lib/gro: support TCP/IPv4

In this patch, we introduce five APIs to support TCP/IPv4 GRO.
- gro_tcp4_reassemble: reassemble an inputted TCP/IPv4 packet.
- gro_tcp4_tbl_create: create a TCP/IPv4 reassembly table, which is used
    to merge packets.
- gro_tcp4_tbl_destroy: free memory space of a TCP/IPv4 reassembly table.
- gro_tcp4_tbl_pkt_count: return the number of packets in a TCP/IPv4
    reassembly table.
- gro_tcp4_tbl_timeout_flush: flush timeout packets from a TCP/IPv4
    reassembly table.

TCP/IPv4 GRO API assumes all inputted packets are with correct IPv4
and TCP checksums. And TCP/IPv4 GRO API doesn't update IPv4 and TCP
checksums for merged packets. If inputted packets are IP fragmented,
TCP/IPv4 GRO API assumes they are complete packets (i.e. with L4
headers).

In TCP/IPv4 GRO, we use a table structure, called TCP/IPv4 reassembly
table, to reassemble packets. A TCP/IPv4 reassembly table includes a key
array and a item array, where the key array keeps the criteria to merge
packets and the item array keeps packet information.

One key in the key array points to an item group, which consists of
packets which have the same criteria value. If two packets are able to
merge, they must be in the same item group. Each key in the key array
includes two parts:
- criteria: the criteria of merging packets. If two packets can be
    merged, they must have the same criteria value.
- start_index: the index of the first incoming packet of the item group.

Each element in the item array keeps the information of one packet. It
mainly includes three parts:
- firstseg: the address of the first segment of the packet
- lastseg: the address of the last segment of the packet
- next_pkt_index: the index of the next packet in the same item group.
    All packets in the same item group are chained by next_pkt_index.
    With next_pkt_index, we can locate all packets in the same item
    group one by one.

To process an incoming packet needs three steps:
a. check if the packet should be processed. Packets with one of the
    following properties won't be processed:
	- FIN, SYN, RST, URG, PSH, ECE or CWR bit is set;
	- packet payload length is 0.
b. traverse the key array to find a key which has the same criteria
    value with the incoming packet. If find, goto step c. Otherwise,
    insert a new key and insert the packet into the item array.
c. locate the first packet in the item group via the start_index in the
    key. Then traverse all packets in the item group via next_pkt_index.
    If find one packet which can merge with the incoming one, merge them
    together. If can't find, insert the packet into this item group.

Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
This commit is contained in:
Jiayu Hu 2017-07-09 13:46:45 +08:00 committed by Thomas Monjalon
parent e996506a1c
commit 0d2cbe59b7
6 changed files with 851 additions and 15 deletions

View File

@ -41,6 +41,14 @@ New Features
Also, make sure to start the actual text at the margin.
=========================================================
* **Added Generic Receive Offload API.**
Generic Receive Offload (GRO) API supports to reassemble TCP/IPv4
packets. GRO API assumes all inputted packets are with correct
checksums. GRO API doesn't update checksums for merged packets. If
inputted packets are IP fragmented, GRO API assumes they are complete
packets (i.e. with L4 headers).
* **Added support for generic flow API (rte_flow) on igb NIC.**
This API provides a generic means to configure hardware to match specific

View File

@ -43,6 +43,7 @@ LIBABIVER := 1
# source files
SRCS-$(CONFIG_RTE_LIBRTE_GRO) += rte_gro.c
SRCS-$(CONFIG_RTE_LIBRTE_GRO) += gro_tcp4.c
# install this header file
SYMLINK-$(CONFIG_RTE_LIBRTE_GRO)-include += rte_gro.h

