20:12:24 -07:00 committed by Thomas Monjalon
parent 703be9531a
commit 0cc67a96e4
4 changed files with 1403 additions and 0 deletions

View File

@ -748,6 +748,7 @@ Membership - EXPERIMENTAL
M: Yipeng Wang <yipeng1.wang@intel.com>
M: Sameh Gobriel <sameh.gobriel@intel.com>
F: lib/librte_member/
F: test/test/test_member*
Traffic metering
M: Cristian Dumitrescu <cristian.dumitrescu@intel.com>

View File

@ -123,6 +123,10 @@ SRCS-y += test_logs.c
SRCS-y += test_memcpy.c
SRCS-y += test_memcpy_perf.c
SRCS-$(CONFIG_RTE_LIBRTE_MEMBER) += test_member.c
SRCS-$(CONFIG_RTE_LIBRTE_MEMBER) += test_member_perf.c
SRCS-$(CONFIG_RTE_LIBRTE_EFD) += test_efd.c
SRCS-$(CONFIG_RTE_LIBRTE_EFD) += test_efd_perf.c

744
test/test/test_member.c Normal file
View File

@ -0,0 +1,744 @@
/*-
* BSD LICENSE
*
* Copyright(c) 2017 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* This test is for membership library's simple feature test */
#include <rte_memcpy.h>
#include <rte_malloc.h>
#include <rte_member.h>
#include <rte_byteorder.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ip.h>
#include "test.h"
struct rte_member_setsum *setsum_ht;
struct rte_member_setsum *setsum_cache;
struct rte_member_setsum *setsum_vbf;
/* 5-tuple key type */
struct flow_key {
uint32_t ip_src;
uint32_t ip_dst;
uint16_t port_src;
uint16_t port_dst;
uint8_t proto;
} __attribute__((packed));
/* Set ID Macros for multimatch test usage */
#define M_MATCH_S 1 /* Not start with 0 since by default 0 means no match */
#define M_MATCH_E 15
#define M_MATCH_STEP 2
#define M_MATCH_CNT \
(1 + (M_MATCH_E - M_MATCH_S) / M_MATCH_STEP)
#define NUM_SAMPLES 5
#define MAX_MATCH 32
/* Keys used by unit test functions */
static struct flow_key keys[NUM_SAMPLES] = {
{
.ip_src = IPv4(0x03, 0x02, 0x01, 0x00),
.ip_dst = IPv4(0x07, 0x06, 0x05, 0x04),
.port_src = 0x0908,
.port_dst = 0x0b0a,
.proto = 0x0c,
},
{
.ip_src = IPv4(0x13, 0x12, 0x11, 0x10),
.ip_dst = IPv4(0x17, 0x16, 0x15, 0x14),
.port_src = 0x1918,
.port_dst = 0x1b1a,
.proto = 0x1c,
},
{
.ip_src = IPv4(0x23, 0x22, 0x21, 0x20),
.ip_dst = IPv4(0x27, 0x26, 0x25, 0x24),
.port_src = 0x2928,
.port_dst = 0x2b2a,
.proto = 0x2c,
},
{
.ip_src = IPv4(0x33, 0x32, 0x31, 0x30),
.ip_dst = IPv4(0x37, 0x36, 0x35, 0x34),
.port_src = 0x3938,
.port_dst = 0x3b3a,
.proto = 0x3c,
},
{
.ip_src = IPv4(0x43, 0x42, 0x41, 0x40),
.ip_dst = IPv4(0x47, 0x46, 0x45, 0x44),
.port_src = 0x4948,
.port_dst = 0x4b4a,
.proto = 0x4c,
}
};
uint32_t test_set[NUM_SAMPLES] = {1, 2, 3, 4, 5};
#define ITERATIONS 3
#define KEY_SIZE 4
#define MAX_ENTRIES (1 << 16)
uint8_t generated_keys[MAX_ENTRIES][KEY_SIZE];
static struct rte_member_parameters params = {
.num_keys = MAX_ENTRIES, /* Total hash table entries. */
.key_len = KEY_SIZE, /* Length of hash key. */
/* num_set and false_positive_rate only relevant to vBF */
.num_set = 16,
.false_positive_rate = 0.03,
.prim_hash_seed = 1,
.sec_hash_seed = 11,
.socket_id = 0 /* NUMA Socket ID for memory. */
};
/*
* Sequence of operations for find existing setsummary
*
* - create setsum
* - find existing setsum: hit
* - find non-existing setsum: miss
*
*/
static int
test_member_find_existing(void)
{
struct rte_member_setsum *tmp_setsum = NULL, *result = NULL;
struct rte_member_parameters tmp_params = {
.name = "member_find_existing",
.num_keys = MAX_ENTRIES, /* Total hash table entries. */
.key_len = KEY_SIZE, /* Length of hash key. */
.type = RTE_MEMBER_TYPE_HT,
.num_set = 32,
.false_positive_rate = 0.03,
.prim_hash_seed = 1,
.sec_hash_seed = 11,
.socket_id = 0 /* NUMA Socket ID for memory. */
};
/* Create */
tmp_setsum = rte_member_create(&tmp_params);
TEST_ASSERT(tmp_setsum != NULL, "setsum creation failed");
/* Try to find existing hash table */
result = rte_member_find_existing("member_find_existing");
TEST_ASSERT(result == tmp_setsum, "could not find existing setsum");
/* Try to find non-existing hash table */
result = rte_member_find_existing("member_find_non_existing");
TEST_ASSERT(result == NULL, "found setsum that shouldn't exist");
/* Cleanup. */
rte_member_free(tmp_setsum);
return 0;
}
/*
* Test for bad creating parameters
*/
static int
test_member_create_bad_param(void)
{
struct rte_member_setsum *bad_setsum = NULL;
struct rte_member_parameters bad_params = {
.num_keys = MAX_ENTRIES, /* Total hash table entries. */
.key_len = KEY_SIZE, /* Length of hash key. */
.type = RTE_MEMBER_TYPE_HT,
.num_set = 32,
.false_positive_rate = 0.03,
.prim_hash_seed = 1,
