ring: separate out head index manipulation

We can write a single common function for head manipulation for enq
and a common one for deq, allowing us to have a single worker function
for enq and deq, rather than two of each. Update all other inline
functions to use the new functions.

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
Reviewed-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Acked-by: Olivier Matz <olivier.matz@6wind.com>
This commit is contained in:
Bruce Richardson 2017-03-29 16:21:28 +01:00 committed by Thomas Monjalon
parent 3fe963a85a
commit 0dfc98c507
2 changed files with 181 additions and 215 deletions

View File

@ -138,8 +138,8 @@ rte_ring_init(struct rte_ring *r, const char *name, unsigned count,
if (ret < 0 || ret >= (int)sizeof(r->name))
return -ENAMETOOLONG;
r->flags = flags;
r->prod.single = !!(flags & RING_F_SP_ENQ);
r->cons.single = !!(flags & RING_F_SC_DEQ);
r->prod.single = (flags & RING_F_SP_ENQ) ? __IS_SP : __IS_MP;
r->cons.single = (flags & RING_F_SC_DEQ) ? __IS_SC : __IS_MC;
r->size = count;
r->mask = count - 1;
r->prod.head = r->cons.head = 0;

View File

@ -169,6 +169,12 @@ struct rte_ring {
#define RING_F_SC_DEQ 0x0002 /**< The default dequeue is "single-consumer". */
#define RTE_RING_SZ_MASK (unsigned)(0x0fffffff) /**< Ring size mask */
/* @internal defines for passing to the enqueue dequeue worker functions */
#define __IS_SP 1
#define __IS_MP 0
#define __IS_SC 1
#define __IS_MC 0
/**
* Calculate the memory size needed for a ring
*
@ -287,7 +293,7 @@ void rte_ring_dump(FILE *f, const struct rte_ring *r);
#define ENQUEUE_PTRS() do { \
unsigned int i; \
const uint32_t size = r->size; \
uint32_t idx = prod_head & mask; \
uint32_t idx = prod_head & r->mask; \
if (likely(idx + n < size)) { \
for (i = 0; i < (n & ((~(unsigned)0x3))); i+=4, idx+=4) { \
r->ring[idx] = obj_table[i]; \
@ -313,7 +319,7 @@ void rte_ring_dump(FILE *f, const struct rte_ring *r);
* single and multi consumer dequeue functions */
#define DEQUEUE_PTRS() do { \
unsigned int i; \
uint32_t idx = cons_head & mask; \
uint32_t idx = cons_head & r->mask; \
const uint32_t size = r->size; \
if (likely(idx + n < size)) { \
for (i = 0; i < (n & (~(unsigned)0x3)); i+=4, idx+=4) {\
@ -336,12 +342,72 @@ void rte_ring_dump(FILE *f, const struct rte_ring *r);
} while (0)
/**
* @internal Enqueue several objects on the ring (multi-producers safe).
*
* This function uses a "compare and set" instruction to move the
* producer index atomically.
* @internal This function updates the producer head for enqueue
*
* @param r
* A pointer to the ring structure
* @param is_sp
* Indicates whether multi-producer path is needed or not
* @param n
* The number of elements we will want to enqueue, i.e. how far should the
* head be moved
* @param behavior
* RTE_RING_QUEUE_FIXED: Enqueue a fixed number of items from a ring
* RTE_RING_QUEUE_VARIABLE: Enqueue as many items as possible from ring
* @param old_head
* Returns head value as it was before the move, i.e. where enqueue starts
* @param new_head
* Returns the current/new head value i.e. where enqueue finishes
* @param free_entries
* Returns the amount of free space in the ring BEFORE head was moved
* @return
* Actual number of objects enqueued.
* If behavior == RTE_RING_QUEUE_FIXED, this will be 0 or n only.
*/
static inline __attribute__((always_inline)) unsigned int
__rte_ring_move_prod_head(struct rte_ring *r, int is_sp,
unsigned int n, enum rte_ring_queue_behavior behavior,
uint32_t *old_head, uint32_t *new_head,
uint32_t *free_entries)
{
const uint32_t mask = r->mask;
unsigned int max = n;
int success;
do {
/* Reset n to the initial burst count */
n = max;
*old_head = r->prod.head;
const uint32_t cons_tail = r->cons.tail;
/* The subtraction is done between two unsigned 32bits value
* (the result is always modulo 32 bits even if we have
* *old_head > cons_tail). So 'free_entries' is always between 0
* and size(ring)-1. */
*free_entries = (mask + cons_tail - *old_head);
/* check that we have enough room in ring */
if (unlikely(n > *free_entries))
n = (behavior == RTE_RING_QUEUE_FIXED) ?
