event/dsw: add event scheduling and device start/stop

With this patch, the DSW event device can be started and stopped,
and also supports scheduling events between ports.

Signed-off-by: Mattias Rönnblom <mattias.ronnblom@ericsson.com>
Acked-by: Jerin Jacob <jerin.jacob@caviumnetworks.com>
This commit is contained in:
Mattias Rönnblom 2018-09-18 14:45:09 +02:00 committed by Jerin Jacob
parent 0cb8b0a03e
commit 1c8e3caa3b
5 changed files with 542 additions and 2 deletions

View File

@ -21,6 +21,6 @@ LIBABIVER := 1
EXPORT_MAP := rte_pmd_dsw_event_version.map
SRCS-$(CONFIG_RTE_LIBRTE_PMD_DSW_EVENTDEV) += dsw_evdev.c
SRCS-$(CONFIG_RTE_LIBRTE_PMD_DSW_EVENTDEV) += dsw_evdev.c dsw_event.c
include $(RTE_SDK)/mk/rte.lib.mk

View File

@ -6,6 +6,7 @@
#include <rte_eventdev_pmd.h>
#include <rte_eventdev_pmd_vdev.h>
#include <rte_random.h>
#include "dsw_evdev.h"
@ -201,10 +202,125 @@ dsw_configure(const struct rte_eventdev *dev)
{
struct dsw_evdev *dsw = dsw_pmd_priv(dev);
const struct rte_event_dev_config *conf = &dev->data->dev_conf;
int32_t min_max_in_flight;
dsw->num_ports = conf->nb_event_ports;
dsw->num_queues = conf->nb_event_queues;
/* Avoid a situation where consumer ports are holding all the
* credits, without making use of them.
*/
min_max_in_flight = conf->nb_event_ports * DSW_PORT_MAX_CREDITS;
dsw->max_inflight = RTE_MAX(conf->nb_events_limit, min_max_in_flight);
return 0;
}
static void
initial_flow_to_port_assignment(struct dsw_evdev *dsw)
{
uint8_t queue_id;
for (queue_id = 0; queue_id < dsw->num_queues; queue_id++) {
struct dsw_queue *queue = &dsw->queues[queue_id];
uint16_t flow_hash;
for (flow_hash = 0; flow_hash < DSW_MAX_FLOWS; flow_hash++) {
uint8_t port_idx =
rte_rand() % queue->num_serving_ports;
uint8_t port_id =
queue->serving_ports[port_idx];
dsw->queues[queue_id].flow_to_port_map[flow_hash] =
port_id;
}
}
}
static int
dsw_start(struct rte_eventdev *dev)
{
struct dsw_evdev *dsw = dsw_pmd_priv(dev);
rte_atomic32_init(&dsw->credits_on_loan);
initial_flow_to_port_assignment(dsw);
return 0;
}
static void
dsw_port_drain_buf(uint8_t dev_id, struct rte_event *buf, uint16_t buf_len,
eventdev_stop_flush_t flush, void *flush_arg)
{
uint16_t i;
for (i = 0; i < buf_len; i++)
flush(dev_id, buf[i], flush_arg);
}
static void
dsw_port_drain_out(uint8_t dev_id, struct dsw_evdev *dsw, struct dsw_port *port,
eventdev_stop_flush_t flush, void *flush_arg)
{
uint16_t dport_id;
for (dport_id = 0; dport_id < dsw->num_ports; dport_id++)
if (dport_id != port->id)
dsw_port_drain_buf(dev_id, port->out_buffer[dport_id],
port->out_buffer_len[dport_id],
flush, flush_arg);
}
static void
dsw_port_drain_in_ring(uint8_t dev_id, struct dsw_port *port,
eventdev_stop_flush_t flush, void *flush_arg)
{
struct rte_event ev;
while (rte_event_ring_dequeue_burst(port->in_ring, &ev, 1, NULL))
flush(dev_id, ev, flush_arg);
}
static void
dsw_drain(uint8_t dev_id, struct dsw_evdev *dsw,
eventdev_stop_flush_t flush, void *flush_arg)
{
uint16_t port_id;
if (flush == NULL)
return;
for (port_id = 0; port_id < dsw->num_ports; port_id++) {
struct dsw_port *port = &dsw->ports[port_id];
dsw_port_drain_out(dev_id, dsw, port, flush, flush_arg);
dsw_port_drain_in_ring(dev_id, port, flush, flush_arg);
}
}
static void
dsw_stop(struct rte_eventdev *dev)
{
struct dsw_evdev *dsw = dsw_pmd_priv(dev);
uint8_t dev_id;
eventdev_stop_flush_t flush;
void *flush_arg;
dev_id = dev->data->dev_id;
flush = dev->dev_ops->dev_stop_flush;
flush_arg = dev->data->dev_stop_flush_arg;
dsw_drain(dev_id, dsw, flush, flush_arg);
}
static int
dsw_close(struct rte_eventdev *dev)
{
struct dsw_evdev *dsw = dsw_pmd_priv(dev);
dsw->num_ports = 0;
dsw->num_queues = 0;
return 0;
}
@ -219,6 +335,9 @@ static struct rte_eventdev_ops dsw_evdev_ops = {
.port_unlink = dsw_port_unlink,
.dev_infos_get = dsw_info_get,
.dev_configure = dsw_configure,
.dev_start = dsw_start,
.dev_stop = dsw_stop,
.dev_close = dsw_close
};
static int
@ -236,6 +355,12 @@ dsw_probe(struct rte_vdev_device *vdev)
return -EFAULT;
dev->dev_ops = &dsw_evdev_ops;
dev->enqueue = dsw_event_enqueue;
dev->enqueue_burst = dsw_event_enqueue_burst;
dev->enqueue_new_burst = dsw_event_enqueue_new_burst;
dev->enqueue_forward_burst = dsw_event_enqueue_forward_burst;
dev->dequeue = dsw_event_dequeue;
dev->dequeue_burst = dsw_event_dequeue_burst;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;