.sec_hash_seed = 11,
.socket_id = 0 /* NUMA Socket ID for memory. */
};
printf("Expected error section begin...\n");
bad_params.name = "bad_param1";
bad_params.num_set = 0;
bad_params.type = RTE_MEMBER_TYPE_VBF;
/* Test with 0 set for vBF should fail */
bad_setsum = rte_member_create(&bad_params);
if (bad_setsum != NULL) {
rte_member_free(bad_setsum);
printf("Impossible creating setsum successfully with invalid "
"number of set for vBF\n");
return -1;
}
bad_params.name = "bad_param2";
bad_params.false_positive_rate = 0;
bad_params.num_set = 32;
/* Test with 0 false positive for vBF should fail */
bad_setsum = rte_member_create(&bad_params);
if (bad_setsum != NULL) {
rte_member_free(bad_setsum);
printf("Impossible creating setsum successfully with invalid "
"false positive rate for vBF\n");
return -1;
}
bad_params.name = "bad_param3";
bad_params.false_positive_rate = 0.03;
bad_params.num_keys = 0;
/* Test with 0 key per BF for vBF should fail */
bad_setsum = rte_member_create(&bad_params);
if (bad_setsum != NULL) {
rte_member_free(bad_setsum);
printf("Impossible creating setsum successfully with invalid "
"num_keys for vBF\n");
return -1;
}
bad_params.name = "bad_param4";
bad_params.type = RTE_MEMBER_TYPE_HT;
bad_params.num_keys = RTE_MEMBER_BUCKET_ENTRIES / 2;
/* Test with less than 1 bucket for HTSS should fail */
bad_setsum = rte_member_create(&bad_params);
if (bad_setsum != NULL) {
rte_member_free(bad_setsum);
printf("Impossible creating setsum successfully with too few "
"number of keys(entries) for HT\n");
return -1;
}
bad_params.name = "bad_param5";
bad_params.num_keys = RTE_MEMBER_ENTRIES_MAX + 1;
/* Test with more than maximum entries for HTSS should fail */
bad_setsum = rte_member_create(&bad_params);
if (bad_setsum != NULL) {
rte_member_free(bad_setsum);
printf("Impossible creating setsum successfully with to many "
"number of keys(entries) for HT\n");
return -1;
}
bad_params.name = "bad_param5";
/* Test with same name should fail */
bad_setsum = rte_member_create(&bad_params);
if (bad_setsum != NULL) {
rte_member_free(bad_setsum);
printf("Impossible creating setsum successfully with existed "
"name\n");
return -1;
}
printf("Expected error section end...\n");
rte_member_free(bad_setsum);
return 0;
}
/* Create test setsummaries. */
static int test_member_create(void)
{
params.key_len = sizeof(struct flow_key);
params.name = "test_member_ht";
params.is_cache = 0;
params.type = RTE_MEMBER_TYPE_HT;
setsum_ht = rte_member_create(&params);
params.name = "test_member_cache";
params.is_cache = 1;
setsum_cache = rte_member_create(&params);
params.name = "test_member_vbf";
params.type = RTE_MEMBER_TYPE_VBF;
setsum_vbf = rte_member_create(&params);
if (setsum_ht == NULL || setsum_cache == NULL || setsum_vbf == NULL) {
printf("Creation of setsums fail\n");
return -1;
}
printf("Creation of setsums success\n");
return 0;
}
static int test_member_insert(void)
{
int ret_ht, ret_cache, ret_vbf, i;
for (i = 0; i < NUM_SAMPLES; i++) {
ret_ht = rte_member_add(setsum_ht, &keys[i], test_set[i]);
ret_cache = rte_member_add(setsum_cache, &keys[i],
test_set[i]);
ret_vbf = rte_member_add(setsum_vbf, &keys[i], test_set[i]);
TEST_ASSERT(ret_ht >= 0 && ret_cache >= 0 && ret_vbf >= 0,
"insert error");
}
printf("insert key success\n");
return 0;
}
static int test_member_lookup(void)
{
int ret_ht, ret_cache, ret_vbf, i;
uint16_t set_ht, set_cache, set_vbf;
member_set_t set_ids_ht[NUM_SAMPLES] = {0};
member_set_t set_ids_cache[NUM_SAMPLES] = {0};
member_set_t set_ids_vbf[NUM_SAMPLES] = {0};
uint32_t num_key_ht = NUM_SAMPLES;
uint32_t num_key_cache = NUM_SAMPLES;
uint32_t num_key_vbf = NUM_SAMPLES;
const void *key_array[NUM_SAMPLES];
/* Single lookup test */
for (i = 0; i < NUM_SAMPLES; i++) {
ret_ht = rte_member_lookup(setsum_ht, &keys[i], &set_ht);
ret_cache = rte_member_lookup(setsum_cache, &keys[i],
&set_cache);
ret_vbf = rte_member_lookup(setsum_vbf, &keys[i], &set_vbf);
TEST_ASSERT(ret_ht >= 0 && ret_cache >= 0 && ret_vbf >= 0,
"single lookup function error");
TEST_ASSERT(set_ht == test_set[i] &&
set_cache == test_set[i] &&
set_vbf == test_set[i],
"single lookup set value error");
}
printf("lookup single key success\n");
/* Bulk lookup test */
for (i = 0; i < NUM_SAMPLES; i++)
key_array[i] = &keys[i];
ret_ht = rte_member_lookup_bulk(setsum_ht, key_array,
num_key_ht, set_ids_ht);
ret_cache = rte_member_lookup_bulk(setsum_cache, key_array,
num_key_cache, set_ids_cache);
