net/iavf: support flex desc metadata extraction

Enable metadata extraction for flexible descriptors in AVF, that would
allow network function directly get metadata without additional parsing
which would reduce the CPU cost for VFs. The enabling metadata
extractions involve the metadata of VLAN/IPv4/IPv6/IPv6-FLOW/TCP/MPLS
flexible descriptors, and the VF could negotiate the capability of
the flexible descriptor with PF and correspondingly configure the
specific offload at receiving queues.

Signed-off-by: Jeff Guo <jia.guo@intel.com>
Acked-by: Haiyue Wang <haiyue.wang@intel.com>
This commit is contained in:
Jeff Guo 2020-10-30 16:40:30 +08:00 committed by Ferruh Yigit
parent c13af5f28f
commit 12b435bf8f
13 changed files with 1062 additions and 152 deletions

View File

@ -45,6 +45,7 @@ The public API headers are grouped by topics:
[ixgbe] (@ref rte_pmd_ixgbe.h),
[i40e] (@ref rte_pmd_i40e.h),
[ice] (@ref rte_pmd_ice.h),
[iavf] (@ref rte_pmd_iavf.h),
[ioat] (@ref rte_ioat_rawdev.h),
[bnxt] (@ref rte_pmd_bnxt.h),
[dpaa] (@ref rte_pmd_dpaa.h),

View File

@ -16,6 +16,7 @@ INPUT = @TOPDIR@/doc/api/doxy-api-index.md \
@TOPDIR@/drivers/net/dpaa \
@TOPDIR@/drivers/net/dpaa2 \
@TOPDIR@/drivers/net/i40e \
@TOPDIR@/drivers/net/iavf \
@TOPDIR@/drivers/net/ice \
@TOPDIR@/drivers/net/ixgbe \
@TOPDIR@/drivers/net/mlx5 \

View File

@ -88,6 +88,10 @@ For more detail on SR-IOV, please refer to the following documents:
assignment in hypervisor. Take qemu for example, the device assignment should carry the IAVF device id (0x1889) like
``-device vfio-pci,x-pci-device-id=0x1889,host=03:0a.0``.
When IAVF is backed by an Intel® E810 device, the "Protocol Extraction" feature which is supported by ice PMD is also
available for IAVF PMD. The same devargs with the same parameters can be applied to IAVF PMD, for detail please reference
the section ``Protocol extraction for per queue`` of ice.rst.
The PCIE host-interface of Intel Ethernet Switch FM10000 Series VF infrastructure
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

View File

@ -174,6 +174,9 @@ New Features
* **Updated Intel iavf driver.**
Updated iavf PMD with new features and improvements, including:
* Added support for flexible descriptor metadata extraction.
* Added support of AVX512 instructions in Rx and Tx path.
* **Updated Intel ice driver.**

View File

@ -133,7 +133,7 @@ struct iavf_info {
struct virtchnl_vf_resource *vf_res; /* VF resource */
struct virtchnl_vsi_resource *vsi_res; /* LAN VSI */
uint64_t supported_rxdid;
uint8_t *proto_xtr; /* proto xtr type for all queues */
volatile enum virtchnl_ops pend_cmd; /* pending command not finished */
uint32_t cmd_retval; /* return value of the cmd response from PF */
uint8_t *aq_resp; /* buffer to store the adminq response from PF */
@ -169,6 +169,27 @@ struct iavf_info {
#define IAVF_MAX_PKT_TYPE 1024
#define IAVF_MAX_QUEUE_NUM 2048
enum iavf_proto_xtr_type {
IAVF_PROTO_XTR_NONE,
IAVF_PROTO_XTR_VLAN,
IAVF_PROTO_XTR_IPV4,
IAVF_PROTO_XTR_IPV6,
IAVF_PROTO_XTR_IPV6_FLOW,
IAVF_PROTO_XTR_TCP,
IAVF_PROTO_XTR_IP_OFFSET,
IAVF_PROTO_XTR_MAX,
};
/**
* Cache devargs parse result.
*/
struct iavf_devargs {
uint8_t proto_xtr_dflt;
uint8_t proto_xtr[IAVF_MAX_QUEUE_NUM];
};
/* Structure to store private data for each VF instance. */
struct iavf_adapter {
struct iavf_hw hw;
@ -182,6 +203,7 @@ struct iavf_adapter {
const uint32_t *ptype_tbl;
bool stopped;
uint16_t fdir_ref_cnt;
struct iavf_devargs devargs;
};
/* IAVF_DEV_PRIVATE_TO */