View File

@ -14,6 +14,7 @@
#define DSW_MAX_PORTS (64)
#define DSW_MAX_PORT_DEQUEUE_DEPTH (128)
#define DSW_MAX_PORT_ENQUEUE_DEPTH (128)
#define DSW_MAX_PORT_OUT_BUFFER (32)
#define DSW_MAX_QUEUES (16)
@ -24,6 +25,24 @@
#define DSW_MAX_FLOWS (1<<(DSW_MAX_FLOWS_BITS))
#define DSW_MAX_FLOWS_MASK (DSW_MAX_FLOWS-1)
/* Eventdev RTE_SCHED_TYPE_PARALLEL doesn't have a concept of flows,
* but the 'dsw' scheduler (more or less) randomly assign flow id to
* events on parallel queues, to be able to reuse some of the
* migration mechanism and scheduling logic from
* RTE_SCHED_TYPE_ATOMIC. By moving one of the parallel "flows" from a
* particular port, the likely-hood of events being scheduled to this
* port is reduced, and thus a kind of statistical load balancing is
* achieved.
*/
#define DSW_PARALLEL_FLOWS (1024)
/* Avoid making small 'loans' from the central in-flight event credit
* pool, to improve efficiency.
*/
#define DSW_MIN_CREDIT_LOAN (64)
#define DSW_PORT_MAX_CREDITS (2*DSW_MIN_CREDIT_LOAN)
#define DSW_PORT_MIN_CREDITS (DSW_MIN_CREDIT_LOAN)
/* The rings are dimensioned so that all in-flight events can reside
* on any one of the port rings, to avoid the trouble of having to
* care about the case where there's no room on the destination port's
@ -44,8 +63,17 @@ struct dsw_port {
uint16_t dequeue_depth;
uint16_t enqueue_depth;
int32_t inflight_credits;
int32_t new_event_threshold;
uint16_t pending_releases;
uint16_t next_parallel_flow_id;
uint16_t out_buffer_len[DSW_MAX_PORTS];
struct rte_event out_buffer[DSW_MAX_PORTS][DSW_MAX_PORT_OUT_BUFFER];
struct rte_event_ring *in_ring __rte_cache_aligned;
} __rte_cache_aligned;
@ -53,6 +81,8 @@ struct dsw_queue {
uint8_t schedule_type;
uint8_t serving_ports[DSW_MAX_PORTS];
uint16_t num_serving_ports;
uint8_t flow_to_port_map[DSW_MAX_FLOWS] __rte_cache_aligned;
};
struct dsw_evdev {
@ -62,12 +92,38 @@ struct dsw_evdev {
uint16_t num_ports;
struct dsw_queue queues[DSW_MAX_QUEUES];
uint8_t num_queues;
int32_t max_inflight;
rte_atomic32_t credits_on_loan __rte_cache_aligned;
};
uint16_t dsw_event_enqueue(void *port, const struct rte_event *event);
uint16_t dsw_event_enqueue_burst(void *port,
const struct rte_event events[],
uint16_t events_len);
uint16_t dsw_event_enqueue_new_burst(void *port,
const struct rte_event events[],
uint16_t events_len);
uint16_t dsw_event_enqueue_forward_burst(void *port,
const struct rte_event events[],
uint16_t events_len);
uint16_t dsw_event_dequeue(void *port, struct rte_event *ev, uint64_t wait);
uint16_t dsw_event_dequeue_burst(void *port, struct rte_event *events,
uint16_t num, uint64_t wait);
static inline struct dsw_evdev *
dsw_pmd_priv(const struct rte_eventdev *eventdev)
{
return eventdev->data->dev_private;
}
#define DSW_LOG_DP(level, fmt, args...) \
RTE_LOG_DP(level, EVENTDEV, "[%s] %s() line %u: " fmt, \
DSW_PMD_NAME, \
__func__, __LINE__, ## args)
#define DSW_LOG_DP_PORT(level, port_id, fmt, args...) \
DSW_LOG_DP(level, "<Port %d> " fmt, port_id, ## args)
#endif