ret_vbf = rte_member_lookup_bulk(setsum_vbf, key_array,
num_key_vbf, set_ids_vbf);
TEST_ASSERT(ret_ht >= 0 && ret_cache >= 0 && ret_vbf >= 0,
"bulk lookup function error");
for (i = 0; i < NUM_SAMPLES; i++) {
TEST_ASSERT((set_ids_ht[i] == test_set[i]) &&
(set_ids_cache[i] == test_set[i]) &&
(set_ids_vbf[i] == test_set[i]),
"bulk lookup result error");
}
return 0;
}
static int test_member_delete(void)
{
int ret_ht, ret_cache, ret_vbf, i;
uint16_t set_ht, set_cache, set_vbf;
const void *key_array[NUM_SAMPLES];
member_set_t set_ids_ht[NUM_SAMPLES] = {0};
member_set_t set_ids_cache[NUM_SAMPLES] = {0};
member_set_t set_ids_vbf[NUM_SAMPLES] = {0};
uint32_t num_key_ht = NUM_SAMPLES;
uint32_t num_key_cache = NUM_SAMPLES;
uint32_t num_key_vbf = NUM_SAMPLES;
/* Delete part of all inserted keys */
for (i = 0; i < NUM_SAMPLES / 2; i++) {
ret_ht = rte_member_delete(setsum_ht, &keys[i], test_set[i]);
ret_cache = rte_member_delete(setsum_cache, &keys[i],
test_set[i]);
ret_vbf = rte_member_delete(setsum_vbf, &keys[i], test_set[i]);
/* VBF does not support delete yet, so return error code */
TEST_ASSERT(ret_ht >= 0 && ret_cache >= 0,
"key deletion function error");
TEST_ASSERT(ret_vbf < 0,
"vbf does not support deletion, error");
}
for (i = 0; i < NUM_SAMPLES; i++)
key_array[i] = &keys[i];
ret_ht = rte_member_lookup_bulk(setsum_ht, key_array,
num_key_ht, set_ids_ht);
ret_cache = rte_member_lookup_bulk(setsum_cache, key_array,
num_key_cache, set_ids_cache);
ret_vbf = rte_member_lookup_bulk(setsum_vbf, key_array,
num_key_vbf, set_ids_vbf);
TEST_ASSERT(ret_ht >= 0 && ret_cache >= 0 && ret_vbf >= 0,
"bulk lookup function error");
for (i = 0; i < NUM_SAMPLES / 2; i++) {
TEST_ASSERT((set_ids_ht[i] == RTE_MEMBER_NO_MATCH) &&
(set_ids_cache[i] == RTE_MEMBER_NO_MATCH),
"bulk lookup result error");
}
for (i = NUM_SAMPLES / 2; i < NUM_SAMPLES; i++) {
TEST_ASSERT((set_ids_ht[i] == test_set[i]) &&
(set_ids_cache[i] == test_set[i]) &&
(set_ids_vbf[i] == test_set[i]),
"bulk lookup result error");
}
/* Delete the left of inserted keys */
for (i = NUM_SAMPLES / 2; i < NUM_SAMPLES; i++) {
ret_ht = rte_member_delete(setsum_ht, &keys[i], test_set[i]);
ret_cache = rte_member_delete(setsum_cache, &keys[i],
test_set[i]);
ret_vbf = rte_member_delete(setsum_vbf, &keys[i], test_set[i]);
/* VBF does not support delete yet, so return error code */
TEST_ASSERT(ret_ht >= 0 && ret_cache >= 0,
"key deletion function error");
TEST_ASSERT(ret_vbf < 0,
"vbf does not support deletion, error");
}
for (i = 0; i < NUM_SAMPLES; i++) {
ret_ht = rte_member_lookup(setsum_ht, &keys[i], &set_ht);
ret_cache = rte_member_lookup(setsum_cache, &keys[i],
&set_cache);
ret_vbf = rte_member_lookup(setsum_vbf, &keys[i], &set_vbf);
TEST_ASSERT(ret_ht >= 0 && ret_cache >= 0,
"key lookup function error");
TEST_ASSERT(set_ht == RTE_MEMBER_NO_MATCH &&
ret_cache == RTE_MEMBER_NO_MATCH,
"key deletion failed");
}
/* Reset vbf for other following tests */
rte_member_reset(setsum_vbf);
printf("delete success\n");
return 0;
}
static int test_member_multimatch(void)
{
int ret_ht, ret_vbf, ret_cache;
member_set_t set_ids_ht[MAX_MATCH] = {0};
member_set_t set_ids_vbf[MAX_MATCH] = {0};
member_set_t set_ids_cache[MAX_MATCH] = {0};
member_set_t set_ids_ht_m[NUM_SAMPLES][MAX_MATCH] = {{0} };
member_set_t set_ids_vbf_m[NUM_SAMPLES][MAX_MATCH] = {{0} };
member_set_t set_ids_cache_m[NUM_SAMPLES][MAX_MATCH] = {{0} };
uint32_t match_count_ht[NUM_SAMPLES];
uint32_t match_count_vbf[NUM_SAMPLES];
uint32_t match_count_cache[NUM_SAMPLES];
uint32_t num_key_ht = NUM_SAMPLES;
uint32_t num_key_vbf = NUM_SAMPLES;
uint32_t num_key_cache = NUM_SAMPLES;
const void *key_array[NUM_SAMPLES];
uint32_t i, j;
/* Same key at most inserted 2*entry_per_bucket times for HT mode */
for (i = M_MATCH_S; i <= M_MATCH_E; i += M_MATCH_STEP) {
for (j = 0; j < NUM_SAMPLES; j++) {
ret_ht = rte_member_add(setsum_ht, &keys[j], i);
ret_vbf = rte_member_add(setsum_vbf, &keys[j], i);
ret_cache = rte_member_add(setsum_cache, &keys[j], i);
TEST_ASSERT(ret_ht >= 0 && ret_vbf >= 0 &&
ret_cache >= 0,
"insert function error");
}
}
/* Single multimatch test */
for (i = 0; i < NUM_SAMPLES; i++) {
ret_vbf = rte_member_lookup_multi(setsum_vbf, &keys[i],
MAX_MATCH, set_ids_vbf);
ret_ht = rte_member_lookup_multi(setsum_ht, &keys[i],
MAX_MATCH, set_ids_ht);
ret_cache = rte_member_lookup_multi(setsum_cache, &keys[i],
MAX_MATCH, set_ids_cache);
/*
* For cache mode, keys overwrite when signature same.