View File

@ -28,6 +28,49 @@
#include "iavf.h"
#include "iavf_rxtx.h"
#include "iavf_generic_flow.h"
#include "rte_pmd_iavf.h"
/* devargs */
#define IAVF_PROTO_XTR_ARG "proto_xtr"
static const char * const iavf_valid_args[] = {
IAVF_PROTO_XTR_ARG,
NULL
};
static const struct rte_mbuf_dynfield iavf_proto_xtr_metadata_param = {
.name = "intel_pmd_dynfield_proto_xtr_metadata",
.size = sizeof(uint32_t),
.align = __alignof__(uint32_t),
.flags = 0,
};
struct iavf_proto_xtr_ol {
const struct rte_mbuf_dynflag param;
uint64_t *ol_flag;
bool required;
};
static struct iavf_proto_xtr_ol iavf_proto_xtr_params[] = {
[IAVF_PROTO_XTR_VLAN] = {
.param = { .name = "intel_pmd_dynflag_proto_xtr_vlan" },
.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_vlan_mask },
[IAVF_PROTO_XTR_IPV4] = {
.param = { .name = "intel_pmd_dynflag_proto_xtr_ipv4" },
.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask },
[IAVF_PROTO_XTR_IPV6] = {
.param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6" },
.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask },
[IAVF_PROTO_XTR_IPV6_FLOW] = {
.param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6_flow" },
.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask },
[IAVF_PROTO_XTR_TCP] = {
.param = { .name = "intel_pmd_dynflag_proto_xtr_tcp" },
.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_tcp_mask },
[IAVF_PROTO_XTR_IP_OFFSET] = {
.param = { .name = "intel_pmd_dynflag_proto_xtr_ip_offset" },
.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask },
};
static int iavf_dev_configure(struct rte_eth_dev *dev);
static int iavf_dev_start(struct rte_eth_dev *dev);
@ -1394,6 +1437,349 @@ iavf_check_vf_reset_done(struct iavf_hw *hw)
return 0;
}
static int
iavf_lookup_proto_xtr_type(const char *flex_name)
{
static struct {
const char *name;
enum iavf_proto_xtr_type type;
} xtr_type_map[] = {
{ "vlan", IAVF_PROTO_XTR_VLAN },
{ "ipv4", IAVF_PROTO_XTR_IPV4 },
{ "ipv6", IAVF_PROTO_XTR_IPV6 },
{ "ipv6_flow", IAVF_PROTO_XTR_IPV6_FLOW },
{ "tcp", IAVF_PROTO_XTR_TCP },
{ "ip_offset", IAVF_PROTO_XTR_IP_OFFSET },
};
uint32_t i;
for (i = 0; i < RTE_DIM(xtr_type_map); i++) {
if (strcmp(flex_name, xtr_type_map[i].name) == 0)
return xtr_type_map[i].type;
}
PMD_DRV_LOG(ERR, "wrong proto_xtr type, "
"it should be: vlan|ipv4|ipv6|ipv6_flow|tcp|ip_offset");
return -1;
}
/**
* Parse elem, the elem could be single number/range or '(' ')' group
* 1) A single number elem, it's just a simple digit. e.g. 9
* 2) A single range elem, two digits with a '-' between. e.g. 2-6
* 3) A group elem, combines multiple 1) or 2) with '( )'. e.g (0,2-4,6)
* Within group elem, '-' used for a range separator;
* ',' used for a single number.
*/
static int
iavf_parse_queue_set(const char *input, int xtr_type,
struct iavf_devargs *devargs)
{
const char *str = input;
char *end = NULL;
uint32_t min, max;
uint32_t idx;
while (isblank(*str))
str++;
if (!isdigit(*str) && *str != '(')
return -1;
/* process single number or single range of number */
if (*str != '(') {
errno = 0;
idx = strtoul(str, &end, 10);
if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
return -1;
while (isblank(*end))
end++;
min = idx;
max = idx;
/* process single <number>-<number> */
if (*end == '-') {
end++;
while (isblank(*end))
end++;
if (!isdigit(*end))
return -1;
errno = 0;
idx = strtoul(end, &end, 10);
if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
return -1;
max = idx;
while (isblank(*end))
end++;
}
if (*end != ':')
return -1;
for (idx = RTE_MIN(min, max);
idx <= RTE_MAX(min, max); idx++)
devargs->proto_xtr[idx] = xtr_type;
return 0;
}
/* process set within bracket */
str++;
while (isblank(*str))
str++;
if (*str == '\0')
return -1;
min = IAVF_MAX_QUEUE_NUM;
do {
/* go ahead to the first digit */
while (isblank(*str))
str++;
if (!isdigit(*str))
return -1;
/* get the digit value */
errno = 0;
idx = strtoul(str, &end, 10);
if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
return -1;
/* go ahead to separator '-',',' and ')' */
while (isblank(*end))
end++;
if (*end == '-') {
if (min == IAVF_MAX_QUEUE_NUM)
min = idx;
else /* avoid continuous '-' */
return -1;
} else if (*end == ',' || *end == ')') {
max = idx;
if (min == IAVF_MAX_QUEUE_NUM)
min = idx;
for (idx = RTE_MIN(min, max);
idx <= RTE_MAX(min, max); idx++)
devargs->proto_xtr[idx] = xtr_type;
min = IAVF_MAX_QUEUE_NUM;
} else {
return -1;
}
str = end + 1;
} while (*end != ')' && *end != '\0');
return 0;
}
static int
iavf_parse_queue_proto_xtr(const char *queues, struct iavf_devargs *devargs)
{
const char *queue_start;
uint32_t idx;
int xtr_type;
char flex_name[32];
while (isblank(*queues))
queues++;
if (*queues != '[') {
xtr_type = iavf_lookup_proto_xtr_type(queues);
if (xtr_type < 0)
return -1;
devargs->proto_xtr_dflt = xtr_type;
return 0;
}
queues++;
do {
while (isblank(*queues))
queues++;
if (*queues == '\0')
return -1;
queue_start = queues;
/* go across a complete bracket */
if (*queue_start == '(') {
queues += strcspn(queues, ")");
if (*queues != ')')
return -1;
}
/* scan the separator ':' */
queues += strcspn(queues, ":");
if (*queues++ != ':')
return -1;
while (isblank(*queues))
queues++;
for (idx = 0; ; idx++) {
if (isblank(queues[idx]) ||
queues[idx] == ',' ||
queues[idx] == ']' ||
queues[idx] == '\0')
break;
if (idx > sizeof(flex_name) - 2)
return -1;
flex_name[idx] = queues[idx];
}
flex_name[idx] = '\0';
xtr_type = iavf_lookup_proto_xtr_type(flex_name);
if (xtr_type < 0)
return -1;
queues += idx;
while (isblank(*queues) || *queues == ',' || *queues == ']')
queues++;
if (iavf_parse_queue_set(queue_start, xtr_type, devargs) < 0)
return -1;
} while (*queues != '\0');
return 0;
}
static int
iavf_handle_proto_xtr_arg(__rte_unused const char *key, const char *value,
void *extra_args)
{
struct iavf_devargs *devargs = extra_args;
if (!value || !extra_args)
return -EINVAL;
if (iavf_parse_queue_proto_xtr(value, devargs) < 0) {
PMD_DRV_LOG(ERR, "the proto_xtr's parameter is wrong : '%s'",
value);
return -1;
}
return 0;
}
static int iavf_parse_devargs(struct rte_eth_dev *dev)
{
struct iavf_adapter *ad =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct rte_devargs *devargs = dev->device->devargs;
struct rte_kvargs *kvlist;
int ret;
if (!devargs)
return 0;
kvlist = rte_kvargs_parse(devargs->args, iavf_valid_args);
if (!kvlist) {
PMD_INIT_LOG(ERR, "invalid kvargs key\n");
return -EINVAL;
}
ad->devargs.proto_xtr_dflt = IAVF_PROTO_XTR_NONE;
memset(ad->devargs.proto_xtr, IAVF_PROTO_XTR_NONE,
sizeof(ad->devargs.proto_xtr));
ret = rte_kvargs_process(kvlist, IAVF_PROTO_XTR_ARG,
&iavf_handle_proto_xtr_arg, &ad->devargs);
if (ret)
goto bail;
bail:
rte_kvargs_free(kvlist);
return ret;
}
static void
iavf_init_proto_xtr(struct rte_eth_dev *dev)
{
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
struct iavf_adapter *ad =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
const struct iavf_proto_xtr_ol *xtr_ol;
bool proto_xtr_enable = false;
int offset;
uint16_t i;
vf->proto_xtr = rte_zmalloc("vf proto xtr",
vf->vsi_res->num_queue_pairs, 0);
if (unlikely(!(vf->proto_xtr))) {
PMD_DRV_LOG(ERR, "no memory for setting up proto_xtr's table");
return;
}
for (i = 0; i < vf->vsi_res->num_queue_pairs; i++) {
vf->proto_xtr[i] = ad->devargs.proto_xtr[i] !=
IAVF_PROTO_XTR_NONE ?
ad->devargs.proto_xtr[i] :
ad->devargs.proto_xtr_dflt;
if (vf->proto_xtr[i] != IAVF_PROTO_XTR_NONE) {
uint8_t type = vf->proto_xtr[i];
iavf_proto_xtr_params[type].required = true;
proto_xtr_enable = true;
}
}
if (likely(!proto_xtr_enable))
return;
offset = rte_mbuf_dynfield_register(&iavf_proto_xtr_metadata_param);
if (unlikely(offset == -1)) {
PMD_DRV_LOG(ERR,
"failed to extract protocol metadata, error %d",
-rte_errno);
return;
}
PMD_DRV_LOG(DEBUG,
"proto_xtr metadata offset in mbuf is : %d",
offset);
rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = offset;
for (i = 0; i < RTE_DIM(iavf_proto_xtr_params); i++) {
xtr_ol = &iavf_proto_xtr_params[i];
uint8_t rxdid = iavf_proto_xtr_type_to_rxdid((uint8_t)i);
if (!xtr_ol->required)
continue;
if (!(vf->supported_rxdid & BIT(rxdid))) {
PMD_DRV_LOG(ERR,
"rxdid[%u] is not supported in hardware",
rxdid);
rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
break;
}
offset = rte_mbuf_dynflag_register(&xtr_ol->param);
if (unlikely(offset == -1)) {
PMD_DRV_LOG(ERR,
"failed to register proto_xtr offload '%s', error %d",
xtr_ol->param.name, -rte_errno);
rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
break;
}
PMD_DRV_LOG(DEBUG,
"proto_xtr offload '%s' offset in mbuf is : %d",
xtr_ol->param.name, offset);
*xtr_ol->ol_flag = 1ULL << offset;
}
}
static int
iavf_init_vf(struct rte_eth_dev *dev)
{
@ -1403,6 +1789,12 @@ iavf_init_vf(struct rte_eth_dev *dev)
struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
err = iavf_parse_devargs(dev);
if (err) {
PMD_INIT_LOG(ERR, "Failed to parse devargs");
goto err;
}
err = iavf_set_mac_type(hw);
if (err) {
PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
@ -1466,6 +1858,8 @@ iavf_init_vf(struct rte_eth_dev *dev)
}
}
iavf_init_proto_xtr(dev);
return 0;
err_rss:
rte_free(vf->rss_key);

