crypto/scheduler: add round-robin mode

Implements round-robin scheduling mode and register into cryptodev
scheduler ops structure. This mode enqueues a burst of operation
to one of its slaves, and iterates the next burst to the other
slave. Same procedure is done on dequeueing operations.

Signed-off-by: Fan Zhang <roy.fan.zhang@intel.com>
Signed-off-by: Declan Doherty <declan.doherty@intel.com>
Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
This commit is contained in:
Fan Zhang 2017-01-24 16:23:55 +00:00 committed by Pablo de Lara
parent 31439ee72b
commit 100e4f7e44
3 changed files with 445 additions and 0 deletions

View File

@ -329,6 +329,13 @@ rte_crpytodev_scheduler_mode_set(uint8_t scheduler_id,
return 0;
switch (mode) {
case CDEV_SCHED_MODE_ROUNDROBIN:
if (rte_cryptodev_scheduler_load_user_scheduler(scheduler_id,
roundrobin_scheduler) < 0) {
CS_LOG_ERR("Failed to load scheduler");
return -1;
}
break;
default:
CS_LOG_ERR("Not yet supported");
return -ENOTSUP;

View File

@ -46,6 +46,7 @@ extern "C" {
enum rte_cryptodev_scheduler_mode {
CDEV_SCHED_MODE_NOT_SET = 0,
CDEV_SCHED_MODE_USERDEFINED,
CDEV_SCHED_MODE_ROUNDROBIN,
CDEV_SCHED_MODE_COUNT /* number of modes */
};
@ -156,6 +157,8 @@ struct rte_cryptodev_scheduler {
struct rte_cryptodev_scheduler_ops *ops;
};
extern struct rte_cryptodev_scheduler *roundrobin_scheduler;
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,435 @@
/*-
* BSD LICENSE
*
* Copyright(c) 2017 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_cryptodev.h>
#include <rte_malloc.h>
#include "rte_cryptodev_scheduler_operations.h"
#include "scheduler_pmd_private.h"
struct rr_scheduler_qp_ctx {
struct scheduler_slave slaves[MAX_SLAVES_NUM];
uint32_t nb_slaves;
uint32_t last_enq_slave_idx;
uint32_t last_deq_slave_idx;
};
static uint16_t
schedule_enqueue(void *qp_ctx, struct rte_crypto_op **ops, uint16_t nb_ops)
{
struct rr_scheduler_qp_ctx *rr_qp_ctx =
((struct scheduler_qp_ctx *)qp_ctx)->private_qp_ctx;
uint32_t slave_idx = rr_qp_ctx->last_enq_slave_idx;
struct scheduler_slave *slave = &rr_qp_ctx->slaves[slave_idx];
uint16_t i, processed_ops;
struct rte_cryptodev_sym_session *sessions[nb_ops];
struct scheduler_session *sess0, *sess1, *sess2, *sess3;
if (unlikely(nb_ops == 0))
return 0;
for (i = 0; i < nb_ops && i < 4; i++)
rte_prefetch0(ops[i]->sym->session);
for (i = 0; (i < (nb_ops - 8)) && (nb_ops > 8); i += 4) {
sess0 = (struct scheduler_session *)
ops[i]->sym->session->_private;
sess1 = (struct scheduler_session *)
ops[i+1]->sym->session->_private;
sess2 = (struct scheduler_session *)
ops[i+2]->sym->session->_private;
sess3 = (struct scheduler_session *)
ops[i+3]->sym->session->_private;
sessions[i] = ops[i]->sym->session;
sessions[i + 1] = ops[i + 1]->sym->session;
sessions[i + 2] = ops[i + 2]->sym->session;
sessions[i + 3] = ops[i + 3]->sym->session;
ops[i]->sym->session = sess0->sessions[slave_idx];
ops[i + 1]->sym->session = sess1->sessions[slave_idx];
ops[i + 2]->sym->session = sess2->sessions[slave_idx];
ops[i + 3]->sym->session = sess3->sessions[slave_idx];
rte_prefetch0(ops[i + 4]->sym->session);
rte_prefetch0(ops[i + 5]->sym->session);