* the mutimatch should work like single match.
*/
TEST_ASSERT(ret_ht == M_MATCH_CNT && ret_vbf == M_MATCH_CNT &&
ret_cache == 1,
"single lookup_multi error");
TEST_ASSERT(set_ids_cache[0] == M_MATCH_E,
"single lookup_multi cache error");
for (j = 1; j <= M_MATCH_CNT; j++) {
TEST_ASSERT(set_ids_ht[j-1] == j * M_MATCH_STEP - 1 &&
set_ids_vbf[j-1] ==
j * M_MATCH_STEP - 1,
"single multimatch lookup error");
}
}
printf("lookup single key for multimatch success\n");
/* Bulk multimatch test */
for (i = 0; i < NUM_SAMPLES; i++)
key_array[i] = &keys[i];
ret_vbf = rte_member_lookup_multi_bulk(setsum_vbf,
&key_array[0], num_key_ht, MAX_MATCH, match_count_vbf,
(member_set_t *)set_ids_vbf_m);
ret_ht = rte_member_lookup_multi_bulk(setsum_ht,
&key_array[0], num_key_vbf, MAX_MATCH, match_count_ht,
(member_set_t *)set_ids_ht_m);
ret_cache = rte_member_lookup_multi_bulk(setsum_cache,
&key_array[0], num_key_cache, MAX_MATCH,
match_count_cache, (member_set_t *)set_ids_cache_m);
for (j = 0; j < NUM_SAMPLES; j++) {
TEST_ASSERT(match_count_ht[j] == M_MATCH_CNT,
"bulk multimatch lookup HT match count error");
TEST_ASSERT(match_count_vbf[j] == M_MATCH_CNT,
"bulk multimatch lookup vBF match count error");
TEST_ASSERT(match_count_cache[j] == 1,
"bulk multimatch lookup CACHE match count error");
TEST_ASSERT(set_ids_cache_m[j][0] == M_MATCH_E,
"bulk multimatch lookup CACHE set value error");
for (i = 1; i <= M_MATCH_CNT; i++) {
TEST_ASSERT(set_ids_ht_m[j][i-1] ==
i * M_MATCH_STEP - 1,
"bulk multimatch lookup HT set value error");
TEST_ASSERT(set_ids_vbf_m[j][i-1] ==
i * M_MATCH_STEP - 1,
"bulk multimatch lookup vBF set value error");
}
}
printf("lookup for bulk multimatch success\n");
return 0;
}
static int key_compare(const void *key1, const void *key2)
{
return memcmp(key1, key2, KEY_SIZE);
}
static void
setup_keys_and_data(void)
{
unsigned int i, j;
int num_duplicates;
/* Reset all arrays */
for (i = 0; i < KEY_SIZE; i++)
generated_keys[0][i] = 0;
/* Generate a list of keys, some of which may be duplicates */
for (i = 0; i < MAX_ENTRIES; i++) {
for (j = 0; j < KEY_SIZE; j++)
generated_keys[i][j] = rte_rand() & 0xFF;
}
/* Remove duplicates from the keys array */
do {
num_duplicates = 0;
/* Sort the list of keys to make it easier to find duplicates */
qsort(generated_keys, MAX_ENTRIES, KEY_SIZE, key_compare);
/* Sift through the list of keys and look for duplicates */
int num_duplicates = 0;
for (i = 0; i < MAX_ENTRIES - 1; i++) {
if (memcmp(generated_keys[i], generated_keys[i + 1],
KEY_SIZE) == 0) {
/* This key already exists, try again */
num_duplicates++;
for (j = 0; j < KEY_SIZE; j++)
generated_keys[i][j] =
rte_rand() & 0xFF;
}
}
} while (num_duplicates != 0);
}
static inline int
add_generated_keys(struct rte_member_setsum *setsum, unsigned int *added_keys)
{
int ret = 0;
for (*added_keys = 0; ret >= 0 && *added_keys < MAX_ENTRIES;
(*added_keys)++) {
uint16_t set = (rte_rand() & 0xf) + 1;
ret = rte_member_add(setsum, &generated_keys[*added_keys], set);
}
return ret;
}
static inline int
add_generated_keys_cache(struct rte_member_setsum *setsum,
unsigned int *added_keys)
{
int ret = 0;
for (*added_keys = 0; ret == 0 && *added_keys < MAX_ENTRIES;
(*added_keys)++) {
uint16_t set = (rte_rand() & 0xf) + 1;
ret = rte_member_add(setsum, &generated_keys[*added_keys], set);
}
return ret;
}
static int
test_member_loadfactor(void)
{
unsigned int j;
unsigned int added_keys, average_keys_added = 0;
int ret;
setup_keys_and_data();
rte_member_free(setsum_ht);
rte_member_free(setsum_cache);
rte_member_free(setsum_vbf);
params.key_len = KEY_SIZE;
params.name = "test_member_ht";
params.is_cache = 0;
params.type = RTE_MEMBER_TYPE_HT;
setsum_ht = rte_member_create(&params);
params.name = "test_member_cache";
params.is_cache = 1;
setsum_cache = rte_member_create(&params);
if (setsum_ht == NULL || setsum_cache == NULL) {
printf("Creation of setsums fail\n");
return -1;
}
/* Test HT non-cache mode */
for (j = 0; j < ITERATIONS; j++) {
/* Add random entries until key cannot be added */
ret = add_generated_keys(setsum_ht, &added_keys);
if (ret != -ENOSPC) {
printf("Unexpected error when adding keys\n");
return -1;
}
