test/hash: add test for read/write concurrency

This commits add a new test case for testing read/write concurrency.

Signed-off-by: Yipeng Wang <yipeng1.wang@intel.com>
Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
This commit is contained in:
Yipeng Wang 2018-07-10 10:00:00 -07:00 committed by Thomas Monjalon
parent f6f46b613e
commit 0eb3726ebc
2 changed files with 638 additions and 0 deletions

View File

@ -113,6 +113,7 @@ SRCS-$(CONFIG_RTE_LIBRTE_HASH) += test_hash_perf.c
SRCS-$(CONFIG_RTE_LIBRTE_HASH) += test_hash_functions.c SRCS-$(CONFIG_RTE_LIBRTE_HASH) += test_hash_functions.c
SRCS-$(CONFIG_RTE_LIBRTE_HASH) += test_hash_scaling.c SRCS-$(CONFIG_RTE_LIBRTE_HASH) += test_hash_scaling.c
SRCS-$(CONFIG_RTE_LIBRTE_HASH) += test_hash_multiwriter.c SRCS-$(CONFIG_RTE_LIBRTE_HASH) += test_hash_multiwriter.c
SRCS-$(CONFIG_RTE_LIBRTE_HASH) += test_hash_readwrite.c
SRCS-$(CONFIG_RTE_LIBRTE_LPM) += test_lpm.c SRCS-$(CONFIG_RTE_LIBRTE_LPM) += test_lpm.c
SRCS-$(CONFIG_RTE_LIBRTE_LPM) += test_lpm_perf.c SRCS-$(CONFIG_RTE_LIBRTE_LPM) += test_lpm_perf.c

View File

@ -0,0 +1,637 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Intel Corporation
*/
#include <inttypes.h>
#include <locale.h>
#include <rte_cycles.h>
#include <rte_hash.h>
#include <rte_hash_crc.h>
#include <rte_jhash.h>
#include <rte_launch.h>
#include <rte_malloc.h>
#include <rte_random.h>
#include <rte_spinlock.h>
#include "test.h"
#define RTE_RWTEST_FAIL 0
#define TOTAL_ENTRY (16*1024*1024)
#define TOTAL_INSERT (15*1024*1024)
#define NUM_TEST 3
unsigned int core_cnt[NUM_TEST] = {2, 4, 8};
struct perf {
uint32_t single_read;
uint32_t single_write;
uint32_t read_only[NUM_TEST];
uint32_t write_only[NUM_TEST];
uint32_t read_write_r[NUM_TEST];
uint32_t read_write_w[NUM_TEST];
};
static struct perf htm_results, non_htm_results;
struct {
uint32_t *keys;
uint32_t *found;
uint32_t num_insert;
uint32_t rounded_tot_insert;
struct rte_hash *h;
} tbl_rw_test_param;
static rte_atomic64_t gcycles;
static rte_atomic64_t ginsertions;
static rte_atomic64_t gread_cycles;
static rte_atomic64_t gwrite_cycles;
static rte_atomic64_t greads;
static rte_atomic64_t gwrites;
static int
test_hash_readwrite_worker(__attribute__((unused)) void *arg)
{
uint64_t i, offset;
uint32_t lcore_id = rte_lcore_id();
uint64_t begin, cycles;
int ret;
offset = (lcore_id - rte_get_master_lcore())
* tbl_rw_test_param.num_insert;
printf("Core #%d inserting and reading %d: %'"PRId64" - %'"PRId64"\n",
lcore_id, tbl_rw_test_param.num_insert,
offset, offset + tbl_rw_test_param.num_insert);
begin = rte_rdtsc_precise();
for (i = offset; i < offset + tbl_rw_test_param.num_insert; i++) {
if (rte_hash_lookup(tbl_rw_test_param.h,
tbl_rw_test_param.keys + i) > 0)
break;
ret = rte_hash_add_key(tbl_rw_test_param.h,
tbl_rw_test_param.keys + i);