rte_prefetch0(ops[i + 6]->sym->session);
rte_prefetch0(ops[i + 7]->sym->session);
}
for (; i < nb_ops; i++) {
sess0 = (struct scheduler_session *)
ops[i]->sym->session->_private;
ops[i]->sym->session = sess0->sessions[slave_idx];
}
processed_ops = rte_cryptodev_enqueue_burst(slave->dev_id,
slave->qp_id, ops, nb_ops);
slave->nb_inflight_cops += processed_ops;
rr_qp_ctx->last_enq_slave_idx += 1;
rr_qp_ctx->last_enq_slave_idx %= rr_qp_ctx->nb_slaves;
/* recover session if enqueue is failed */
if (unlikely(processed_ops < nb_ops)) {
for (i = processed_ops; i < nb_ops; i++)
ops[i]->sym->session = sessions[i];
}
return processed_ops;
}
static uint16_t
schedule_enqueue_ordering(void *qp_ctx, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct scheduler_qp_ctx *gen_qp_ctx = qp_ctx;
struct rr_scheduler_qp_ctx *rr_qp_ctx =
gen_qp_ctx->private_qp_ctx;
uint32_t slave_idx = rr_qp_ctx->last_enq_slave_idx;
struct scheduler_slave *slave = &rr_qp_ctx->slaves[slave_idx];
uint16_t i, processed_ops;
struct rte_cryptodev_sym_session *sessions[nb_ops];
struct scheduler_session *sess0, *sess1, *sess2, *sess3;
if (unlikely(nb_ops == 0))
return 0;
for (i = 0; i < nb_ops && i < 4; i++) {
rte_prefetch0(ops[i]->sym->session);
rte_prefetch0(ops[i]->sym->m_src);
}
for (i = 0; (i < (nb_ops - 8)) && (nb_ops > 8); i += 4) {
sess0 = (struct scheduler_session *)
ops[i]->sym->session->_private;
sess1 = (struct scheduler_session *)
ops[i+1]->sym->session->_private;
sess2 = (struct scheduler_session *)
ops[i+2]->sym->session->_private;
sess3 = (struct scheduler_session *)
ops[i+3]->sym->session->_private;
sessions[i] = ops[i]->sym->session;
sessions[i + 1] = ops[i + 1]->sym->session;
sessions[i + 2] = ops[i + 2]->sym->session;
sessions[i + 3] = ops[i + 3]->sym->session;
ops[i]->sym->session = sess0->sessions[slave_idx];
ops[i]->sym->m_src->seqn = gen_qp_ctx->seqn++;
ops[i + 1]->sym->session = sess1->sessions[slave_idx];
ops[i + 1]->sym->m_src->seqn = gen_qp_ctx->seqn++;
ops[i + 2]->sym->session = sess2->sessions[slave_idx];
ops[i + 2]->sym->m_src->seqn = gen_qp_ctx->seqn++;
ops[i + 3]->sym->session = sess3->sessions[slave_idx];
ops[i + 3]->sym->m_src->seqn = gen_qp_ctx->seqn++;
rte_prefetch0(ops[i + 4]->sym->session);
rte_prefetch0(ops[i + 4]->sym->m_src);
rte_prefetch0(ops[i + 5]->sym->session);
rte_prefetch0(ops[i + 5]->sym->m_src);
rte_prefetch0(ops[i + 6]->sym->session);
rte_prefetch0(ops[i + 6]->sym->m_src);
rte_prefetch0(ops[i + 7]->sym->session);
rte_prefetch0(ops[i + 7]->sym->m_src);
}
for (; i < nb_ops; i++) {
sess0 = (struct scheduler_session *)
ops[i]->sym->session->_private;
ops[i]->sym->session = sess0->sessions[slave_idx];
ops[i]->sym->m_src->seqn = gen_qp_ctx->seqn++;
}
processed_ops = rte_cryptodev_enqueue_burst(slave->dev_id,
slave->qp_id, ops, nb_ops);
slave->nb_inflight_cops += processed_ops;
rr_qp_ctx->last_enq_slave_idx += 1;
rr_qp_ctx->last_enq_slave_idx %= rr_qp_ctx->nb_slaves;
/* recover session if enqueue is failed */
if (unlikely(processed_ops < nb_ops)) {
for (i = processed_ops; i < nb_ops; i++)
ops[i]->sym->session = sessions[i];
}
return processed_ops;
}
static uint16_t