0 : *free_entries;
if (n == 0)
return 0;
*new_head = *old_head + n;
if (is_sp)
r->prod.head = *new_head, success = 1;
else
success = rte_atomic32_cmpset(&r->prod.head,
*old_head, *new_head);
} while (unlikely(success == 0));
return n;
}
/**
* @internal Enqueue several objects on the ring
*
* @param r
* A pointer to the ring structure.
* @param obj_table
* A pointer to a table of void * pointers (objects).
@ -349,49 +415,28 @@ void rte_ring_dump(FILE *f, const struct rte_ring *r);
* The number of objects to add in the ring from the obj_table.
* @param behavior
* RTE_RING_QUEUE_FIXED: Enqueue a fixed number of items from a ring
* RTE_RING_QUEUE_VARIABLE: Enqueue as many items a possible from ring
* RTE_RING_QUEUE_VARIABLE: Enqueue as many items as possible from ring
* @param is_sp
* Indicates whether to use single producer or multi-producer head update
* @param free_space
* returns the amount of space after the enqueue operation has finished
* @return
* Actual number of objects enqueued.
* If behavior == RTE_RING_QUEUE_FIXED, this will be 0 or n only.
*/
static inline unsigned int __attribute__((always_inline))
__rte_ring_mp_do_enqueue(struct rte_ring *r, void * const *obj_table,
unsigned int n, enum rte_ring_queue_behavior behavior,
unsigned int *free_space)
static inline __attribute__((always_inline)) unsigned int
__rte_ring_do_enqueue(struct rte_ring *r, void * const *obj_table,
unsigned int n, enum rte_ring_queue_behavior behavior,
int is_sp, unsigned int *free_space)
{
uint32_t prod_head, prod_next;
uint32_t cons_tail, free_entries;
const unsigned int max = n;
int success;
uint32_t mask = r->mask;
uint32_t free_entries;
/* move prod.head atomically */
do {
/* Reset n to the initial burst count */
n = max;
n = __rte_ring_move_prod_head(r, is_sp, n, behavior,
&prod_head, &prod_next, &free_entries);
if (n == 0)
goto end;
prod_head = r->prod.head;
cons_tail = r->cons.tail;
/* The subtraction is done between two unsigned 32bits value
* (the result is always modulo 32 bits even if we have
* prod_head > cons_tail). So 'free_entries' is always between 0
* and size(ring)-1. */
free_entries = (mask + cons_tail - prod_head);
/* check that we have enough room in ring */
if (unlikely(n > free_entries))
n = (behavior == RTE_RING_QUEUE_FIXED) ?
0 : free_entries;
if (n == 0)
goto end;
prod_next = prod_head + n;
success = rte_atomic32_cmpset(&r->prod.head, prod_head,
prod_next);
} while (unlikely(success == 0));
/* write entries in ring */
ENQUEUE_PTRS();
rte_smp_wmb();
@ -403,6 +448,7 @@ __rte_ring_mp_do_enqueue(struct rte_ring *r, void * const *obj_table,
rte_pause();
r->prod.tail = prod_next;
end:
if (free_space != NULL)
*free_space = free_entries - n;
@ -410,185 +456,112 @@ __rte_ring_mp_do_enqueue(struct rte_ring *r, void * const *obj_table,
}
/**
* @internal Enqueue several objects on a ring (NOT multi-producers safe).
* @internal This function updates the consumer head for dequeue
*
* @param r
* A pointer to the ring structure.
* @param obj_table
* A pointer to a table of void * pointers (objects).
* A pointer to the ring structure
* @param is_sc
* Indicates whether multi-consumer path is needed or not
* @param n
* The number of objects to add in the ring from the obj_table.
* @param behavior
* RTE_RING_QUEUE_FIXED: Enqueue a fixed number of items from a ring
* RTE_RING_QUEUE_VARIABLE: Enqueue as many items a possible from ring
* @return
* Actual number of objects enqueued.
* If behavior == RTE_RING_QUEUE_FIXED, this will be 0 or n only.