View File

@ -0,0 +1,359 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Ericsson AB
*/
#include "dsw_evdev.h"
#include <stdbool.h>
#include <rte_atomic.h>
#include <rte_random.h>
static bool
dsw_port_acquire_credits(struct dsw_evdev *dsw, struct dsw_port *port,
int32_t credits)
{
int32_t inflight_credits = port->inflight_credits;
int32_t missing_credits = credits - inflight_credits;
int32_t total_on_loan;
int32_t available;
int32_t acquired_credits;
int32_t new_total_on_loan;
if (likely(missing_credits <= 0)) {
port->inflight_credits -= credits;
return true;
}
total_on_loan = rte_atomic32_read(&dsw->credits_on_loan);
available = dsw->max_inflight - total_on_loan;
acquired_credits = RTE_MAX(missing_credits, DSW_PORT_MIN_CREDITS);
if (available < acquired_credits)
return false;
/* This is a race, no locks are involved, and thus some other
* thread can allocate tokens in between the check and the
* allocation.
*/
new_total_on_loan = rte_atomic32_add_return(&dsw->credits_on_loan,
acquired_credits);
if (unlikely(new_total_on_loan > dsw->max_inflight)) {
/* Some other port took the last credits */
rte_atomic32_sub(&dsw->credits_on_loan, acquired_credits);
return false;
}
DSW_LOG_DP_PORT(DEBUG, port->id, "Acquired %d tokens from pool.\n",
acquired_credits);
port->inflight_credits += acquired_credits;
port->inflight_credits -= credits;
return true;
}
static void
dsw_port_return_credits(struct dsw_evdev *dsw, struct dsw_port *port,
int32_t credits)
{
port->inflight_credits += credits;
if (unlikely(port->inflight_credits > DSW_PORT_MAX_CREDITS)) {
int32_t leave_credits = DSW_PORT_MIN_CREDITS;
int32_t return_credits =
port->inflight_credits - leave_credits;
port->inflight_credits = leave_credits;
rte_atomic32_sub(&dsw->credits_on_loan, return_credits);
DSW_LOG_DP_PORT(DEBUG, port->id,
"Returned %d tokens to pool.\n",
return_credits);
}
}
static uint8_t
dsw_schedule(struct dsw_evdev *dsw, uint8_t queue_id, uint16_t flow_hash)
{
struct dsw_queue *queue = &dsw->queues[queue_id];
uint8_t port_id;
if (queue->num_serving_ports > 1)
port_id = queue->flow_to_port_map[flow_hash];
else
/* A single-link queue, or atomic/ordered/parallel but
* with just a single serving port.
*/
port_id = queue->serving_ports[0];
DSW_LOG_DP(DEBUG, "Event with queue_id %d flow_hash %d is scheduled "
"to port %d.\n", queue_id, flow_hash, port_id);
return port_id;
}
static void
dsw_port_transmit_buffered(struct dsw_evdev *dsw, struct dsw_port *source_port,
uint8_t dest_port_id)
{
struct dsw_port *dest_port = &(dsw->ports[dest_port_id]);
uint16_t *buffer_len = &source_port->out_buffer_len[dest_port_id];
struct rte_event *buffer = source_port->out_buffer[dest_port_id];
uint16_t enqueued = 0;
if (*buffer_len == 0)
return;
/* The rings are dimensioned to fit all in-flight events (even
* on a single ring), so looping will work.
*/
do {
enqueued +=
rte_event_ring_enqueue_burst(dest_port->in_ring,
buffer+enqueued,
*buffer_len-enqueued,
NULL);
} while (unlikely(enqueued != *buffer_len));
(*buffer_len) = 0;
}
static uint16_t
dsw_port_get_parallel_flow_id(struct dsw_port *port)
{
uint16_t flow_id = port->next_parallel_flow_id;
port->next_parallel_flow_id =
(port->next_parallel_flow_id + 1) % DSW_PARALLEL_FLOWS;
return flow_id;
}
static void
dsw_port_buffer_non_paused(struct dsw_evdev *dsw, struct dsw_port *source_port,
uint8_t dest_port_id, const struct rte_event *event)
{
struct rte_event *buffer = source_port->out_buffer[dest_port_id];
uint16_t *buffer_len = &source_port->out_buffer_len[dest_port_id];
if (*buffer_len == DSW_MAX_PORT_OUT_BUFFER)