505
lib/librte_gro/gro_tcp4.c Normal file
View File

@ -0,0 +1,505 @@
/*-
* BSD LICENSE
*
* Copyright(c) 2017 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_cycles.h>
#include <rte_ethdev.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include "gro_tcp4.h"
void *
gro_tcp4_tbl_create(uint16_t socket_id,
uint16_t max_flow_num,
uint16_t max_item_per_flow)
{
struct gro_tcp4_tbl *tbl;
size_t size;
uint32_t entries_num, i;
entries_num = max_flow_num * max_item_per_flow;
entries_num = RTE_MIN(entries_num, GRO_TCP4_TBL_MAX_ITEM_NUM);
if (entries_num == 0)
return NULL;
tbl = rte_zmalloc_socket(__func__,
sizeof(struct gro_tcp4_tbl),
RTE_CACHE_LINE_SIZE,
socket_id);
if (tbl == NULL)
return NULL;
size = sizeof(struct gro_tcp4_item) * entries_num;
tbl->items = rte_zmalloc_socket(__func__,
size,
RTE_CACHE_LINE_SIZE,
socket_id);
if (tbl->items == NULL) {
rte_free(tbl);
return NULL;
}
tbl->max_item_num = entries_num;
size = sizeof(struct gro_tcp4_key) * entries_num;
tbl->keys = rte_zmalloc_socket(__func__,
size,
RTE_CACHE_LINE_SIZE,
socket_id);
if (tbl->keys == NULL) {
rte_free(tbl->items);
rte_free(tbl);
return NULL;
}
/* INVALID_ARRAY_INDEX indicates empty key */
for (i = 0; i < entries_num; i++)
tbl->keys[i].start_index = INVALID_ARRAY_INDEX;
tbl->max_key_num = entries_num;
return tbl;
}
void
gro_tcp4_tbl_destroy(void *tbl)
{
struct gro_tcp4_tbl *tcp_tbl = tbl;
if (tcp_tbl) {
rte_free(tcp_tbl->items);
rte_free(tcp_tbl->keys);
}
rte_free(tcp_tbl);
}
/*
* merge two TCP/IPv4 packets without updating checksums.
* If cmp is larger than 0, append the new packet to the
* original packet. Otherwise, pre-pend the new packet to
* the original packet.
*/
static inline int
merge_two_tcp4_packets(struct gro_tcp4_item *item_src,
struct rte_mbuf *pkt,
uint16_t ip_id,
uint32_t sent_seq,
int cmp)
{
struct rte_mbuf *pkt_head, *pkt_tail, *lastseg;
uint16_t tcp_datalen;
if (cmp > 0) {
pkt_head = item_src->firstseg;
pkt_tail = pkt;
} else {
pkt_head = pkt;
pkt_tail = item_src->firstseg;
}
/* check if the packet length will be beyond the max value */
tcp_datalen = pkt_tail->pkt_len - pkt_tail->l2_len -
pkt_tail->l3_len - pkt_tail->l4_len;
if (pkt_head->pkt_len - pkt_head->l2_len + tcp_datalen >
TCP4_MAX_L3_LENGTH)
return 0;
/* remove packet header for the tail packet */
rte_pktmbuf_adj(pkt_tail,
pkt_tail->l2_len +
pkt_tail->l3_len +
pkt_tail->l4_len);
/* chain two packets together */
if (cmp > 0) {
item_src->lastseg->next = pkt;
item_src->lastseg = rte_pktmbuf_lastseg(pkt);
/* update IP ID to the larger value */
item_src->ip_id = ip_id;
} else {
lastseg = rte_pktmbuf_lastseg(pkt);
lastseg->next = item_src->firstseg;
item_src->firstseg = pkt;
/* update sent_seq to the smaller value */
item_src->sent_seq = sent_seq;
}