*/
static inline unsigned int __attribute__((always_inline))
__rte_ring_sp_do_enqueue(struct rte_ring *r, void * const *obj_table,
unsigned int n, enum rte_ring_queue_behavior behavior,
unsigned int *free_space)
{
uint32_t prod_head, cons_tail;
uint32_t prod_next, free_entries;
uint32_t mask = r->mask;
prod_head = r->prod.head;
cons_tail = r->cons.tail;
/* The subtraction is done between two unsigned 32bits value
* (the result is always modulo 32 bits even if we have
* prod_head > cons_tail). So 'free_entries' is always between 0
* and size(ring)-1. */
free_entries = mask + cons_tail - prod_head;
/* check that we have enough room in ring */
if (unlikely(n > free_entries))
n = (behavior == RTE_RING_QUEUE_FIXED) ? 0 : free_entries;
if (n == 0)
goto end;
prod_next = prod_head + n;
r->prod.head = prod_next;
/* write entries in ring */
ENQUEUE_PTRS();
rte_smp_wmb();
r->prod.tail = prod_next;
end:
if (free_space != NULL)
*free_space = free_entries - n;
return n;
}
/**
* @internal Dequeue several objects from a ring (multi-consumers safe). When
* the request objects are more than the available objects, only dequeue the
* actual number of objects
*
* This function uses a "compare and set" instruction to move the
* consumer index atomically.
*
* @param r
* A pointer to the ring structure.
* @param obj_table
* A pointer to a table of void * pointers (objects) that will be filled.
* @param n
* The number of objects to dequeue from the ring to the obj_table.
* The number of elements we will want to enqueue, i.e. how far should the
* head be moved
* @param behavior
* RTE_RING_QUEUE_FIXED: Dequeue a fixed number of items from a ring
* RTE_RING_QUEUE_VARIABLE: Dequeue as many items a possible from ring
* RTE_RING_QUEUE_VARIABLE: Dequeue as many items as possible from ring
* @param old_head
* Returns head value as it was before the move, i.e. where dequeue starts
* @param new_head
* Returns the current/new head value i.e. where dequeue finishes
* @param entries
* Returns the number of entries in the ring BEFORE head was moved
* @return
* - Actual number of objects dequeued.
* If behavior == RTE_RING_QUEUE_FIXED, this will be 0 or n only.
*/
static inline unsigned int __attribute__((always_inline))
__rte_ring_mc_do_dequeue(struct rte_ring *r, void **obj_table,
unsigned int n, enum rte_ring_queue_behavior behavior,
unsigned int *available)
static inline __attribute__((always_inline)) unsigned int
__rte_ring_move_cons_head(struct rte_ring *r, int is_sc,
unsigned int n, enum rte_ring_queue_behavior behavior,
uint32_t *old_head, uint32_t *new_head,
uint32_t *entries)
{
uint32_t cons_head, prod_tail;
uint32_t cons_next, entries;
const unsigned max = n;
unsigned int max = n;
int success;
uint32_t mask = r->mask;
/* move cons.head atomically */
do {
/* Restore n as it may change every loop */
n = max;
cons_head = r->cons.head;
prod_tail = r->prod.tail;
*old_head = r->cons.head;
const uint32_t prod_tail = r->prod.tail;
/* The subtraction is done between two unsigned 32bits value
* (the result is always modulo 32 bits even if we have
* cons_head > prod_tail). So 'entries' is always between 0
* and size(ring)-1. */
entries = (prod_tail - cons_head);
*entries = (prod_tail - *old_head);
/* Set the actual entries for dequeue */
if (n > entries)
n = (behavior == RTE_RING_QUEUE_FIXED) ? 0 : entries;
if (n > *entries)
n = (behavior == RTE_RING_QUEUE_FIXED) ? 0 : *entries;
if (unlikely(n == 0))
goto end;
return 0;
cons_next = cons_head + n;
success = rte_atomic32_cmpset(&r->cons.head, cons_head,
cons_next);
*new_head = *old_head + n;
if (is_sc)
r->cons.head = *new_head, success = 1;
else
success = rte_atomic32_cmpset(&r->cons.head, *old_head,
*new_head);
} while (unlikely(success == 0));
return n;
}
/**
* @internal Dequeue several objects from the ring
*
* @param r
* A pointer to the ring structure.
* @param obj_table
* A pointer to a table of void * pointers (objects).
* @param n
* The number of objects to pull from the ring.
* @param behavior
* RTE_RING_QUEUE_FIXED: Dequeue a fixed number of items from a ring
* RTE_RING_QUEUE_VARIABLE: Dequeue as many items as possible from ring
* @param is_sc
* Indicates whether to use single consumer or multi-consumer head update
* @param available
* returns the number of remaining ring entries after the dequeue has finished
* @return
* - Actual number of objects dequeued.