if (ret < 0)
break;
if (rte_hash_lookup(tbl_rw_test_param.h,
tbl_rw_test_param.keys + i) != ret)
break;
}
cycles = rte_rdtsc_precise() - begin;
rte_atomic64_add(&gcycles, cycles);
rte_atomic64_add(&ginsertions, i - offset);
for (; i < offset + tbl_rw_test_param.num_insert; i++)
tbl_rw_test_param.keys[i] = RTE_RWTEST_FAIL;
return 0;
}
static int
init_params(int use_htm, int use_jhash)
{
unsigned int i;
uint32_t *keys = NULL;
uint32_t *found = NULL;
struct rte_hash *handle;
struct rte_hash_parameters hash_params = {
.entries = TOTAL_ENTRY,
.key_len = sizeof(uint32_t),
.hash_func_init_val = 0,
.socket_id = rte_socket_id(),
};
if (use_jhash)
hash_params.hash_func = rte_jhash;
else
hash_params.hash_func = rte_hash_crc;
if (use_htm)
hash_params.extra_flag =
RTE_HASH_EXTRA_FLAGS_TRANS_MEM_SUPPORT |
RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY;
else
hash_params.extra_flag =
RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY;
hash_params.name = "tests";
handle = rte_hash_create(&hash_params);
if (handle == NULL) {
printf("hash creation failed");
return -1;
}
tbl_rw_test_param.h = handle;
keys = rte_malloc(NULL, sizeof(uint32_t) * TOTAL_ENTRY, 0);
if (keys == NULL) {
printf("RTE_MALLOC failed\n");
goto err;
}
found = rte_zmalloc(NULL, sizeof(uint32_t) * TOTAL_ENTRY, 0);
if (found == NULL) {
printf("RTE_ZMALLOC failed\n");
goto err;
}
tbl_rw_test_param.keys = keys;
tbl_rw_test_param.found = found;
for (i = 0; i < TOTAL_ENTRY; i++)
keys[i] = i;
return 0;
err:
rte_free(keys);
rte_hash_free(handle);
return -1;
}
static int
test_hash_readwrite_functional(int use_htm)
{
unsigned int i;
const void *next_key;
void *next_data;
uint32_t iter = 0;
uint32_t duplicated_keys = 0;
uint32_t lost_keys = 0;
int use_jhash = 1;
rte_atomic64_init(&gcycles);
rte_atomic64_clear(&gcycles);
rte_atomic64_init(&ginsertions);
rte_atomic64_clear(&ginsertions);
if (init_params(use_htm, use_jhash) != 0)
goto err;
tbl_rw_test_param.num_insert =
TOTAL_INSERT / rte_lcore_count();
tbl_rw_test_param.rounded_tot_insert =
tbl_rw_test_param.num_insert
* rte_lcore_count();
printf("++++++++Start function tests:+++++++++\n");
/* Fire all threads. */
rte_eal_mp_remote_launch(test_hash_readwrite_worker,
NULL, CALL_MASTER);
rte_eal_mp_wait_lcore();
while (rte_hash_iterate(tbl_rw_test_param.h, &next_key,
&next_data, &iter) >= 0) {
/* Search for the key in the list of keys added .*/
i = *(const uint32_t *)next_key;
tbl_rw_test_param.found[i]++;
}
for (i = 0; i < tbl_rw_test_param.rounded_tot_insert; i++) {
if (tbl_rw_test_param.keys[i] != RTE_RWTEST_FAIL) {
if (tbl_rw_test_param.found[i] > 1) {
duplicated_keys++;
break;
}
if (tbl_rw_test_param.found[i] == 0) {
lost_keys++;
printf("key %d is lost\n", i);
break;
}
}
}
if (duplicated_keys > 0) {
printf("%d key duplicated\n", duplicated_keys);