View File

@ -27,6 +27,35 @@
#include "iavf.h"
#include "iavf_rxtx.h"
#include "rte_pmd_iavf.h"
/* Offset of mbuf dynamic field for protocol extraction's metadata */
int rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
/* Mask of mbuf dynamic flags for protocol extraction's type */
uint64_t rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
uint64_t rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
uint64_t rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
uint8_t
iavf_proto_xtr_type_to_rxdid(uint8_t flex_type)
{
static uint8_t rxdid_map[] = {
[IAVF_PROTO_XTR_NONE] = IAVF_RXDID_COMMS_OVS_1,
[IAVF_PROTO_XTR_VLAN] = IAVF_RXDID_COMMS_AUX_VLAN,
[IAVF_PROTO_XTR_IPV4] = IAVF_RXDID_COMMS_AUX_IPV4,
[IAVF_PROTO_XTR_IPV6] = IAVF_RXDID_COMMS_AUX_IPV6,
[IAVF_PROTO_XTR_IPV6_FLOW] = IAVF_RXDID_COMMS_AUX_IPV6_FLOW,
[IAVF_PROTO_XTR_TCP] = IAVF_RXDID_COMMS_AUX_TCP,
[IAVF_PROTO_XTR_IP_OFFSET] = IAVF_RXDID_COMMS_AUX_IP_OFFSET,
};
return flex_type < RTE_DIM(rxdid_map) ?
rxdid_map[flex_type] : IAVF_RXDID_COMMS_OVS_1;
}
static inline int
check_rx_thresh(uint16_t nb_desc, uint16_t thresh)
@ -295,6 +324,160 @@ static const struct iavf_txq_ops def_txq_ops = {
.release_mbufs = release_txq_mbufs,
};
static inline void
iavf_rxd_to_pkt_fields_by_comms_ovs(__rte_unused struct iavf_rx_queue *rxq,
struct rte_mbuf *mb,
volatile union iavf_rx_flex_desc *rxdp)
{
volatile struct iavf_32b_rx_flex_desc_comms_ovs *desc =
(volatile struct iavf_32b_rx_flex_desc_comms_ovs *)rxdp;
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
uint16_t stat_err;
#endif
if (desc->flow_id != 0xFFFFFFFF) {
mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
}
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
stat_err = rte_le_to_cpu_16(desc->status_error0);
if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
mb->ol_flags |= PKT_RX_RSS_HASH;
mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
}
#endif
}
static inline void
iavf_rxd_to_pkt_fields_by_comms_aux_v1(struct iavf_rx_queue *rxq,
struct rte_mbuf *mb,
volatile union iavf_rx_flex_desc *rxdp)
{
volatile struct iavf_32b_rx_flex_desc_comms *desc =
(volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
uint16_t stat_err;
stat_err = rte_le_to_cpu_16(desc->status_error0);
if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
mb->ol_flags |= PKT_RX_RSS_HASH;
mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
}
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
if (desc->flow_id != 0xFFFFFFFF) {
mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
}
if (rxq->xtr_ol_flag) {
uint32_t metadata = 0;
stat_err = rte_le_to_cpu_16(desc->status_error1);
if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S))
metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
if (stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S))
metadata |=
rte_le_to_cpu_16(desc->flex_ts.flex.aux1) << 16;
if (metadata) {
mb->ol_flags |= rxq->xtr_ol_flag;
*RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
}
}
#endif
}
static inline void
iavf_rxd_to_pkt_fields_by_comms_aux_v2(struct iavf_rx_queue *rxq,
struct rte_mbuf *mb,
volatile union iavf_rx_flex_desc *rxdp)
{
volatile struct iavf_32b_rx_flex_desc_comms *desc =
(volatile struct iavf_32b_rx_flex_desc_comms *)rxdp;
uint16_t stat_err;
stat_err = rte_le_to_cpu_16(desc->status_error0);
if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
mb->ol_flags |= PKT_RX_RSS_HASH;
mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
}
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
if (desc->flow_id != 0xFFFFFFFF) {
mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
}
if (rxq->xtr_ol_flag) {
uint32_t metadata = 0;
if (desc->flex_ts.flex.aux0 != 0xFFFF)
metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux0);
else if (desc->flex_ts.flex.aux1 != 0xFFFF)
metadata = rte_le_to_cpu_16(desc->flex_ts.flex.aux1);
if (metadata) {
mb->ol_flags |= rxq->xtr_ol_flag;
*RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(mb) = metadata;
}
}
#endif
}
static void
iavf_select_rxd_to_pkt_fields_handler(struct iavf_rx_queue *rxq, uint32_t rxdid)
{
switch (rxdid) {
case IAVF_RXDID_COMMS_AUX_VLAN:
rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
rxq->rxd_to_pkt_fields =
iavf_rxd_to_pkt_fields_by_comms_aux_v1;
break;
case IAVF_RXDID_COMMS_AUX_IPV4:
rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
rxq->rxd_to_pkt_fields =
iavf_rxd_to_pkt_fields_by_comms_aux_v1;
break;
case IAVF_RXDID_COMMS_AUX_IPV6:
rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
rxq->rxd_to_pkt_fields =
iavf_rxd_to_pkt_fields_by_comms_aux_v1;
break;
case IAVF_RXDID_COMMS_AUX_IPV6_FLOW:
rxq->xtr_ol_flag =
rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
rxq->rxd_to_pkt_fields =
iavf_rxd_to_pkt_fields_by_comms_aux_v1;
break;
case IAVF_RXDID_COMMS_AUX_TCP:
rxq->xtr_ol_flag = rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
rxq->rxd_to_pkt_fields =
iavf_rxd_to_pkt_fields_by_comms_aux_v1;
break;
case IAVF_RXDID_COMMS_AUX_IP_OFFSET:
rxq->xtr_ol_flag =
rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
rxq->rxd_to_pkt_fields =
iavf_rxd_to_pkt_fields_by_comms_aux_v2;
break;
case IAVF_RXDID_COMMS_OVS_1:
rxq->rxd_to_pkt_fields = iavf_rxd_to_pkt_fields_by_comms_ovs;
break;
default:
/* update this according to the RXDID for FLEX_DESC_NONE */
rxq->rxd_to_pkt_fields = iavf_rxd_to_pkt_fields_by_comms_ovs;
break;
}
if (!rte_pmd_ifd_dynf_proto_xtr_metadata_avail())
rxq->xtr_ol_flag = 0;
}
int
iavf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
@ -310,6 +493,7 @@ iavf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
struct iavf_rx_queue *rxq;
const struct rte_memzone *mz;
uint32_t ring_size;
uint8_t proto_xtr;
uint16_t len;
uint16_t rx_free_thresh;
@ -347,14 +531,18 @@ iavf_dev_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
return -ENOMEM;
}
if (vf->vf_res->vf_cap_flags &
VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC &&
vf->supported_rxdid & BIT(IAVF_RXDID_COMMS_OVS_1)) {
rxq->rxdid = IAVF_RXDID_COMMS_OVS_1;
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
proto_xtr = vf->proto_xtr ? vf->proto_xtr[queue_idx] :
IAVF_PROTO_XTR_NONE;
rxq->rxdid = iavf_proto_xtr_type_to_rxdid(proto_xtr);
rxq->proto_xtr = proto_xtr;
} else {
rxq->rxdid = IAVF_RXDID_LEGACY_1;
rxq->proto_xtr = IAVF_PROTO_XTR_NONE;
}
iavf_select_rxd_to_pkt_fields_handler(rxq, rxq->rxdid);
rxq->mp = mp;
rxq->nb_rx_desc = nb_desc;
rxq->rx_free_thresh = rx_free_thresh;
@ -735,6 +923,14 @@ iavf_stop_queues(struct rte_eth_dev *dev)
}
}
#define IAVF_RX_FLEX_ERR0_BITS \
((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) | \
(1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) | \
(1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) | \
(1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
(1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) | \
(1 << IAVF_RX_FLEX_DESC_STATUS0_RXE_S))
static inline void
iavf_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union iavf_rx_desc *rxdp)
{
@ -760,6 +956,21 @@ iavf_flex_rxd_to_vlan_tci(struct rte_mbuf *mb,
} else {
mb->vlan_tci = 0;
}
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
if (rte_le_to_cpu_16(rxdp->wb.status_error1) &
(1 << IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S)) {
mb->ol_flags |= PKT_RX_QINQ_STRIPPED | PKT_RX_QINQ |
PKT_RX_VLAN_STRIPPED | PKT_RX_VLAN;
mb->vlan_tci_outer = mb->vlan_tci;
mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
rte_le_to_cpu_16(rxdp->wb.l2tag2_1st),
rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd));
} else {
mb->vlan_tci_outer = 0;
}
#endif
}
/* Translate the rx descriptor status and error fields to pkt flags */
@ -824,30 +1035,6 @@ iavf_rxd_build_fdir(volatile union iavf_rx_desc *rxdp, struct rte_mbuf *mb)
return flags;
}
/* Translate the rx flex descriptor status to pkt flags */
static inline void
iavf_rxd_to_pkt_fields(struct rte_mbuf *mb,
volatile union iavf_rx_flex_desc *rxdp)
{
volatile struct iavf_32b_rx_flex_desc_comms_ovs *desc =
(volatile struct iavf_32b_rx_flex_desc_comms_ovs *)rxdp;
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
uint16_t stat_err;
stat_err = rte_le_to_cpu_16(desc->status_error0);
if (likely(stat_err & (1 << IAVF_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
mb->ol_flags |= PKT_RX_RSS_HASH;
mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
}
#endif
if (desc->flow_id != 0xFFFFFFFF) {
mb->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
mb->hash.fdir.hi = rte_le_to_cpu_32(desc->flow_id);
}
}
#define IAVF_RX_FLEX_ERR0_BITS \
((1 << IAVF_RX_FLEX_DESC_STATUS0_HBO_S) | \
(1 << IAVF_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) | \
@ -1102,7 +1289,7 @@ iavf_recv_pkts_flex_rxd(void *rx_queue,
rxm->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
iavf_flex_rxd_to_vlan_tci(rxm, &rxd);
iavf_rxd_to_pkt_fields(rxm, &rxd);
rxq->rxd_to_pkt_fields(rxq, rxm, &rxd);
pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
rxm->ol_flags |= pkt_flags;
@ -1243,7 +1430,7 @@ iavf_recv_scattered_pkts_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
first_seg->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
iavf_flex_rxd_to_vlan_tci(first_seg, &rxd);
iavf_rxd_to_pkt_fields(first_seg, &rxd);
rxq->rxd_to_pkt_fields(rxq, first_seg, &rxd);
pkt_flags = iavf_flex_rxd_error_to_pkt_flags(rx_stat_err0);
first_seg->ol_flags |= pkt_flags;
@ -1480,7 +1667,7 @@ iavf_rx_scan_hw_ring_flex_rxd(struct iavf_rx_queue *rxq)
mb->packet_type = ptype_tbl[IAVF_RX_FLEX_DESC_PTYPE_M &
rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
iavf_flex_rxd_to_vlan_tci(mb, &rxdp[j]);
iavf_rxd_to_pkt_fields(mb, &rxdp[j]);
rxq->rxd_to_pkt_fields(rxq, mb, &rxdp[j]);
stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
pkt_flags = iavf_flex_rxd_error_to_pkt_flags(stat_err0);
@ -1672,7 +1859,7 @@ rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
if (rxq->rx_nb_avail)
return iavf_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
if (rxq->rxdid == IAVF_RXDID_COMMS_OVS_1)
if (rxq->rxdid >= IAVF_RXDID_FLEX_NIC && rxq->rxdid <= IAVF_RXDID_LAST)
nb_rx = (uint16_t)iavf_rx_scan_hw_ring_flex_rxd(rxq);
else
nb_rx = (uint16_t)iavf_rx_scan_hw_ring(rxq);
@ -2119,6 +2306,7 @@ iavf_set_rx_function(struct rte_eth_dev *dev)
struct iavf_adapter *adapter =
IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
#ifdef RTE_ARCH_X86
struct iavf_rx_queue *rxq;
int i;