schedule_dequeue(void *qp_ctx, struct rte_crypto_op **ops, uint16_t nb_ops)
{
struct rr_scheduler_qp_ctx *rr_qp_ctx =
((struct scheduler_qp_ctx *)qp_ctx)->private_qp_ctx;
struct scheduler_slave *slave;
uint32_t last_slave_idx = rr_qp_ctx->last_deq_slave_idx;
uint16_t nb_deq_ops;
if (unlikely(rr_qp_ctx->slaves[last_slave_idx].nb_inflight_cops == 0)) {
do {
last_slave_idx += 1;
if (unlikely(last_slave_idx >= rr_qp_ctx->nb_slaves))
last_slave_idx = 0;
/* looped back, means no inflight cops in the queue */
if (last_slave_idx == rr_qp_ctx->last_deq_slave_idx)
return 0;
} while (rr_qp_ctx->slaves[last_slave_idx].nb_inflight_cops
== 0);
}
slave = &rr_qp_ctx->slaves[last_slave_idx];
nb_deq_ops = rte_cryptodev_dequeue_burst(slave->dev_id,
slave->qp_id, ops, nb_ops);
last_slave_idx += 1;
last_slave_idx %= rr_qp_ctx->nb_slaves;
rr_qp_ctx->last_deq_slave_idx = last_slave_idx;
slave->nb_inflight_cops -= nb_deq_ops;
return nb_deq_ops;
}
static uint16_t
schedule_dequeue_ordering(void *qp_ctx, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct scheduler_qp_ctx *gen_qp_ctx = (struct scheduler_qp_ctx *)qp_ctx;
struct rr_scheduler_qp_ctx *rr_qp_ctx = (gen_qp_ctx->private_qp_ctx);
struct scheduler_slave *slave;
struct rte_reorder_buffer *reorder_buff = gen_qp_ctx->reorder_buf;
struct rte_mbuf *mbuf0, *mbuf1, *mbuf2, *mbuf3;
uint16_t nb_deq_ops, nb_drained_mbufs;
const uint16_t nb_op_ops = nb_ops;
struct rte_crypto_op *op_ops[nb_op_ops];
struct rte_mbuf *reorder_mbufs[nb_op_ops];
uint32_t last_slave_idx = rr_qp_ctx->last_deq_slave_idx;
uint16_t i;
if (unlikely(rr_qp_ctx->slaves[last_slave_idx].nb_inflight_cops == 0)) {
do {
last_slave_idx += 1;
if (unlikely(last_slave_idx >= rr_qp_ctx->nb_slaves))
last_slave_idx = 0;
/* looped back, means no inflight cops in the queue */
if (last_slave_idx == rr_qp_ctx->last_deq_slave_idx)
return 0;
} while (rr_qp_ctx->slaves[last_slave_idx].nb_inflight_cops
== 0);
}
slave = &rr_qp_ctx->slaves[last_slave_idx];
nb_deq_ops = rte_cryptodev_dequeue_burst(slave->dev_id,
slave->qp_id, op_ops, nb_ops);
rr_qp_ctx->last_deq_slave_idx += 1;
rr_qp_ctx->last_deq_slave_idx %= rr_qp_ctx->nb_slaves;
slave->nb_inflight_cops -= nb_deq_ops;
for (i = 0; i < nb_deq_ops && i < 4; i++)
rte_prefetch0(op_ops[i]->sym->m_src);
for (i = 0; (i < (nb_deq_ops - 8)) && (nb_deq_ops > 8); i += 4) {
mbuf0 = op_ops[i]->sym->m_src;
mbuf1 = op_ops[i + 1]->sym->m_src;
mbuf2 = op_ops[i + 2]->sym->m_src;
mbuf3 = op_ops[i + 3]->sym->m_src;
mbuf0->userdata = op_ops[i];
mbuf1->userdata = op_ops[i + 1];
mbuf2->userdata = op_ops[i + 2];
mbuf3->userdata = op_ops[i + 3];
rte_reorder_insert(reorder_buff, mbuf0);
rte_reorder_insert(reorder_buff, mbuf1);
rte_reorder_insert(reorder_buff, mbuf2);
rte_reorder_insert(reorder_buff, mbuf3);
rte_prefetch0(op_ops[i + 4]->sym->m_src);
rte_prefetch0(op_ops[i + 5]->sym->m_src);
rte_prefetch0(op_ops[i + 6]->sym->m_src);
rte_prefetch0(op_ops[i + 7]->sym->m_src);
}
for (; i < nb_deq_ops; i++) {
mbuf0 = op_ops[i]->sym->m_src;
mbuf0->userdata = op_ops[i];
rte_reorder_insert(reorder_buff, mbuf0);
}
nb_drained_mbufs = rte_reorder_drain(reorder_buff, reorder_mbufs,