goto err_free;
}
if (lost_keys > 0) {
printf("%d key lost\n", lost_keys);
goto err_free;
}
printf("No key corrupted during read-write test.\n");
unsigned long long int cycles_per_insertion =
rte_atomic64_read(&gcycles) /
rte_atomic64_read(&ginsertions);
printf("cycles per insertion and lookup: %llu\n", cycles_per_insertion);
rte_free(tbl_rw_test_param.found);
rte_free(tbl_rw_test_param.keys);
rte_hash_free(tbl_rw_test_param.h);
printf("+++++++++Complete function tests+++++++++\n");
return 0;
err_free:
rte_free(tbl_rw_test_param.found);
rte_free(tbl_rw_test_param.keys);
rte_hash_free(tbl_rw_test_param.h);
err:
return -1;
}
static int
test_rw_reader(__attribute__((unused)) void *arg)
{
uint64_t i;
uint64_t begin, cycles;
uint64_t read_cnt = (uint64_t)((uintptr_t)arg);
begin = rte_rdtsc_precise();
for (i = 0; i < read_cnt; i++) {
void *data;
rte_hash_lookup_data(tbl_rw_test_param.h,
tbl_rw_test_param.keys + i,
&data);
if (i != (uint64_t)(uintptr_t)data) {
printf("lookup find wrong value %"PRIu64","
"%"PRIu64"\n", i,
(uint64_t)(uintptr_t)data);
break;
}
}
cycles = rte_rdtsc_precise() - begin;
rte_atomic64_add(&gread_cycles, cycles);
rte_atomic64_add(&greads, i);
return 0;
}
static int
test_rw_writer(__attribute__((unused)) void *arg)
{
uint64_t i;
uint32_t lcore_id = rte_lcore_id();
uint64_t begin, cycles;
int ret;
uint64_t start_coreid = (uint64_t)(uintptr_t)arg;
uint64_t offset;
offset = TOTAL_INSERT / 2 + (lcore_id - start_coreid)
* tbl_rw_test_param.num_insert;
begin = rte_rdtsc_precise();
for (i = offset; i < offset + tbl_rw_test_param.num_insert; i++) {
ret = rte_hash_add_key_data(tbl_rw_test_param.h,
tbl_rw_test_param.keys + i,
(void *)((uintptr_t)i));
if (ret < 0) {
printf("writer failed %"PRIu64"\n", i);
break;
}
}
cycles = rte_rdtsc_precise() - begin;
rte_atomic64_add(&gwrite_cycles, cycles);
rte_atomic64_add(&gwrites, tbl_rw_test_param.num_insert);
return 0;
}
static int
test_hash_readwrite_perf(struct perf *perf_results, int use_htm,
int reader_faster)
{
unsigned int n;
int ret;
int start_coreid;
uint64_t i, read_cnt;
const void *next_key;
void *next_data;
uint32_t iter = 0;
int use_jhash = 0;
uint32_t duplicated_keys = 0;
uint32_t lost_keys = 0;
uint64_t start = 0, end = 0;
rte_atomic64_init(&greads);
rte_atomic64_init(&gwrites);
rte_atomic64_clear(&gwrites);
rte_atomic64_clear(&greads);
rte_atomic64_init(&gread_cycles);
rte_atomic64_clear(&gread_cycles);
rte_atomic64_init(&gwrite_cycles);
rte_atomic64_clear(&gwrite_cycles);
if (init_params(use_htm, use_jhash) != 0)
goto err;
/*
* Do a readers finish faster or writers finish faster test.
* When readers finish faster, we timing the readers, and when writers
* finish faster, we timing the writers.
* Divided by 10 or 2 is just experimental values to vary the workload
* of readers.