item_src->nb_merged++;
/* update mbuf metadata for the merged packet */
pkt_head->nb_segs += pkt_tail->nb_segs;
pkt_head->pkt_len += pkt_tail->pkt_len;
return 1;
}
static inline int
check_seq_option(struct gro_tcp4_item *item,
struct tcp_hdr *tcp_hdr,
uint16_t tcp_hl,
uint16_t tcp_dl,
uint16_t ip_id,
uint32_t sent_seq)
{
struct rte_mbuf *pkt0 = item->firstseg;
struct ipv4_hdr *ipv4_hdr0;
struct tcp_hdr *tcp_hdr0;
uint16_t tcp_hl0, tcp_dl0;
uint16_t len;
ipv4_hdr0 = (struct ipv4_hdr *)(rte_pktmbuf_mtod(pkt0, char *) +
pkt0->l2_len);
tcp_hdr0 = (struct tcp_hdr *)((char *)ipv4_hdr0 + pkt0->l3_len);
tcp_hl0 = pkt0->l4_len;
/* check if TCP option fields equal. If not, return 0. */
len = RTE_MAX(tcp_hl, tcp_hl0) - sizeof(struct tcp_hdr);
if ((tcp_hl != tcp_hl0) ||
((len > 0) && (memcmp(tcp_hdr + 1,
tcp_hdr0 + 1,
len) != 0)))
return 0;
/* check if the two packets are neighbors */
tcp_dl0 = pkt0->pkt_len - pkt0->l2_len - pkt0->l3_len - tcp_hl0;
if ((sent_seq == (item->sent_seq + tcp_dl0)) &&
(ip_id == (item->ip_id + 1)))
/* append the new packet */
return 1;
else if (((sent_seq + tcp_dl) == item->sent_seq) &&
((ip_id + item->nb_merged) == item->ip_id))
/* pre-pend the new packet */
return -1;
else
return 0;
}
static inline uint32_t
find_an_empty_item(struct gro_tcp4_tbl *tbl)
{
uint32_t i;
uint32_t max_item_num = tbl->max_item_num;
for (i = 0; i < max_item_num; i++)
if (tbl->items[i].firstseg == NULL)
return i;
return INVALID_ARRAY_INDEX;
}
static inline uint32_t
find_an_empty_key(struct gro_tcp4_tbl *tbl)
{
uint32_t i;
uint32_t max_key_num = tbl->max_key_num;
for (i = 0; i < max_key_num; i++)
if (tbl->keys[i].start_index == INVALID_ARRAY_INDEX)
return i;
return INVALID_ARRAY_INDEX;
}
static inline uint32_t
insert_new_item(struct gro_tcp4_tbl *tbl,
struct rte_mbuf *pkt,
uint16_t ip_id,
uint32_t sent_seq,
uint32_t prev_idx,
uint64_t start_time)
{
uint32_t item_idx;
item_idx = find_an_empty_item(tbl);
if (item_idx == INVALID_ARRAY_INDEX)
return INVALID_ARRAY_INDEX;
tbl->items[item_idx].firstseg = pkt;
tbl->items[item_idx].lastseg = rte_pktmbuf_lastseg(pkt);
tbl->items[item_idx].start_time = start_time;
tbl->items[item_idx].next_pkt_idx = INVALID_ARRAY_INDEX;
tbl->items[item_idx].sent_seq = sent_seq;
tbl->items[item_idx].ip_id = ip_id;
tbl->items[item_idx].nb_merged = 1;
tbl->item_num++;
/* if the previous packet exists, chain the new one with it */
if (prev_idx != INVALID_ARRAY_INDEX) {
tbl->items[item_idx].next_pkt_idx =
tbl->items[prev_idx].next_pkt_idx;
tbl->items[prev_idx].next_pkt_idx = item_idx;
}
return item_idx;
}
static inline uint32_t
delete_item(struct gro_tcp4_tbl *tbl, uint32_t item_idx,
uint32_t prev_item_idx)
{
uint32_t next_idx = tbl->items[item_idx].next_pkt_idx;
/* set NULL to firstseg to indicate it's an empty item */