View File

@ -57,115 +57,8 @@
#define IAVF_TX_OFFLOAD_NOTSUP_MASK \
(PKT_TX_OFFLOAD_MASK ^ IAVF_TX_OFFLOAD_MASK)
/* HW desc structure, both 16-byte and 32-byte types are supported */
#ifdef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
#define iavf_rx_desc iavf_16byte_rx_desc
#define iavf_rx_flex_desc iavf_16b_rx_flex_desc
#else
#define iavf_rx_desc iavf_32byte_rx_desc
#define iavf_rx_flex_desc iavf_32b_rx_flex_desc
#endif
struct iavf_rxq_ops {
void (*release_mbufs)(struct iavf_rx_queue *rxq);
};
struct iavf_txq_ops {
void (*release_mbufs)(struct iavf_tx_queue *txq);
};
/* Structure associated with each Rx queue. */
struct iavf_rx_queue {
struct rte_mempool *mp; /* mbuf pool to populate Rx ring */
const struct rte_memzone *mz; /* memzone for Rx ring */
volatile union iavf_rx_desc *rx_ring; /* Rx ring virtual address */
uint64_t rx_ring_phys_addr; /* Rx ring DMA address */
struct rte_mbuf **sw_ring; /* address of SW ring */
uint16_t nb_rx_desc; /* ring length */
uint16_t rx_tail; /* current value of tail */
volatile uint8_t *qrx_tail; /* register address of tail */
uint16_t rx_free_thresh; /* max free RX desc to hold */
uint16_t nb_rx_hold; /* number of held free RX desc */
struct rte_mbuf *pkt_first_seg; /* first segment of current packet */
struct rte_mbuf *pkt_last_seg; /* last segment of current packet */
struct rte_mbuf fake_mbuf; /* dummy mbuf */
uint8_t rxdid;
/* used for VPMD */
uint16_t rxrearm_nb; /* number of remaining to be re-armed */
uint16_t rxrearm_start; /* the idx we start the re-arming from */
uint64_t mbuf_initializer; /* value to init mbufs */
/* for rx bulk */
uint16_t rx_nb_avail; /* number of staged packets ready */
uint16_t rx_next_avail; /* index of next staged packets */
uint16_t rx_free_trigger; /* triggers rx buffer allocation */
struct rte_mbuf *rx_stage[IAVF_RX_MAX_BURST * 2]; /* store mbuf */
uint16_t port_id; /* device port ID */
uint8_t crc_len; /* 0 if CRC stripped, 4 otherwise */
uint8_t fdir_enabled; /* 0 if FDIR disabled, 1 when enabled */
uint16_t queue_id; /* Rx queue index */
uint16_t rx_buf_len; /* The packet buffer size */
uint16_t rx_hdr_len; /* The header buffer size */
uint16_t max_pkt_len; /* Maximum packet length */
struct iavf_vsi *vsi; /**< the VSI this queue belongs to */
bool q_set; /* if rx queue has been configured */
bool rx_deferred_start; /* don't start this queue in dev start */
const struct iavf_rxq_ops *ops;
};
struct iavf_tx_entry {
struct rte_mbuf *mbuf;
uint16_t next_id;
uint16_t last_id;
};
struct iavf_tx_vec_entry {
struct rte_mbuf *mbuf;
};
/* Structure associated with each TX queue. */
struct iavf_tx_queue {
const struct rte_memzone *mz; /* memzone for Tx ring */
volatile struct iavf_tx_desc *tx_ring; /* Tx ring virtual address */
uint64_t tx_ring_phys_addr; /* Tx ring DMA address */
struct iavf_tx_entry *sw_ring; /* address array of SW ring */
uint16_t nb_tx_desc; /* ring length */
uint16_t tx_tail; /* current value of tail */
volatile uint8_t *qtx_tail; /* register address of tail */
/* number of used desc since RS bit set */
uint16_t nb_used;
uint16_t nb_free;
uint16_t last_desc_cleaned; /* last desc have been cleaned*/
uint16_t free_thresh;
uint16_t rs_thresh;
uint16_t port_id;
uint16_t queue_id;
uint64_t offloads;
uint16_t next_dd; /* next to set RS, for VPMD */
uint16_t next_rs; /* next to check DD, for VPMD */
bool q_set; /* if rx queue has been configured */
bool tx_deferred_start; /* don't start this queue in dev start */
const struct iavf_txq_ops *ops;
};
/* Offload features */
union iavf_tx_offload {
uint64_t data;
struct {
uint64_t l2_len:7; /* L2 (MAC) Header Length. */
uint64_t l3_len:9; /* L3 (IP) Header Length. */
uint64_t l4_len:8; /* L4 Header Length. */
uint64_t tso_segsz:16; /* TCP TSO segment size */
/* uint64_t unused : 24; */
};
};
/* Rx Flex Descriptors
/**
* Rx Flex Descriptors
* These descriptors are used instead of the legacy version descriptors
*/
union iavf_16b_rx_flex_desc {
@ -236,6 +129,123 @@ union iavf_32b_rx_flex_desc {
} wb; /* writeback */
};
/* HW desc structure, both 16-byte and 32-byte types are supported */
#ifdef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
#define iavf_rx_desc iavf_16byte_rx_desc
#define iavf_rx_flex_desc iavf_16b_rx_flex_desc
#else
#define iavf_rx_desc iavf_32byte_rx_desc
#define iavf_rx_flex_desc iavf_32b_rx_flex_desc
#endif
typedef void (*iavf_rxd_to_pkt_fields_t)(struct iavf_rx_queue *rxq,
struct rte_mbuf *mb,
volatile union iavf_rx_flex_desc *rxdp);
struct iavf_rxq_ops {
void (*release_mbufs)(struct iavf_rx_queue *rxq);
};
struct iavf_txq_ops {
void (*release_mbufs)(struct iavf_tx_queue *txq);
};
/* Structure associated with each Rx queue. */
struct iavf_rx_queue {