nb_ops);
for (i = 0; i < nb_drained_mbufs && i < 4; i++)
rte_prefetch0(reorder_mbufs[i]);
for (i = 0; (i < (nb_drained_mbufs - 8)) && (nb_drained_mbufs > 8);
i += 4) {
ops[i] = *(struct rte_crypto_op **)reorder_mbufs[i]->userdata;
ops[i + 1] = *(struct rte_crypto_op **)
reorder_mbufs[i + 1]->userdata;
ops[i + 2] = *(struct rte_crypto_op **)
reorder_mbufs[i + 2]->userdata;
ops[i + 3] = *(struct rte_crypto_op **)
reorder_mbufs[i + 3]->userdata;
reorder_mbufs[i]->userdata = NULL;
reorder_mbufs[i + 1]->userdata = NULL;
reorder_mbufs[i + 2]->userdata = NULL;
reorder_mbufs[i + 3]->userdata = NULL;
rte_prefetch0(reorder_mbufs[i + 4]);
rte_prefetch0(reorder_mbufs[i + 5]);
rte_prefetch0(reorder_mbufs[i + 6]);
rte_prefetch0(reorder_mbufs[i + 7]);
}
for (; i < nb_drained_mbufs; i++) {
ops[i] = *(struct rte_crypto_op **)
reorder_mbufs[i]->userdata;
reorder_mbufs[i]->userdata = NULL;
}
return nb_drained_mbufs;
}
static int
slave_attach(__rte_unused struct rte_cryptodev *dev,
__rte_unused uint8_t slave_id)
{
return 0;
}
static int
slave_detach(__rte_unused struct rte_cryptodev *dev,
__rte_unused uint8_t slave_id)
{
return 0;
}
static int
scheduler_start(struct rte_cryptodev *dev)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
uint16_t i;
for (i = 0; i < dev->data->nb_queue_pairs; i++) {
struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[i];
struct rr_scheduler_qp_ctx *rr_qp_ctx =
qp_ctx->private_qp_ctx;
uint32_t j;
uint16_t qp_id = rr_qp_ctx->slaves[0].qp_id;
memset(rr_qp_ctx->slaves, 0, MAX_SLAVES_NUM *
sizeof(struct scheduler_slave));
for (j = 0; j < sched_ctx->nb_slaves; j++) {
rr_qp_ctx->slaves[j].dev_id =
sched_ctx->slaves[i].dev_id;
rr_qp_ctx->slaves[j].qp_id = qp_id;
}
rr_qp_ctx->nb_slaves = sched_ctx->nb_slaves;
rr_qp_ctx->last_enq_slave_idx = 0;
rr_qp_ctx->last_deq_slave_idx = 0;
if (sched_ctx->reordering_enabled) {
qp_ctx->schedule_enqueue = &schedule_enqueue_ordering;
qp_ctx->schedule_dequeue = &schedule_dequeue_ordering;
} else {
qp_ctx->schedule_enqueue = &schedule_enqueue;
qp_ctx->schedule_dequeue = &schedule_dequeue;
}
}
return 0;
}
static int
scheduler_stop(__rte_unused struct rte_cryptodev *dev)
{
return 0;
}
static int
scheduler_config_qp(struct rte_cryptodev *dev, uint16_t qp_id)
{
struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[qp_id];
struct rr_scheduler_qp_ctx *rr_qp_ctx;
rr_qp_ctx = rte_zmalloc_socket(NULL, sizeof(*rr_qp_ctx), 0,
rte_socket_id());
if (!rr_qp_ctx) {
CS_LOG_ERR("failed allocate memory for private queue pair");
return -ENOMEM;
}
qp_ctx->private_qp_ctx = (void *)rr_qp_ctx;
return 0;
}
static int
scheduler_create_private_ctx(__rte_unused struct rte_cryptodev *dev)
{
return 0;
}
struct rte_cryptodev_scheduler_ops scheduler_rr_ops = {
slave_attach,
slave_detach,
scheduler_start,
scheduler_stop,
scheduler_config_qp,
scheduler_create_private_ctx
};
struct rte_cryptodev_scheduler scheduler = {
.name = "roundrobin-scheduler",
.description = "scheduler which will round robin burst across "
"slave crypto devices",
.mode = CDEV_SCHED_MODE_ROUNDROBIN,
.ops = &scheduler_rr_ops
};
struct rte_cryptodev_scheduler *roundrobin_scheduler = &scheduler;