tbl->items[item_idx].firstseg = NULL;
tbl->item_num--;
if (prev_item_idx != INVALID_ARRAY_INDEX)
tbl->items[prev_item_idx].next_pkt_idx = next_idx;
return next_idx;
}
static inline uint32_t
insert_new_key(struct gro_tcp4_tbl *tbl,
struct tcp4_key *key_src,
uint32_t item_idx)
{
struct tcp4_key *key_dst;
uint32_t key_idx;
key_idx = find_an_empty_key(tbl);
if (key_idx == INVALID_ARRAY_INDEX)
return INVALID_ARRAY_INDEX;
key_dst = &(tbl->keys[key_idx].key);
ether_addr_copy(&(key_src->eth_saddr), &(key_dst->eth_saddr));
ether_addr_copy(&(key_src->eth_daddr), &(key_dst->eth_daddr));
key_dst->ip_src_addr = key_src->ip_src_addr;
key_dst->ip_dst_addr = key_src->ip_dst_addr;
key_dst->recv_ack = key_src->recv_ack;
key_dst->src_port = key_src->src_port;
key_dst->dst_port = key_src->dst_port;
/* non-INVALID_ARRAY_INDEX value indicates this key is valid */
tbl->keys[key_idx].start_index = item_idx;
tbl->key_num++;
return key_idx;
}
static inline int
is_same_key(struct tcp4_key k1, struct tcp4_key k2)
{
if (is_same_ether_addr(&k1.eth_saddr, &k2.eth_saddr) == 0)
return 0;
if (is_same_ether_addr(&k1.eth_daddr, &k2.eth_daddr) == 0)
return 0;
return ((k1.ip_src_addr == k2.ip_src_addr) &&
(k1.ip_dst_addr == k2.ip_dst_addr) &&
(k1.recv_ack == k2.recv_ack) &&
(k1.src_port == k2.src_port) &&
(k1.dst_port == k2.dst_port));
}
/*
* update packet length for the flushed packet.
*/
static inline void
update_header(struct gro_tcp4_item *item)
{
struct ipv4_hdr *ipv4_hdr;
struct rte_mbuf *pkt = item->firstseg;
ipv4_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(pkt, char *) +
pkt->l2_len);
ipv4_hdr->total_length = rte_cpu_to_be_16(pkt->pkt_len -
pkt->l2_len);
}
int32_t
gro_tcp4_reassemble(struct rte_mbuf *pkt,
struct gro_tcp4_tbl *tbl,
uint64_t start_time)
{
struct ether_hdr *eth_hdr;
struct ipv4_hdr *ipv4_hdr;
struct tcp_hdr *tcp_hdr;
uint32_t sent_seq;
uint16_t tcp_dl, ip_id;
struct tcp4_key key;
uint32_t cur_idx, prev_idx, item_idx;
uint32_t i, max_key_num;
int cmp;
eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
ipv4_hdr = (struct ipv4_hdr *)((char *)eth_hdr + pkt->l2_len);
tcp_hdr = (struct tcp_hdr *)((char *)ipv4_hdr + pkt->l3_len);
/*
* if FIN, SYN, RST, PSH, URG, ECE or
* CWR is set, return immediately.
*/
if (tcp_hdr->tcp_flags != TCP_ACK_FLAG)
return -1;
/* if payload length is 0, return immediately */
tcp_dl = rte_be_to_cpu_16(ipv4_hdr->total_length) - pkt->l3_len -
pkt->l4_len;
if (tcp_dl == 0)
return -1;
ip_id = rte_be_to_cpu_16(ipv4_hdr->packet_id);
sent_seq = rte_be_to_cpu_32(tcp_hdr->sent_seq);
ether_addr_copy(&(eth_hdr->s_addr), &(key.eth_saddr));
ether_addr_copy(&(eth_hdr->d_addr), &(key.eth_daddr));
key.ip_src_addr = ipv4_hdr->src_addr;
key.ip_dst_addr = ipv4_hdr->dst_addr;