struct rte_mempool *mp; /* mbuf pool to populate Rx ring */
const struct rte_memzone *mz; /* memzone for Rx ring */
volatile union iavf_rx_desc *rx_ring; /* Rx ring virtual address */
uint64_t rx_ring_phys_addr; /* Rx ring DMA address */
struct rte_mbuf **sw_ring; /* address of SW ring */
uint16_t nb_rx_desc; /* ring length */
uint16_t rx_tail; /* current value of tail */
volatile uint8_t *qrx_tail; /* register address of tail */
uint16_t rx_free_thresh; /* max free RX desc to hold */
uint16_t nb_rx_hold; /* number of held free RX desc */
struct rte_mbuf *pkt_first_seg; /* first segment of current packet */
struct rte_mbuf *pkt_last_seg; /* last segment of current packet */
struct rte_mbuf fake_mbuf; /* dummy mbuf */
uint8_t rxdid;
/* used for VPMD */
uint16_t rxrearm_nb; /* number of remaining to be re-armed */
uint16_t rxrearm_start; /* the idx we start the re-arming from */
uint64_t mbuf_initializer; /* value to init mbufs */
/* for rx bulk */
uint16_t rx_nb_avail; /* number of staged packets ready */
uint16_t rx_next_avail; /* index of next staged packets */
uint16_t rx_free_trigger; /* triggers rx buffer allocation */
struct rte_mbuf *rx_stage[IAVF_RX_MAX_BURST * 2]; /* store mbuf */
uint16_t port_id; /* device port ID */
uint8_t crc_len; /* 0 if CRC stripped, 4 otherwise */
uint8_t fdir_enabled; /* 0 if FDIR disabled, 1 when enabled */
uint16_t queue_id; /* Rx queue index */
uint16_t rx_buf_len; /* The packet buffer size */
uint16_t rx_hdr_len; /* The header buffer size */
uint16_t max_pkt_len; /* Maximum packet length */
struct iavf_vsi *vsi; /**< the VSI this queue belongs to */
bool q_set; /* if rx queue has been configured */
bool rx_deferred_start; /* don't start this queue in dev start */
const struct iavf_rxq_ops *ops;
uint8_t proto_xtr; /* protocol extraction type */
uint64_t xtr_ol_flag;
/* flexible descriptor metadata extraction offload flag */
iavf_rxd_to_pkt_fields_t rxd_to_pkt_fields;
/* handle flexible descriptor by RXDID */
};
struct iavf_tx_entry {
struct rte_mbuf *mbuf;
uint16_t next_id;
uint16_t last_id;
};
struct iavf_tx_vec_entry {
struct rte_mbuf *mbuf;
};
/* Structure associated with each TX queue. */
struct iavf_tx_queue {
const struct rte_memzone *mz; /* memzone for Tx ring */
volatile struct iavf_tx_desc *tx_ring; /* Tx ring virtual address */
uint64_t tx_ring_phys_addr; /* Tx ring DMA address */
struct iavf_tx_entry *sw_ring; /* address array of SW ring */
uint16_t nb_tx_desc; /* ring length */
uint16_t tx_tail; /* current value of tail */
volatile uint8_t *qtx_tail; /* register address of tail */
/* number of used desc since RS bit set */
uint16_t nb_used;
uint16_t nb_free;
uint16_t last_desc_cleaned; /* last desc have been cleaned*/
uint16_t free_thresh;
uint16_t rs_thresh;
uint16_t port_id;
uint16_t queue_id;
uint64_t offloads;
uint16_t next_dd; /* next to set RS, for VPMD */
uint16_t next_rs; /* next to check DD, for VPMD */
bool q_set; /* if rx queue has been configured */
bool tx_deferred_start; /* don't start this queue in dev start */
const struct iavf_txq_ops *ops;
};
/* Offload features */
union iavf_tx_offload {
uint64_t data;
struct {
uint64_t l2_len:7; /* L2 (MAC) Header Length. */
uint64_t l3_len:9; /* L3 (IP) Header Length. */
uint64_t l4_len:8; /* L4 Header Length. */
uint64_t tso_segsz:16; /* TCP TSO segment size */
/* uint64_t unused : 24; */
};
};
/* Rx Flex Descriptor
* RxDID Profile ID 16-21
* Flex-field 0: RSS hash lower 16-bits
@ -335,6 +345,7 @@ enum iavf_rxdid {
IAVF_RXDID_COMMS_AUX_TCP = 21,
IAVF_RXDID_COMMS_OVS_1 = 22,
IAVF_RXDID_COMMS_OVS_2 = 23,
IAVF_RXDID_COMMS_AUX_IP_OFFSET = 25,
IAVF_RXDID_LAST = 63,
};
@ -359,6 +370,20 @@ enum iavf_rx_flex_desc_status_error_0_bits {
IAVF_RX_FLEX_DESC_STATUS0_LAST /* this entry must be last!!! */
};
enum iavf_rx_flex_desc_status_error_1_bits {
/* Note: These are predefined bit offsets */
IAVF_RX_FLEX_DESC_STATUS1_CPM_S = 0, /* 4 bits */
IAVF_RX_FLEX_DESC_STATUS1_NAT_S = 4,
IAVF_RX_FLEX_DESC_STATUS1_CRYPTO_S = 5,
/* [10:6] reserved */
IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S = 11,
IAVF_RX_FLEX_DESC_STATUS1_XTRMD2_VALID_S = 12,
IAVF_RX_FLEX_DESC_STATUS1_XTRMD3_VALID_S = 13,
IAVF_RX_FLEX_DESC_STATUS1_XTRMD4_VALID_S = 14,
IAVF_RX_FLEX_DESC_STATUS1_XTRMD5_VALID_S = 15,
IAVF_RX_FLEX_DESC_STATUS1_LAST /* this entry must be last!!! */
};
/* for iavf_32b_rx_flex_desc.ptype_flex_flags0 member */
#define IAVF_RX_FLEX_DESC_PTYPE_M (0x3FF) /* 10-bits */
@ -457,6 +482,8 @@ uint16_t iavf_xmit_pkts_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
int iavf_txq_vec_setup_avx512(struct iavf_tx_queue *txq);
uint8_t iavf_proto_xtr_type_to_rxdid(uint8_t xtr_type);
const uint32_t *iavf_get_default_ptype_table(void);
static inline