*/
if (reader_faster) {
printf("++++++Start perf test: reader++++++++\n");
read_cnt = TOTAL_INSERT / 10;
} else {
printf("++++++Start perf test: writer++++++++\n");
read_cnt = TOTAL_INSERT / 2;
}
/* We first test single thread performance */
start = rte_rdtsc_precise();
/* Insert half of the keys */
for (i = 0; i < TOTAL_INSERT / 2; i++) {
ret = rte_hash_add_key_data(tbl_rw_test_param.h,
tbl_rw_test_param.keys + i,
(void *)((uintptr_t)i));
if (ret < 0) {
printf("Failed to insert half of keys\n");
goto err_free;
}
}
end = rte_rdtsc_precise() - start;
perf_results->single_write = end / i;
start = rte_rdtsc_precise();
for (i = 0; i < read_cnt; i++) {
void *data;
rte_hash_lookup_data(tbl_rw_test_param.h,
tbl_rw_test_param.keys + i,
&data);
if (i != (uint64_t)(uintptr_t)data) {
printf("lookup find wrong value"
" %"PRIu64",%"PRIu64"\n", i,
(uint64_t)(uintptr_t)data);
break;
}
}
end = rte_rdtsc_precise() - start;
perf_results->single_read = end / i;
for (n = 0; n < NUM_TEST; n++) {
unsigned int tot_lcore = rte_lcore_count();
if (tot_lcore < core_cnt[n] * 2 + 1)
goto finish;
rte_atomic64_clear(&greads);
rte_atomic64_clear(&gread_cycles);
rte_atomic64_clear(&gwrites);
rte_atomic64_clear(&gwrite_cycles);
rte_hash_reset(tbl_rw_test_param.h);
tbl_rw_test_param.num_insert = TOTAL_INSERT / 2 / core_cnt[n];
tbl_rw_test_param.rounded_tot_insert = TOTAL_INSERT / 2 +
tbl_rw_test_param.num_insert *
core_cnt[n];
for (i = 0; i < TOTAL_INSERT / 2; i++) {
ret = rte_hash_add_key_data(tbl_rw_test_param.h,
tbl_rw_test_param.keys + i,
(void *)((uintptr_t)i));
if (ret < 0) {
printf("Failed to insert half of keys\n");
goto err_free;
}
}
/* Then test multiple thread case but only all reads or
* all writes
*/
/* Test only reader cases */
for (i = 1; i <= core_cnt[n]; i++)
rte_eal_remote_launch(test_rw_reader,
(void *)(uintptr_t)read_cnt, i);
rte_eal_mp_wait_lcore();
start_coreid = i;
/* Test only writer cases */
for (; i <= core_cnt[n] * 2; i++)
rte_eal_remote_launch(test_rw_writer,
(void *)((uintptr_t)start_coreid), i);
rte_eal_mp_wait_lcore();
if (reader_faster) {
unsigned long long int cycles_per_insertion =
rte_atomic64_read(&gread_cycles) /
rte_atomic64_read(&greads);
perf_results->read_only[n] = cycles_per_insertion;
printf("Reader only: cycles per lookup: %llu\n",
cycles_per_insertion);
}
else {
unsigned long long int cycles_per_insertion =
rte_atomic64_read(&gwrite_cycles) /
rte_atomic64_read(&gwrites);
perf_results->write_only[n] = cycles_per_insertion;
printf("Writer only: cycles per writes: %llu\n",
cycles_per_insertion);
}
rte_atomic64_clear(&greads);
rte_atomic64_clear(&gread_cycles);
rte_atomic64_clear(&gwrites);
rte_atomic64_clear(&gwrite_cycles);
rte_hash_reset(tbl_rw_test_param.h);
for (i = 0; i < TOTAL_INSERT / 2; i++) {
ret = rte_hash_add_key_data(tbl_rw_test_param.h,
tbl_rw_test_param.keys + i,
(void *)((uintptr_t)i));
if (ret < 0) {
printf("Failed to insert half of keys\n");
goto err_free;
}
}
start_coreid = core_cnt[n] + 1;
if (reader_faster) {
for (i = core_cnt[n] + 1; i <= core_cnt[n] * 2; i++)
rte_eal_remote_launch(test_rw_writer,
(void *)((uintptr_t)start_coreid), i);
for (i = 1; i <= core_cnt[n]; i++)
rte_eal_remote_launch(test_rw_reader,
(void *)(uintptr_t)read_cnt, i);
} else {
for (i = 1; i <= core_cnt[n]; i++)
rte_eal_remote_launch(test_rw_reader,
(void *)(uintptr_t)read_cnt, i);
for (; i <= core_cnt[n] * 2; i++)
rte_eal_remote_launch(test_rw_writer,
(void *)((uintptr_t)start_coreid), i);
}
rte_eal_mp_wait_lcore();
while (rte_hash_iterate(tbl_rw_test_param.h,
&next_key, &next_data, &iter) >= 0) {