key.src_port = tcp_hdr->src_port;
key.dst_port = tcp_hdr->dst_port;
key.recv_ack = tcp_hdr->recv_ack;
/* search for a key */
max_key_num = tbl->max_key_num;
for (i = 0; i < max_key_num; i++) {
if ((tbl->keys[i].start_index != INVALID_ARRAY_INDEX) &&
is_same_key(tbl->keys[i].key, key))
break;
}
/* can't find a key, so insert a new key and a new item. */
if (i == tbl->max_key_num) {
item_idx = insert_new_item(tbl, pkt, ip_id, sent_seq,
INVALID_ARRAY_INDEX, start_time);
if (item_idx == INVALID_ARRAY_INDEX)
return -1;
if (insert_new_key(tbl, &key, item_idx) ==
INVALID_ARRAY_INDEX) {
/*
* fail to insert a new key, so
* delete the inserted item
*/
delete_item(tbl, item_idx, INVALID_ARRAY_INDEX);
return -1;
}
return 0;
}
/* traverse all packets in the item group to find one to merge */
cur_idx = tbl->keys[i].start_index;
prev_idx = cur_idx;
do {
cmp = check_seq_option(&(tbl->items[cur_idx]), tcp_hdr,
pkt->l4_len, tcp_dl, ip_id, sent_seq);
if (cmp) {
if (merge_two_tcp4_packets(&(tbl->items[cur_idx]),
pkt, ip_id,
sent_seq, cmp))
return 1;
/*
* fail to merge two packets since the packet
* length will be greater than the max value.
* So insert the packet into the item group.
*/
if (insert_new_item(tbl, pkt, ip_id, sent_seq,
prev_idx, start_time) ==
INVALID_ARRAY_INDEX)
return -1;
return 0;
}
prev_idx = cur_idx;
cur_idx = tbl->items[cur_idx].next_pkt_idx;
} while (cur_idx != INVALID_ARRAY_INDEX);
/*
* can't find a packet in the item group to merge,
* so insert the packet into the item group.
*/
if (insert_new_item(tbl, pkt, ip_id, sent_seq, prev_idx,
start_time) == INVALID_ARRAY_INDEX)
return -1;
return 0;
}
uint16_t
gro_tcp4_tbl_timeout_flush(struct gro_tcp4_tbl *tbl,
uint64_t flush_timestamp,
struct rte_mbuf **out,
uint16_t nb_out)
{
uint16_t k = 0;
uint32_t i, j;
uint32_t max_key_num = tbl->max_key_num;
for (i = 0; i < max_key_num; i++) {
/* all keys have been checked, return immediately */
if (tbl->key_num == 0)
return k;
j = tbl->keys[i].start_index;
while (j != INVALID_ARRAY_INDEX) {
if (tbl->items[j].start_time <= flush_timestamp) {
out[k++] = tbl->items[j].firstseg;
if (tbl->items[j].nb_merged > 1)
update_header(&(tbl->items[j]));
/*
* delete the item and get
* the next packet index
*/
j = delete_item(tbl, j,
INVALID_ARRAY_INDEX);
/*
* delete the key as all of
* packets are flushed
*/
if (j == INVALID_ARRAY_INDEX) {
tbl->keys[i].start_index =
INVALID_ARRAY_INDEX;
tbl->key_num--;
} else
/* update start_index of the key */
tbl->keys[i].start_index = j;
if (k == nb_out)
return k;
} else
/*
* left packets of this key won't be
* timeout, so go to check other keys.
*/
break;
}
}
return k;
}
uint32_t
gro_tcp4_tbl_pkt_count(void *tbl)
{
struct gro_tcp4_tbl *gro_tbl = tbl;
if (gro_tbl)
return gro_tbl->item_num;
return 0;
}