View File

@ -224,6 +224,9 @@ iavf_rx_vec_queue_default(struct iavf_rx_queue *rxq)
if (rxq->nb_rx_desc % rxq->rx_free_thresh)
return -1;
if (rxq->proto_xtr != IAVF_PROTO_XTR_NONE)
return -1;
return 0;
}

View File

@ -850,25 +850,27 @@ iavf_configure_queues(struct iavf_adapter *adapter,
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
if (vf->vf_res->vf_cap_flags &
VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC &&
vf->supported_rxdid & BIT(IAVF_RXDID_COMMS_OVS_1)) {
vc_qp->rxq.rxdid = IAVF_RXDID_COMMS_OVS_1;
PMD_DRV_LOG(NOTICE, "request RXDID == %d in "
"Queue[%d]", vc_qp->rxq.rxdid, i);
VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC &&
vf->supported_rxdid & BIT(rxq[i]->rxdid)) {
vc_qp->rxq.rxdid = rxq[i]->rxdid;
PMD_DRV_LOG(NOTICE, "request RXDID[%d] in Queue[%d]",
vc_qp->rxq.rxdid, i);
} else {
PMD_DRV_LOG(NOTICE, "RXDID[%d] is not supported, "
"request default RXDID[%d] in Queue[%d]",
rxq[i]->rxdid, IAVF_RXDID_LEGACY_1, i);
vc_qp->rxq.rxdid = IAVF_RXDID_LEGACY_1;
PMD_DRV_LOG(NOTICE, "request RXDID == %d in "
"Queue[%d]", vc_qp->rxq.rxdid, i);
}
#else
if (vf->vf_res->vf_cap_flags &
VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC &&
vf->supported_rxdid & BIT(IAVF_RXDID_LEGACY_0)) {
vc_qp->rxq.rxdid = IAVF_RXDID_LEGACY_0;
PMD_DRV_LOG(NOTICE, "request RXDID == %d in "
"Queue[%d]", vc_qp->rxq.rxdid, i);
PMD_DRV_LOG(NOTICE, "request RXDID[%d] in Queue[%d]",
vc_qp->rxq.rxdid, i);
} else {
PMD_DRV_LOG(ERR, "RXDID == 0 is not supported");
PMD_DRV_LOG(ERR, "RXDID[%d] is not supported",
IAVF_RXDID_LEGACY_0);
return -1;
}
#endif

View File

@ -59,3 +59,5 @@ if arch_subdir == 'x86'
objs += iavf_avx512_lib.extract_objects('iavf_rxtx_vec_avx512.c')
endif
endif
headers = files('rte_pmd_iavf.h')