* If behavior == RTE_RING_QUEUE_FIXED, this will be 0 or n only.
*/
static inline __attribute__((always_inline)) unsigned int
__rte_ring_do_dequeue(struct rte_ring *r, void **obj_table,
unsigned int n, enum rte_ring_queue_behavior behavior,
int is_sc, unsigned int *available)
{
uint32_t cons_head, cons_next;
uint32_t entries;
n = __rte_ring_move_cons_head(r, is_sc, n, behavior,
&cons_head, &cons_next, &entries);
if (n == 0)
goto end;
/* copy in table */
DEQUEUE_PTRS();
rte_smp_rmb();
/*
* If there are other dequeues in progress that preceded us,
* If there are other enqueues in progress that preceded us,
* we need to wait for them to complete
*/
while (unlikely(r->cons.tail != cons_head))
rte_pause();
r->cons.tail = cons_next;
end:
if (available != NULL)
*available = entries - n;
return n;
}
/**
* @internal Dequeue several objects from a ring (NOT multi-consumers safe).
* When the request objects are more than the available objects, only dequeue
* the actual number of objects
*
* @param r
* A pointer to the ring structure.
* @param obj_table
* A pointer to a table of void * pointers (objects) that will be filled.
* @param n
* The number of objects to dequeue from the ring to the obj_table.
* @param behavior
* RTE_RING_QUEUE_FIXED: Dequeue a fixed number of items from a ring
* RTE_RING_QUEUE_VARIABLE: Dequeue as many items a possible from ring
* @return
* - Actual number of objects dequeued.
* If behavior == RTE_RING_QUEUE_FIXED, this will be 0 or n only.
*/
static inline unsigned int __attribute__((always_inline))
__rte_ring_sc_do_dequeue(struct rte_ring *r, void **obj_table,
unsigned int n, enum rte_ring_queue_behavior behavior,
unsigned int *available)
{
uint32_t cons_head, prod_tail;
uint32_t cons_next, entries;
uint32_t mask = r->mask;
cons_head = r->cons.head;
prod_tail = r->prod.tail;
/* The subtraction is done between two unsigned 32bits value
* (the result is always modulo 32 bits even if we have
* cons_head > prod_tail). So 'entries' is always between 0
* and size(ring)-1. */
entries = prod_tail - cons_head;
if (n > entries)
n = (behavior == RTE_RING_QUEUE_FIXED) ? 0 : entries;
if (unlikely(entries == 0))
goto end;
cons_next = cons_head + n;
r->cons.head = cons_next;
/* copy in table */
DEQUEUE_PTRS();
rte_smp_rmb();
r->cons.tail = cons_next;
end:
if (available != NULL)
*available = entries - n;
@ -617,8 +590,8 @@ static inline unsigned int __attribute__((always_inline))
rte_ring_mp_enqueue_bulk(struct rte_ring *r, void * const *obj_table,
unsigned int n, unsigned int *free_space)
{
return __rte_ring_mp_do_enqueue(r, obj_table, n, RTE_RING_QUEUE_FIXED,
free_space);
return __rte_ring_do_enqueue(r, obj_table, n, RTE_RING_QUEUE_FIXED,
__IS_MP, free_space);
}
/**
@ -640,8 +613,8 @@ static inline unsigned int __attribute__((always_inline))
rte_ring_sp_enqueue_bulk(struct rte_ring *r, void * const *obj_table,
unsigned int n, unsigned int *free_space)
{
return __rte_ring_sp_do_enqueue(r, obj_table, n, RTE_RING_QUEUE_FIXED,
free_space);
return __rte_ring_do_enqueue(r, obj_table, n, RTE_RING_QUEUE_FIXED,
__IS_SP, free_space);
}
/**
@ -667,10 +640,8 @@ static inline unsigned int __attribute__((always_inline))
rte_ring_enqueue_bulk(struct rte_ring *r, void * const *obj_table,
unsigned int n, unsigned int *free_space)
{
if (r->prod.single)
return rte_ring_sp_enqueue_bulk(r, obj_table, n, free_space);
else
return rte_ring_mp_enqueue_bulk(r, obj_table, n, free_space);
return __rte_ring_do_enqueue(r, obj_table, n, RTE_RING_QUEUE_FIXED,
r->prod.single, free_space);
}
/**