average_keys_added += added_keys;
/* Reset the table */
rte_member_reset(setsum_ht);
/* Print a dot to show progress on operations */
printf(".");
fflush(stdout);
}
average_keys_added /= ITERATIONS;
printf("\nKeys inserted when no space(non-cache) = %.2f%% (%u/%u)\n",
((double) average_keys_added / params.num_keys * 100),
average_keys_added, params.num_keys);
/* Test cache mode */
added_keys = average_keys_added = 0;
for (j = 0; j < ITERATIONS; j++) {
/* Add random entries until key cannot be added */
ret = add_generated_keys_cache(setsum_cache, &added_keys);
if (ret != 1) {
printf("Unexpected error when adding keys\n");
return -1;
}
average_keys_added += added_keys;
/* Reset the table */
rte_member_reset(setsum_cache);
/* Print a dot to show progress on operations */
printf(".");
fflush(stdout);
}
average_keys_added /= ITERATIONS;
printf("\nKeys inserted when eviction happens(cache)= %.2f%% (%u/%u)\n",
((double) average_keys_added / params.num_keys * 100),
average_keys_added, params.num_keys);
return 0;
}
static void
perform_free(void)
{
rte_member_free(setsum_ht);
rte_member_free(setsum_cache);
rte_member_free(setsum_vbf);
}
static int
test_member(void)
{
if (test_member_create_bad_param() < 0)
return -1;
if (test_member_find_existing() < 0)
return -1;
if (test_member_create() < 0) {
perform_free();
return -1;
}
if (test_member_insert() < 0) {
perform_free();
return -1;
}
if (test_member_lookup() < 0) {
perform_free();
return -1;
}
if (test_member_delete() < 0) {
perform_free();
return -1;
}
if (test_member_multimatch() < 0) {
perform_free();
return -1;
}
if (test_member_loadfactor() < 0) {
rte_member_free(setsum_ht);
rte_member_free(setsum_cache);
return -1;
}
perform_free();
return 0;
}
REGISTER_TEST_COMMAND(member_autotest, test_member);

View File

@ -0,0 +1,654 @@
/*-
* BSD LICENSE
*
* Copyright(c) 2017 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <inttypes.h>
#include <rte_lcore.h>
#include <rte_cycles.h>
#include <rte_malloc.h>
#include <rte_random.h>
#include <rte_memcpy.h>
#include <rte_thash.h>
#include <rte_member.h>
#include "test.h"
#define NUM_KEYSIZES 10
#define NUM_SHUFFLES 10
#define MAX_KEYSIZE 64
#define MAX_ENTRIES (1 << 19)
#define KEYS_TO_ADD (MAX_ENTRIES * 75 / 100) /* 75% table utilization */
#define NUM_LOOKUPS (KEYS_TO_ADD * 5) /* Loop among keys added, several times */
#define VBF_SET_CNT 16
#define BURST_SIZE 64
#define VBF_FALSE_RATE 0.03
static unsigned int test_socket_id;
enum sstype {
HT = 0,
CACHE,
VBF,
NUM_TYPE
};
enum operations {
ADD = 0,
LOOKUP,
LOOKUP_BULK,
LOOKUP_MULTI,
LOOKUP_MULTI_BULK,
DELETE,
LOOKUP_MISS,
NUM_OPERATIONS
};
struct member_perf_params {
struct rte_member_setsum *setsum[NUM_TYPE];
uint32_t key_size;
unsigned int cycle;
};
static uint32_t hashtest_key_lens[] = {
/* standard key sizes */
4, 8, 16, 32, 48, 64,
/* IPv4 SRC + DST + protocol, unpadded */
9,
/* IPv4 5-tuple, unpadded */
13,
/* IPv6 5-tuple, unpadded */
37,
/* IPv6 5-tuple, padded to 8-byte boundary */
40
};
/* Array to store number of cycles per operation */
uint64_t cycles[NUM_TYPE][NUM_KEYSIZES][NUM_OPERATIONS];
uint64_t false_data[NUM_TYPE][NUM_KEYSIZES];
uint64_t false_data_bulk[NUM_TYPE][NUM_KEYSIZES];
uint64_t false_data_multi[NUM_TYPE][NUM_KEYSIZES];
uint64_t false_data_multi_bulk[NUM_TYPE][NUM_KEYSIZES];
uint64_t false_hit[NUM_TYPE][NUM_KEYSIZES];
member_set_t data[NUM_TYPE][/* Array to store the data */KEYS_TO_ADD];
/* Array to store all input keys */
uint8_t keys[KEYS_TO_ADD][MAX_KEYSIZE];
/* Shuffle the keys that have been added, so lookups will be totally random */
static void
shuffle_input_keys(struct member_perf_params *params)
{
member_set_t temp_data;
unsigned int i, j;
uint32_t swap_idx;
uint8_t temp_key[MAX_KEYSIZE];
for (i = KEYS_TO_ADD - 1; i > 0; i--) {
swap_idx = rte_rand() % i;
memcpy(temp_key, keys[i], hashtest_key_lens[params->cycle]);
memcpy(keys[i], keys[swap_idx],
hashtest_key_lens[params->cycle]);
memcpy(keys[swap_idx], temp_key,
hashtest_key_lens[params->cycle]);
for (j = 0; j < NUM_TYPE; j++) {
temp_data = data[j][i];
data[j][i] = data[j][swap_idx];
data[j][swap_idx] = temp_data;
}
}
}
static int key_compare(const void *key1, const void *key2)