View File

@ -0,0 +1,250 @@
/* SPDX-Liavfnse-Identifier: BSD-3-Clause
* Copyright(c) 2019 Intel Corporation
*/
#ifndef _RTE_PMD_IAVF_H_
#define _RTE_PMD_IAVF_H_
/**
* @file rte_pmd_iavf.h
*
* iavf PMD specific functions.
*
* @b EXPERIMENTAL: this API may change, or be removed, without prior notiavf
*
*/
#include <stdio.h>
#include <rte_mbuf.h>
#include <rte_mbuf_dyn.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* The supported network flexible descriptor's extraction metadata format.
*/
union rte_pmd_ifd_proto_xtr_metadata {
uint32_t metadata;
struct {
uint16_t data0;
uint16_t data1;
} raw;
struct {
uint16_t stag_vid:12,
stag_dei:1,
stag_pcp:3;
uint16_t ctag_vid:12,
ctag_dei:1,
ctag_pcp:3;
} vlan;
struct {
uint16_t protocol:8,
ttl:8;
uint16_t tos:8,
ihl:4,
version:4;
} ipv4;
struct {
uint16_t hoplimit:8,
nexthdr:8;
uint16_t flowhi4:4,
tc:8,
version:4;
} ipv6;
struct {
uint16_t flowlo16;
uint16_t flowhi4:4,
tc:8,
version:4;
} ipv6_flow;
struct {
uint16_t fin:1,
syn:1,
rst:1,
psh:1,
ack:1,
urg:1,
ece:1,
cwr:1,
res1:4,
doff:4;
uint16_t rsvd;
} tcp;
uint32_t ip_ofs;
};
/* Offset of mbuf dynamic field for flexible descriptor's extraction data */
extern int rte_pmd_ifd_dynfield_proto_xtr_metadata_offs;
/* Mask of mbuf dynamic flags for flexible descriptor's extraction type */
extern uint64_t rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
extern uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
extern uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
extern uint64_t rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
extern uint64_t rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
extern uint64_t rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
/**
* The mbuf dynamic field pointer for flexible descriptor's extraction metadata.
*/
#define RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(m) \
RTE_MBUF_DYNFIELD((m), \
rte_pmd_ifd_dynfield_proto_xtr_metadata_offs, \
uint32_t *)
/**
* The mbuf dynamic flag for VLAN protocol extraction metadata, it is valid
* when dev_args 'proto_xtr' has 'vlan' specified.
*/
#define RTE_IAVF_PKT_RX_DYNF_PROTO_XTR_VLAN \
(rte_pmd_ifd_dynflag_proto_xtr_vlan_mask)
/**
* The mbuf dynamic flag for IPv4 protocol extraction metadata, it is valid
* when dev_args 'proto_xtr' has 'ipv4' specified.
*/
#define RTE_IAVF_PKT_RX_DYNF_PROTO_XTR_IPV4 \
(rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask)
/**
* The mbuf dynamic flag for IPv6 protocol extraction metadata, it is valid
* when dev_args 'proto_xtr' has 'ipv6' specified.
*/
#define RTE_IAVF_PKT_RX_DYNF_PROTO_XTR_IPV6 \
(rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask)
/**
* The mbuf dynamic flag for IPv6 with flow protocol extraction metadata, it is
* valid when dev_args 'proto_xtr' has 'ipv6_flow' specified.
*/
#define RTE_IAVF_PKT_RX_DYNF_PROTO_XTR_IPV6_FLOW \
(rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask)
/**
* The mbuf dynamic flag for TCP protocol extraction metadata, it is valid
* when dev_args 'proto_xtr' has 'tcp' specified.
*/
#define RTE_IAVF_PKT_RX_DYNF_PROTO_XTR_TCP \
(rte_pmd_ifd_dynflag_proto_xtr_tcp_mask)
/**
* The mbuf dynamic flag for IP_OFFSET extraction metadata, it is valid
* when dev_args 'proto_xtr' has 'ip_offset' specified.
*/
#define RTE_IAVF_PKT_RX_DYNF_PROTO_XTR_IP_OFFSET \
(rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask)
/**
* Check if mbuf dynamic field for flexible descriptor's extraction metadata
* is registered.
*
* @return
* True if registered, false otherwise.
*/
__rte_experimental
static __rte_always_inline int
rte_pmd_ifd_dynf_proto_xtr_metadata_avail(void)
{
return rte_pmd_ifd_dynfield_proto_xtr_metadata_offs != -1;
}
/**
* Get the mbuf dynamic field for flexible descriptor's extraction metadata.
*
* @param m
* The pointer to the mbuf.
* @return
* The saved protocol extraction metadata.
*/
__rte_experimental
static __rte_always_inline uint32_t
rte_pmd_ifd_dynf_proto_xtr_metadata_get(struct rte_mbuf *m)
{
return *RTE_PMD_IFD_DYNF_PROTO_XTR_METADATA(m);
}
/**
* Dump the mbuf dynamic field for flexible descriptor's extraction metadata.
*
* @param m
* The pointer to the mbuf.
*/
__rte_experimental
static inline void
rte_pmd_ifd_dump_proto_xtr_metadata(struct rte_mbuf *m)
{
union rte_pmd_ifd_proto_xtr_metadata data;
if (!rte_pmd_ifd_dynf_proto_xtr_metadata_avail())
return;
data.metadata = rte_pmd_ifd_dynf_proto_xtr_metadata_get(m);
if (m->ol_flags & RTE_IAVF_PKT_RX_DYNF_PROTO_XTR_VLAN)
printf(" - Flexible descriptor's Metadata: [0x%04x:0x%04x],"
"vlan,stag=%u:%u:%u,ctag=%u:%u:%u",
data.raw.data0, data.raw.data1,
data.vlan.stag_pcp,
data.vlan.stag_dei,
data.vlan.stag_vid,
data.vlan.ctag_pcp,
data.vlan.ctag_dei,
data.vlan.ctag_vid);
else if (m->ol_flags & RTE_IAVF_PKT_RX_DYNF_PROTO_XTR_IPV4)
printf(" - Flexible descriptor's Metadata: [0x%04x:0x%04x],"
"ipv4,ver=%u,hdrlen=%u,tos=%u,ttl=%u,proto=%u",
data.raw.data0, data.raw.data1,
data.ipv4.version,
data.ipv4.ihl,
data.ipv4.tos,
data.ipv4.ttl,
data.ipv4.protocol);
else if (m->ol_flags & RTE_IAVF_PKT_RX_DYNF_PROTO_XTR_IPV6)
printf(" - Flexible descriptor's Metadata: [0x%04x:0x%04x],"
"ipv6,ver=%u,tc=%u,flow_hi4=0x%x,nexthdr=%u,hoplimit=%u",
data.raw.data0, data.raw.data1,
data.ipv6.version,
data.ipv6.tc,
data.ipv6.flowhi4,
data.ipv6.nexthdr,
data.ipv6.hoplimit);
else if (m->ol_flags & RTE_IAVF_PKT_RX_DYNF_PROTO_XTR_IPV6_FLOW)
printf(" - Flexible descriptor's Metadata: [0x%04x:0x%04x],"
"ipv6_flow,ver=%u,tc=%u,flow=0x%x%04x",
data.raw.data0, data.raw.data1,
data.ipv6_flow.version,
data.ipv6_flow.tc,
data.ipv6_flow.flowhi4,
data.ipv6_flow.flowlo16);
else if (m->ol_flags & RTE_IAVF_PKT_RX_DYNF_PROTO_XTR_TCP)
printf(" - Flexible descriptor's Metadata: [0x%04x:0x%04x],"
"tcp,doff=%u,flags=%s%s%s%s%s%s%s%s",
data.raw.data0, data.raw.data1,
data.tcp.doff,
data.tcp.cwr ? "C" : "",
data.tcp.ece ? "E" : "",
data.tcp.urg ? "U" : "",
data.tcp.ack ? "A" : "",
data.tcp.psh ? "P" : "",
data.tcp.rst ? "R" : "",
data.tcp.syn ? "S" : "",
data.tcp.fin ? "F" : "");
else if (m->ol_flags & RTE_IAVF_PKT_RX_DYNF_PROTO_XTR_IP_OFFSET)
printf(" - Flexible descriptor's Extraction: ip_offset=%u",
data.ip_ofs);
}
#ifdef __cplusplus
}
#endif
#endif /* _RTE_PMD_IAVF_H_ */

View File

@ -1,3 +1,16 @@
DPDK_21 {
local: *;
};
EXPERIMENTAL {
global:
# added in 20.11
rte_pmd_ifd_dynfield_proto_xtr_metadata_offs;
rte_pmd_ifd_dynflag_proto_xtr_vlan_mask;
rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask;
rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask;
rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask;
rte_pmd_ifd_dynflag_proto_xtr_tcp_mask;
rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask;
};