/* Search for the key in the list of keys added .*/
i = *(const uint32_t *)next_key;
tbl_rw_test_param.found[i]++;
}
for (i = 0; i < tbl_rw_test_param.rounded_tot_insert; i++) {
if (tbl_rw_test_param.keys[i] != RTE_RWTEST_FAIL) {
if (tbl_rw_test_param.found[i] > 1) {
duplicated_keys++;
break;
}
if (tbl_rw_test_param.found[i] == 0) {
lost_keys++;
printf("key %"PRIu64" is lost\n", i);
break;
}
}
}
if (duplicated_keys > 0) {
printf("%d key duplicated\n", duplicated_keys);
goto err_free;
}
if (lost_keys > 0) {
printf("%d key lost\n", lost_keys);
goto err_free;
}
printf("No key corrupted during read-write test.\n");
if (reader_faster) {
unsigned long long int cycles_per_insertion =
rte_atomic64_read(&gread_cycles) /
rte_atomic64_read(&greads);
perf_results->read_write_r[n] = cycles_per_insertion;
printf("Read-write cycles per lookup: %llu\n",
cycles_per_insertion);
}
else {
unsigned long long int cycles_per_insertion =
rte_atomic64_read(&gwrite_cycles) /
rte_atomic64_read(&gwrites);
perf_results->read_write_w[n] = cycles_per_insertion;
printf("Read-write cycles per writes: %llu\n",
cycles_per_insertion);
}
}
finish:
rte_free(tbl_rw_test_param.found);
rte_free(tbl_rw_test_param.keys);
rte_hash_free(tbl_rw_test_param.h);
return 0;
err_free:
rte_free(tbl_rw_test_param.found);
rte_free(tbl_rw_test_param.keys);
rte_hash_free(tbl_rw_test_param.h);
err:
return -1;
}
static int
test_hash_readwrite_main(void)
{
/*
* Variables used to choose different tests.
* use_htm indicates if hardware transactional memory should be used.
* reader_faster indicates if the reader threads should finish earlier
* than writer threads. This is to timing either reader threads or
* writer threads for performance numbers.
*/
int use_htm, reader_faster;
if (rte_lcore_count() == 1) {
printf("More than one lcore is required "
"to do read write test\n");
return 0;
}
setlocale(LC_NUMERIC, "");
if (rte_tm_supported()) {
printf("Hardware transactional memory (lock elision) "
"is supported\n");
printf("Test read-write with Hardware transactional memory\n");
use_htm = 1;
if (test_hash_readwrite_functional(use_htm) < 0)
return -1;
reader_faster = 1;
if (test_hash_readwrite_perf(&htm_results, use_htm,
reader_faster) < 0)
return -1;
reader_faster = 0;
if (test_hash_readwrite_perf(&htm_results, use_htm,
reader_faster) < 0)
return -1;
} else {
printf("Hardware transactional memory (lock elision) "
"is NOT supported\n");
}
printf("Test read-write without Hardware transactional memory\n");
use_htm = 0;
if (test_hash_readwrite_functional(use_htm) < 0)
return -1;
reader_faster = 1;
if (test_hash_readwrite_perf(&non_htm_results, use_htm,
reader_faster) < 0)
return -1;
reader_faster = 0;
if (test_hash_readwrite_perf(&non_htm_results, use_htm,
reader_faster) < 0)
return -1;
printf("Results summary:\n");
int i;
printf("single read: %u\n", htm_results.single_read);
printf("single write: %u\n", htm_results.single_write);
for (i = 0; i < NUM_TEST; i++) {
printf("core_cnt: %u\n", core_cnt[i]);
printf("HTM:\n");
printf("read only: %u\n", htm_results.read_only[i]);
printf("write only: %u\n", htm_results.write_only[i]);
printf("read-write read: %u\n", htm_results.read_write_r[i]);
printf("read-write write: %u\n", htm_results.read_write_w[i]);
printf("non HTM:\n");
printf("read only: %u\n", non_htm_results.read_only[i]);
printf("write only: %u\n", non_htm_results.write_only[i]);
printf("read-write read: %u\n",
non_htm_results.read_write_r[i]);
printf("read-write write: %u\n",
non_htm_results.read_write_w[i]);
}
return 0;
}
REGISTER_TEST_COMMAND(hash_readwrite_autotest, test_hash_readwrite_main);