210
lib/librte_gro/gro_tcp4.h Normal file
View File

@ -0,0 +1,210 @@
/*-
* BSD LICENSE
*
* Copyright(c) 2017 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _GRO_TCP4_H_
#define _GRO_TCP4_H_
#define INVALID_ARRAY_INDEX 0xffffffffUL
#define GRO_TCP4_TBL_MAX_ITEM_NUM (1024UL * 1024UL)
/*
* the max L3 length of a TCP/IPv4 packet. The L3 length
* is the sum of ipv4 header, tcp header and L4 payload.
*/
#define TCP4_MAX_L3_LENGTH UINT16_MAX
/* criteria of mergeing packets */
struct tcp4_key {
struct ether_addr eth_saddr;
struct ether_addr eth_daddr;
uint32_t ip_src_addr;
uint32_t ip_dst_addr;
uint32_t recv_ack;
uint16_t src_port;
uint16_t dst_port;
};
struct gro_tcp4_key {
struct tcp4_key key;
/*
* the index of the first packet in the item group.
* If the value is INVALID_ARRAY_INDEX, it means
* the key is empty.
*/
uint32_t start_index;
};
struct gro_tcp4_item {
/*
* first segment of the packet. If the value
* is NULL, it means the item is empty.
*/
struct rte_mbuf *firstseg;
/* last segment of the packet */
struct rte_mbuf *lastseg;
/*
* the time when the first packet is inserted
* into the table. If a packet in the table is
* merged with an incoming packet, this value
* won't be updated. We set this value only
* when the first packet is inserted into the
* table.
*/
uint64_t start_time;
/*
* we use next_pkt_idx to chain the packets that
* have same key value but can't be merged together.
*/
uint32_t next_pkt_idx;
/* the sequence number of the packet */
uint32_t sent_seq;
/* the IP ID of the packet */
uint16_t ip_id;
/* the number of merged packets */
uint16_t nb_merged;
};
/*
* TCP/IPv4 reassembly table structure.
*/
struct gro_tcp4_tbl {
/* item array */
struct gro_tcp4_item *items;
/* key array */
struct gro_tcp4_key *keys;
/* current item number */
uint32_t item_num;
/* current key num */
uint32_t key_num;
/* item array size */
uint32_t max_item_num;
/* key array size */
uint32_t max_key_num;
};
/**
* This function creates a TCP/IPv4 reassembly table.
*
* @param socket_id
* socket index for allocating TCP/IPv4 reassemblt table
* @param max_flow_num
* the maximum number of flows in the TCP/IPv4 GRO table
* @param max_item_per_flow
* the maximum packet number per flow.
*
* @return
* if create successfully, return a pointer which points to the
* created TCP/IPv4 GRO table. Otherwise, return NULL.
*/
void *gro_tcp4_tbl_create(uint16_t socket_id,
uint16_t max_flow_num,
uint16_t max_item_per_flow);
/**
* This function destroys a TCP/IPv4 reassembly table.
*
* @param tbl
* a pointer points to the TCP/IPv4 reassembly table.
*/
void gro_tcp4_tbl_destroy(void *tbl);
/**
* This function searches for a packet in the TCP/IPv4 reassembly table
* to merge with the inputted one. To merge two packets is to chain them
* together and update packet headers. Packets, whose SYN, FIN, RST, PSH
* CWR, ECE or URG bit is set, are returned immediately. Packets which
* only have packet headers (i.e. without data) are also returned
* immediately. Otherwise, the packet is either merged, or inserted into
* the table. Besides, if there is no available space to insert the
* packet, this function returns immediately too.
*
* This function assumes the inputted packet is with correct IPv4 and
* TCP checksums. And if two packets are merged, it won't re-calculate
* IPv4 and TCP checksums. Besides, if the inputted packet is IP
* fragmented, it assumes the packet is complete (with TCP header).
*
* @param pkt
* packet to reassemble.
* @param tbl
* a pointer that points to a TCP/IPv4 reassembly table.
* @start_time
* the start time that the packet is inserted into the table
*
* @return
* if the packet doesn't have data, or SYN, FIN, RST, PSH, CWR, ECE
* or URG bit is set, or there is no available space in the table to
* insert a new item or a new key, return a negative value. If the
* packet is merged successfully, return an positive value. If the
* packet is inserted into the table, return 0.
*/
int32_t gro_tcp4_reassemble(struct rte_mbuf *pkt,
struct gro_tcp4_tbl *tbl,
uint64_t start_time);
/**
* This function flushes timeout packets in a TCP/IPv4 reassembly table
* to applications, and without updating checksums for merged packets.
* The max number of flushed timeout packets is the element number of
* the array which is used to keep flushed packets.
*
* @param tbl
* a pointer that points to a TCP GRO table.
* @param flush_timestamp
* this function flushes packets which are inserted into the table
* before or at the flush_timestamp.
* @param out
* pointer array which is used to keep flushed packets.
* @param nb_out
* the element number of out. It's also the max number of timeout
* packets that can be flushed finally.
*
* @return
* the number of packets that are returned.
*/
uint16_t gro_tcp4_tbl_timeout_flush(struct gro_tcp4_tbl *tbl,
uint64_t flush_timestamp,
struct rte_mbuf **out,
uint16_t nb_out);
/**
* This function returns the number of the packets in a TCP/IPv4
* reassembly table.
*
* @param tbl
* pointer points to a TCP/IPv4 reassembly table.
*
* @return
* the number of packets in the table
*/
uint32_t gro_tcp4_tbl_pkt_count(void *tbl);
#endif