{
return memcmp(key1, key2, MAX_KEYSIZE);
}
struct rte_member_parameters member_params = {
.num_keys = MAX_ENTRIES, /* Total hash table entries. */
.key_len = 4, /* Length of hash key. */
/* num_set and false_positive_rate only relevant to vBF */
.num_set = VBF_SET_CNT,
.false_positive_rate = 0.03,
.prim_hash_seed = 0,
.sec_hash_seed = 1,
.socket_id = 0, /* NUMA Socket ID for memory. */
};
static int
setup_keys_and_data(struct member_perf_params *params, unsigned int cycle,
int miss)
{
unsigned int i, j;
int num_duplicates;
params->key_size = hashtest_key_lens[cycle];
params->cycle = cycle;
/* Reset all arrays */
for (i = 0; i < params->key_size; i++)
keys[0][i] = 0;
/* Generate a list of keys, some of which may be duplicates */
for (i = 0; i < KEYS_TO_ADD; i++) {
for (j = 0; j < params->key_size; j++)
keys[i][j] = rte_rand() & 0xFF;
data[HT][i] = data[CACHE][i] = (rte_rand() & 0x7FFE) + 1;
data[VBF][i] = rte_rand() % VBF_SET_CNT + 1;
}
/* Remove duplicates from the keys array */
do {
num_duplicates = 0;
/* Sort the list of keys to make it easier to find duplicates */
qsort(keys, KEYS_TO_ADD, MAX_KEYSIZE, key_compare);
/* Sift through the list of keys and look for duplicates */
int num_duplicates = 0;
for (i = 0; i < KEYS_TO_ADD - 1; i++) {
if (memcmp(keys[i], keys[i + 1],
params->key_size) == 0) {
/* This key already exists, try again */
num_duplicates++;
for (j = 0; j < params->key_size; j++)
keys[i][j] = rte_rand() & 0xFF;
}
}
} while (num_duplicates != 0);
/* Shuffle the random values again */
shuffle_input_keys(params);
/* For testing miss lookup, we insert half and lookup the other half */
unsigned int entry_cnt, bf_key_cnt;
if (!miss) {
entry_cnt = MAX_ENTRIES;
bf_key_cnt = KEYS_TO_ADD;
} else {
entry_cnt = MAX_ENTRIES / 2;
bf_key_cnt = KEYS_TO_ADD / 2;
}
member_params.false_positive_rate = VBF_FALSE_RATE;
member_params.key_len = params->key_size;
member_params.socket_id = test_socket_id;
member_params.num_keys = entry_cnt;
member_params.name = "test_member_ht";
member_params.is_cache = 0;
member_params.type = RTE_MEMBER_TYPE_HT;
params->setsum[HT] = rte_member_create(&member_params);
if (params->setsum[HT] == NULL)
fprintf(stderr, "ht create fail\n");
member_params.name = "test_member_cache";
member_params.is_cache = 1;
params->setsum[CACHE] = rte_member_create(&member_params);
if (params->setsum[CACHE] == NULL)
fprintf(stderr, "CACHE create fail\n");
member_params.name = "test_member_vbf";
member_params.type = RTE_MEMBER_TYPE_VBF;
member_params.num_keys = bf_key_cnt;
params->setsum[VBF] = rte_member_create(&member_params);
if (params->setsum[VBF] == NULL)
fprintf(stderr, "VBF create fail\n");
for (i = 0; i < NUM_TYPE; i++) {
if (params->setsum[i] == NULL)
return -1;
}
return 0;
}
static int
timed_adds(struct member_perf_params *params, int type)
{
const uint64_t start_tsc = rte_rdtsc();
unsigned int i, a;
int32_t ret;
for (i = 0; i < KEYS_TO_ADD; i++) {
ret = rte_member_add(params->setsum[type], &keys[i],
data[type][i]);
if (ret < 0) {
printf("Error %d in rte_member_add - key=0x", ret);
for (a = 0; a < params->key_size; a++)
printf("%02x", keys[i][a]);
printf(" value=%d, type: %d\n", data[type][i], type);
return -1;
}
}
const uint64_t end_tsc = rte_rdtsc();
const uint64_t time_taken = end_tsc - start_tsc;
cycles[type][params->cycle][ADD] = time_taken / KEYS_TO_ADD;
return 0;
}
static int
timed_lookups(struct member_perf_params *params, int type)
{
unsigned int i, j;
false_data[type][params->cycle] = 0;
const uint64_t start_tsc = rte_rdtsc();
member_set_t result;
int ret;
for (i = 0; i < NUM_LOOKUPS / KEYS_TO_ADD; i++) {
for (j = 0; j < KEYS_TO_ADD; j++) {
ret = rte_member_lookup(params->setsum[type], &keys[j],
&result);
if (ret < 0) {
printf("lookup wrong internally");
return -1;
}
if (type == HT && result == RTE_MEMBER_NO_MATCH) {
printf("HT mode shouldn't have false negative");
return -1;
}
if (result != data[type][j])
false_data[type][params->cycle]++;
}
}
const uint64_t end_tsc = rte_rdtsc();
const uint64_t time_taken = end_tsc - start_tsc;
cycles[type][params->cycle][LOOKUP] = time_taken / NUM_LOOKUPS;
return 0;
}
static int