@ -753,8 +724,8 @@ static inline unsigned int __attribute__((always_inline))
rte_ring_mc_dequeue_bulk(struct rte_ring *r, void **obj_table,
unsigned int n, unsigned int *available)
{
return __rte_ring_mc_do_dequeue(r, obj_table, n, RTE_RING_QUEUE_FIXED,
available);
return __rte_ring_do_dequeue(r, obj_table, n, RTE_RING_QUEUE_FIXED,
__IS_MC, available);
}
/**
@ -777,8 +748,8 @@ static inline unsigned int __attribute__((always_inline))
rte_ring_sc_dequeue_bulk(struct rte_ring *r, void **obj_table,
unsigned int n, unsigned int *available)
{
return __rte_ring_sc_do_dequeue(r, obj_table, n, RTE_RING_QUEUE_FIXED,
available);
return __rte_ring_do_dequeue(r, obj_table, n, RTE_RING_QUEUE_FIXED,
__IS_SC, available);
}
/**
@ -804,10 +775,8 @@ static inline unsigned int __attribute__((always_inline))
rte_ring_dequeue_bulk(struct rte_ring *r, void **obj_table, unsigned int n,
unsigned int *available)
{
if (r->cons.single)
return rte_ring_sc_dequeue_bulk(r, obj_table, n, available);
else
return rte_ring_mc_dequeue_bulk(r, obj_table, n, available);
return __rte_ring_do_dequeue(r, obj_table, n, RTE_RING_QUEUE_FIXED,
r->cons.single, available);
}
/**
@ -993,8 +962,8 @@ static inline unsigned __attribute__((always_inline))
rte_ring_mp_enqueue_burst(struct rte_ring *r, void * const *obj_table,
unsigned int n, unsigned int *free_space)
{
return __rte_ring_mp_do_enqueue(r, obj_table, n,
RTE_RING_QUEUE_VARIABLE, free_space);
return __rte_ring_do_enqueue(r, obj_table, n,
RTE_RING_QUEUE_VARIABLE, __IS_MP, free_space);
}
/**
@ -1016,8 +985,8 @@ static inline unsigned __attribute__((always_inline))
rte_ring_sp_enqueue_burst(struct rte_ring *r, void * const *obj_table,
unsigned int n, unsigned int *free_space)
{
return __rte_ring_sp_do_enqueue(r, obj_table, n,
RTE_RING_QUEUE_VARIABLE, free_space);
return __rte_ring_do_enqueue(r, obj_table, n,
RTE_RING_QUEUE_VARIABLE, __IS_SP, free_space);
}
/**
@ -1043,10 +1012,8 @@ static inline unsigned __attribute__((always_inline))
rte_ring_enqueue_burst(struct rte_ring *r, void * const *obj_table,
unsigned int n, unsigned int *free_space)
{
if (r->prod.single)
return rte_ring_sp_enqueue_burst(r, obj_table, n, free_space);
else
return rte_ring_mp_enqueue_burst(r, obj_table, n, free_space);
return __rte_ring_do_enqueue(r, obj_table, n, RTE_RING_QUEUE_VARIABLE,
r->prod.single, free_space);
}
/**
@ -1073,8 +1040,8 @@ static inline unsigned __attribute__((always_inline))
rte_ring_mc_dequeue_burst(struct rte_ring *r, void **obj_table,
unsigned int n, unsigned int *available)
{
return __rte_ring_mc_do_dequeue(r, obj_table, n,
RTE_RING_QUEUE_VARIABLE, available);
return __rte_ring_do_dequeue(r, obj_table, n,
RTE_RING_QUEUE_VARIABLE, __IS_MC, available);
}
/**
@ -1098,8 +1065,8 @@ static inline unsigned __attribute__((always_inline))
rte_ring_sc_dequeue_burst(struct rte_ring *r, void **obj_table,
unsigned int n, unsigned int *available)
{
return __rte_ring_sc_do_dequeue(r, obj_table, n,
RTE_RING_QUEUE_VARIABLE, available);
return __rte_ring_do_dequeue(r, obj_table, n,
RTE_RING_QUEUE_VARIABLE, __IS_SC, available);
}
/**
@ -1125,10 +1092,9 @@ static inline unsigned __attribute__((always_inline))
rte_ring_dequeue_burst(struct rte_ring *r, void **obj_table,
unsigned int n, unsigned int *available)
{
if (r->cons.single)
return rte_ring_sc_dequeue_burst(r, obj_table, n, available);
else
return rte_ring_mc_dequeue_burst(r, obj_table, n, available);
return __rte_ring_do_dequeue(r, obj_table, n,
RTE_RING_QUEUE_VARIABLE,
r->cons.single, available);
}
#ifdef __cplusplus