View File

@ -32,8 +32,11 @@
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_cycles.h>
#include <rte_ethdev.h>
#include "rte_gro.h"
#include "gro_tcp4.h"
typedef void *(*gro_tbl_create_fn)(uint16_t socket_id,
uint16_t max_flow_num,
@ -41,9 +44,12 @@ typedef void *(*gro_tbl_create_fn)(uint16_t socket_id,
typedef void (*gro_tbl_destroy_fn)(void *tbl);
typedef uint32_t (*gro_tbl_pkt_count_fn)(void *tbl);
static gro_tbl_create_fn tbl_create_fn[RTE_GRO_TYPE_MAX_NUM];
static gro_tbl_destroy_fn tbl_destroy_fn[RTE_GRO_TYPE_MAX_NUM];
static gro_tbl_pkt_count_fn tbl_pkt_count_fn[RTE_GRO_TYPE_MAX_NUM];
static gro_tbl_create_fn tbl_create_fn[RTE_GRO_TYPE_MAX_NUM] = {
gro_tcp4_tbl_create, NULL};
static gro_tbl_destroy_fn tbl_destroy_fn[RTE_GRO_TYPE_MAX_NUM] = {
gro_tcp4_tbl_destroy, NULL};
static gro_tbl_pkt_count_fn tbl_pkt_count_fn[RTE_GRO_TYPE_MAX_NUM] = {
gro_tcp4_tbl_pkt_count, NULL};
/*
* GRO context structure, which is used to merge packets. It keeps
@ -121,28 +127,131 @@ rte_gro_ctx_destroy(void *ctx)
}
uint16_t
rte_gro_reassemble_burst(struct rte_mbuf **pkts __rte_unused,
rte_gro_reassemble_burst(struct rte_mbuf **pkts,
uint16_t nb_pkts,
const struct rte_gro_param *param __rte_unused)
const struct rte_gro_param *param)
{
return nb_pkts;
uint16_t i;
uint16_t nb_after_gro = nb_pkts;
uint32_t item_num;
/* allocate a reassembly table for TCP/IPv4 GRO */
struct gro_tcp4_tbl tcp_tbl;
struct gro_tcp4_key tcp_keys[RTE_GRO_MAX_BURST_ITEM_NUM];
struct gro_tcp4_item tcp_items[RTE_GRO_MAX_BURST_ITEM_NUM] = {{0} };
struct rte_mbuf *unprocess_pkts[nb_pkts];
uint16_t unprocess_num = 0;
int32_t ret;
uint64_t current_time;
if ((param->gro_types & RTE_GRO_TCP_IPV4) == 0)
return nb_pkts;
/* get the actual number of packets */
item_num = RTE_MIN(nb_pkts, (param->max_flow_num *
param->max_item_per_flow));
item_num = RTE_MIN(item_num, RTE_GRO_MAX_BURST_ITEM_NUM);
for (i = 0; i < item_num; i++)
tcp_keys[i].start_index = INVALID_ARRAY_INDEX;
tcp_tbl.keys = tcp_keys;
tcp_tbl.items = tcp_items;
tcp_tbl.key_num = 0;
tcp_tbl.item_num = 0;
tcp_tbl.max_key_num = item_num;
tcp_tbl.max_item_num = item_num;
current_time = rte_rdtsc();
for (i = 0; i < nb_pkts; i++) {
if ((pkts[i]->packet_type & (RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_TCP)) ==
(RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP)) {
ret = gro_tcp4_reassemble(pkts[i],