timed_lookups_bulk(struct member_perf_params *params, int type)
{
unsigned int i, j, k;
member_set_t result[BURST_SIZE] = {0};
const void *keys_burst[BURST_SIZE];
int ret;
false_data_bulk[type][params->cycle] = 0;
const uint64_t start_tsc = rte_rdtsc();
for (i = 0; i < NUM_LOOKUPS / KEYS_TO_ADD; i++) {
for (j = 0; j < KEYS_TO_ADD / BURST_SIZE; j++) {
for (k = 0; k < BURST_SIZE; k++)
keys_burst[k] = keys[j * BURST_SIZE + k];
ret = rte_member_lookup_bulk(params->setsum[type],
keys_burst,
BURST_SIZE,
result);
if (ret <= 0) {
printf("lookup bulk has wrong return value\n");
return -1;
}
for (k = 0; k < BURST_SIZE; k++) {
uint32_t data_idx = j * BURST_SIZE + k;
if (type == HT && result[k] ==
RTE_MEMBER_NO_MATCH) {
printf("HT mode shouldn't have "
"false negative");
return -1;
}
if (result[k] != data[type][data_idx])
false_data_bulk[type][params->cycle]++;
}
}
}
const uint64_t end_tsc = rte_rdtsc();
const uint64_t time_taken = end_tsc - start_tsc;
cycles[type][params->cycle][LOOKUP_BULK] = time_taken / NUM_LOOKUPS;
return 0;
}
static int
timed_lookups_multimatch(struct member_perf_params *params, int type)
{
unsigned int i, j;
member_set_t result[RTE_MEMBER_BUCKET_ENTRIES] = {0};
int ret;
false_data_multi[type][params->cycle] = 0;
const uint64_t start_tsc = rte_rdtsc();
for (i = 0; i < NUM_LOOKUPS / KEYS_TO_ADD; i++) {
for (j = 0; j < KEYS_TO_ADD; j++) {
ret = rte_member_lookup_multi(params->setsum[type],
&keys[j], RTE_MEMBER_BUCKET_ENTRIES, result);
if (type != CACHE && ret <= 0) {
printf("lookup multi has wrong return value %d,"
"type %d\n", ret, type);
}
if (type == HT && ret == 0) {
printf("HT mode shouldn't have false negative");
return -1;
}
/*
* For performance test purpose, we do not iterate all
* results here. We assume most likely each key can only
* find one match which is result[0].
*/
if (result[0] != data[type][j])
false_data_multi[type][params->cycle]++;
}
}
const uint64_t end_tsc = rte_rdtsc();
const uint64_t time_taken = end_tsc - start_tsc;
cycles[type][params->cycle][LOOKUP_MULTI] = time_taken / NUM_LOOKUPS;
return 0;
}
static int
timed_lookups_multimatch_bulk(struct member_perf_params *params, int type)
{
unsigned int i, j, k;
member_set_t result[BURST_SIZE][RTE_MEMBER_BUCKET_ENTRIES] = {{0} };
const void *keys_burst[BURST_SIZE];
uint32_t match_count[BURST_SIZE];
int ret;
false_data_multi_bulk[type][params->cycle] = 0;
const uint64_t start_tsc = rte_rdtsc();
for (i = 0; i < NUM_LOOKUPS / KEYS_TO_ADD; i++) {
for (j = 0; j < KEYS_TO_ADD / BURST_SIZE; j++) {
for (k = 0; k < BURST_SIZE; k++)
keys_burst[k] = keys[j * BURST_SIZE + k];
ret = rte_member_lookup_multi_bulk(
params->setsum[type],
keys_burst, BURST_SIZE,
RTE_MEMBER_BUCKET_ENTRIES, match_count,
(member_set_t *)result);
if (ret < 0) {
printf("lookup multimatch bulk has wrong return"
" value\n");
return -1;
}
for (k = 0; k < BURST_SIZE; k++) {
if (type != CACHE && match_count[k] == 0) {
printf("lookup multimatch bulk get "
"wrong match count\n");
return -1;
}
if (type == HT && match_count[k] == 0) {
printf("HT mode shouldn't have "
"false negative");
return -1;
}
uint32_t data_idx = j * BURST_SIZE + k;
if (result[k][0] != data[type][data_idx])
false_data_multi_bulk[type][params->cycle]++;
}
}
}
const uint64_t end_tsc = rte_rdtsc();
const uint64_t time_taken = end_tsc - start_tsc;
cycles[type][params->cycle][LOOKUP_MULTI_BULK] = time_taken /
NUM_LOOKUPS;
return 0;
}
static int
timed_deletes(struct member_perf_params *params, int type)
{
unsigned int i;
int32_t ret;
if (type == VBF)
return 0;
const uint64_t start_tsc = rte_rdtsc();
for (i = 0; i < KEYS_TO_ADD; i++) {
ret = rte_member_delete(params->setsum[type], &keys[i],
data[type][i]);
if (type != CACHE && ret < 0) {
printf("delete error\n");
return -1;
}
}
const uint64_t end_tsc = rte_rdtsc();
const uint64_t time_taken = end_tsc - start_tsc;
cycles[type][params->cycle][DELETE] = time_taken / KEYS_TO_ADD;
return 0;
}
static int
timed_miss_lookup(struct member_perf_params *params, int type)
{
unsigned int i, j;
int ret;
false_hit[type][params->cycle] = 0;
for (i = 0; i < KEYS_TO_ADD / 2; i++) {
ret = rte_member_add(params->setsum[type], &keys[i],
data[type][i]);