&tcp_tbl,
current_time);
if (ret > 0)
/* merge successfully */
nb_after_gro--;
else if (ret < 0) {
unprocess_pkts[unprocess_num++] =
pkts[i];
}
} else
unprocess_pkts[unprocess_num++] = pkts[i];
}
/* re-arrange GROed packets */
if (nb_after_gro < nb_pkts) {
i = gro_tcp4_tbl_timeout_flush(&tcp_tbl, current_time,
pkts, nb_pkts);
if (unprocess_num > 0) {
memcpy(&pkts[i], unprocess_pkts,
sizeof(struct rte_mbuf *) *
unprocess_num);
}
}
return nb_after_gro;
}
uint16_t
rte_gro_reassemble(struct rte_mbuf **pkts __rte_unused,
rte_gro_reassemble(struct rte_mbuf **pkts,
uint16_t nb_pkts,
void *ctx __rte_unused)
void *ctx)
{
return nb_pkts;
uint16_t i, unprocess_num = 0;
struct rte_mbuf *unprocess_pkts[nb_pkts];
struct gro_ctx *gro_ctx = ctx;
uint64_t current_time;
if ((gro_ctx->gro_types & RTE_GRO_TCP_IPV4) == 0)
return nb_pkts;
current_time = rte_rdtsc();
for (i = 0; i < nb_pkts; i++) {
if ((pkts[i]->packet_type & (RTE_PTYPE_L3_IPV4 |
RTE_PTYPE_L4_TCP)) ==
(RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP)) {
if (gro_tcp4_reassemble(pkts[i],
gro_ctx->tbls
[RTE_GRO_TCP_IPV4_INDEX],
current_time) < 0)
unprocess_pkts[unprocess_num++] = pkts[i];
} else
unprocess_pkts[unprocess_num++] = pkts[i];
}
if (unprocess_num > 0) {
memcpy(pkts, unprocess_pkts,
sizeof(struct rte_mbuf *) *
unprocess_num);
}
return unprocess_num;
}
uint16_t
rte_gro_timeout_flush(void *ctx __rte_unused,
uint64_t timeout_cycles __rte_unused,
uint64_t gro_types __rte_unused,
struct rte_mbuf **out __rte_unused,
uint16_t max_nb_out __rte_unused)
rte_gro_timeout_flush(void *ctx,
uint64_t timeout_cycles,
uint64_t gro_types,
struct rte_mbuf **out,
uint16_t max_nb_out)
{
struct gro_ctx *gro_ctx = ctx;
uint64_t flush_timestamp;
gro_types = gro_types & gro_ctx->gro_types;
flush_timestamp = rte_rdtsc() - timeout_cycles;
if (gro_types & RTE_GRO_TCP_IPV4) {
return gro_tcp4_tbl_timeout_flush(
gro_ctx->tbls[RTE_GRO_TCP_IPV4_INDEX],
flush_timestamp,
out, max_nb_out);
}
return 0;
}

View File

@ -45,8 +45,11 @@ extern "C" {
/**< max number of supported GRO types */
#define RTE_GRO_TYPE_MAX_NUM 64
/**< current supported GRO num */
#define RTE_GRO_TYPE_SUPPORT_NUM 0
#define RTE_GRO_TYPE_SUPPORT_NUM 1
/**< TCP/IPv4 GRO flag */
#define RTE_GRO_TCP_IPV4_INDEX 0
#define RTE_GRO_TCP_IPV4 (1ULL << RTE_GRO_TCP_IPV4_INDEX)
struct rte_gro_param {
/**< desired GRO types */