if (ret < 0) {
unsigned int a;
printf("Error %d in rte_member_add - key=0x", ret);
for (a = 0; a < params->key_size; a++)
printf("%02x", keys[i][a]);
printf(" value=%d, type: %d\n", data[type][i], type);
return -1;
}
}
const uint64_t start_tsc = rte_rdtsc();
member_set_t result;
for (i = 0; i < 2 * NUM_LOOKUPS / KEYS_TO_ADD; i++) {
for (j = KEYS_TO_ADD / 2; j < KEYS_TO_ADD; j++) {
ret = rte_member_lookup(params->setsum[type], &keys[j],
&result);
if (ret < 0) {
printf("lookup wrong internally");
return -1;
}
if (result != RTE_MEMBER_NO_MATCH)
false_hit[type][params->cycle]++;
}
}
const uint64_t end_tsc = rte_rdtsc();
const uint64_t time_taken = end_tsc - start_tsc;
cycles[type][params->cycle][LOOKUP_MISS] = time_taken / NUM_LOOKUPS;
return 0;
}
static void
perform_frees(struct member_perf_params *params)
{
int i;
for (i = 0; i < NUM_TYPE; i++) {
if (params->setsum[i] != NULL) {
rte_member_free(params->setsum[i]);
params->setsum[i] = NULL;
}
}
}
static int
exit_with_fail(const char *testname, struct member_perf_params *params,
unsigned int i, unsigned int j)
{
printf("<<<<<Test %s failed at keysize %d iteration %d type %d>>>>>\n",
testname, hashtest_key_lens[params->cycle], i, j);
perform_frees(params);
return -1;
}
static int
run_all_tbl_perf_tests(void)
{
unsigned int i, j, k;
struct member_perf_params params;
printf("Measuring performance, please wait\n");
fflush(stdout);
test_socket_id = rte_socket_id();
for (i = 0; i < NUM_KEYSIZES; i++) {
if (setup_keys_and_data(&params, i, 0) < 0) {
printf("Could not create keys/data/table\n");
return -1;
}
for (j = 0; j < NUM_TYPE; j++) {
if (timed_adds(&params, j) < 0)
return exit_with_fail("timed_adds", &params,
i, j);
for (k = 0; k < NUM_SHUFFLES; k++)
shuffle_input_keys(&params);
if (timed_lookups(&params, j) < 0)
return exit_with_fail("timed_lookups", &params,
i, j);
if (timed_lookups_bulk(&params, j) < 0)
return exit_with_fail("timed_lookups_bulk",
&params, i, j);
if (timed_lookups_multimatch(&params, j) < 0)
return exit_with_fail("timed_lookups_multi",
&params, i, j);
if (timed_lookups_multimatch_bulk(&params, j) < 0)
return exit_with_fail("timed_lookups_multi_bulk",
&params, i, j);
if (timed_deletes(&params, j) < 0)
return exit_with_fail("timed_deletes", &params,
i, j);
/* Print a dot to show progress on operations */
}
printf(".");
fflush(stdout);
perform_frees(&params);
}
/* Test false positive rate using un-inserted keys */
for (i = 0; i < NUM_KEYSIZES; i++) {
if (setup_keys_and_data(&params, i, 1) < 0) {
printf("Could not create keys/data/table\n");
return -1;
}
for (j = 0; j < NUM_TYPE; j++) {
if (timed_miss_lookup(&params, j) < 0)
return exit_with_fail("timed_miss_lookup",
&params, i, j);
}
perform_frees(&params);
}
printf("\nResults (in CPU cycles/operation)\n");
printf("-----------------------------------\n");
printf("\n%-18s%-18s%-18s%-18s%-18s%-18s%-18s%-18s%-18s\n",
"Keysize", "type", "Add", "Lookup", "Lookup_bulk",
"lookup_multi", "lookup_multi_bulk", "Delete",
"miss_lookup");
for (i = 0; i < NUM_KEYSIZES; i++) {
for (j = 0; j < NUM_TYPE; j++) {
printf("%-18d", hashtest_key_lens[i]);
printf("%-18d", j);
for (k = 0; k < NUM_OPERATIONS; k++)
printf("%-18"PRIu64, cycles[j][i][k]);
printf("\n");
}
}
printf("\nFalse results rate (and false positive rate)\n");
printf("-----------------------------------\n");
printf("\n%-18s%-18s%-18s%-18s%-18s%-18s%-18s\n",
"Keysize", "type", "fr_single", "fr_bulk", "fr_multi",
"fr_multi_bulk", "false_positive_rate");
/* Key size not influence False rate so just print out one key size */
for (i = 0; i < 1; i++) {
for (j = 0; j < NUM_TYPE; j++) {
printf("%-18d", hashtest_key_lens[i]);
printf("%-18d", j);
printf("%-18f", (float)false_data[j][i] / NUM_LOOKUPS);
printf("%-18f", (float)false_data_bulk[j][i] /
NUM_LOOKUPS);
printf("%-18f", (float)false_data_multi[j][i] /
NUM_LOOKUPS);
printf("%-18f", (float)false_data_multi_bulk[j][i] /
NUM_LOOKUPS);
printf("%-18f", (float)false_hit[j][i] /
NUM_LOOKUPS);
printf("\n");
}
}
return 0;
}
static int
test_member_perf(void)
{
if (run_all_tbl_perf_tests() < 0)
return -1;
return 0;
}
REGISTER_TEST_COMMAND(member_perf_autotest, test_member_perf);