dsw_port_transmit_buffered(dsw, source_port, dest_port_id);
buffer[*buffer_len] = *event;
(*buffer_len)++;
}
#define DSW_FLOW_ID_BITS (24)
static uint16_t
dsw_flow_id_hash(uint32_t flow_id)
{
uint16_t hash = 0;
uint16_t offset = 0;
do {
hash ^= ((flow_id >> offset) & DSW_MAX_FLOWS_MASK);
offset += DSW_MAX_FLOWS_BITS;
} while (offset < DSW_FLOW_ID_BITS);
return hash;
}
static void
dsw_port_buffer_parallel(struct dsw_evdev *dsw, struct dsw_port *source_port,
struct rte_event event)
{
uint8_t dest_port_id;
event.flow_id = dsw_port_get_parallel_flow_id(source_port);
dest_port_id = dsw_schedule(dsw, event.queue_id,
dsw_flow_id_hash(event.flow_id));
dsw_port_buffer_non_paused(dsw, source_port, dest_port_id, &event);
}
static void
dsw_port_buffer_event(struct dsw_evdev *dsw, struct dsw_port *source_port,
const struct rte_event *event)
{
uint16_t flow_hash;
uint8_t dest_port_id;
if (unlikely(dsw->queues[event->queue_id].schedule_type ==
RTE_SCHED_TYPE_PARALLEL)) {
dsw_port_buffer_parallel(dsw, source_port, *event);
return;
}
flow_hash = dsw_flow_id_hash(event->flow_id);
dest_port_id = dsw_schedule(dsw, event->queue_id, flow_hash);
dsw_port_buffer_non_paused(dsw, source_port, dest_port_id, event);
}
static void
dsw_port_flush_out_buffers(struct dsw_evdev *dsw, struct dsw_port *source_port)
{
uint16_t dest_port_id;
for (dest_port_id = 0; dest_port_id < dsw->num_ports; dest_port_id++)
dsw_port_transmit_buffered(dsw, source_port, dest_port_id);
}
uint16_t
dsw_event_enqueue(void *port, const struct rte_event *ev)
{
return dsw_event_enqueue_burst(port, ev, unlikely(ev == NULL) ? 0 : 1);
}
static __rte_always_inline uint16_t
dsw_event_enqueue_burst_generic(void *port, const struct rte_event events[],
uint16_t events_len, bool op_types_known,
uint16_t num_new, uint16_t num_release,
uint16_t num_non_release)
{
struct dsw_port *source_port = port;
struct dsw_evdev *dsw = source_port->dsw;
bool enough_credits;
uint16_t i;
DSW_LOG_DP_PORT(DEBUG, source_port->id, "Attempting to enqueue %d "
"events to port %d.\n", events_len, source_port->id);
/* XXX: For performance (=ring efficiency) reasons, the
* scheduler relies on internal non-ring buffers instead of
* immediately sending the event to the destination ring. For
* a producer that doesn't intend to produce or consume any
* more events, the scheduler provides a way to flush the
* buffer, by means of doing an enqueue of zero events. In
* addition, a port cannot be left "unattended" (e.g. unused)
* for long periods of time, since that would stall
* migration. Eventdev API extensions to provide a cleaner way
* to archieve both of these functions should be
* considered.
*/
if (unlikely(events_len == 0)) {
dsw_port_flush_out_buffers(dsw, source_port);
return 0;
}
if (unlikely(events_len > source_port->enqueue_depth))
events_len = source_port->enqueue_depth;
if (!op_types_known)
for (i = 0; i < events_len; i++) {
switch (events[i].op) {
case RTE_EVENT_OP_RELEASE:
num_release++;
break;
case RTE_EVENT_OP_NEW:
num_new++;
/* Falls through. */
default:
num_non_release++;
break;
}
}
/* Technically, we could allow the non-new events up to the
* first new event in the array into the system, but for
* simplicity reasons, we deny the whole burst if the port is
* above the water mark.
*/
if (unlikely(num_new > 0 && rte_atomic32_read(&dsw->credits_on_loan) >
source_port->new_event_threshold))
return 0;
enough_credits = dsw_port_acquire_credits(dsw, source_port,
num_non_release);
if (unlikely(!enough_credits))
return 0;
source_port->pending_releases -= num_release;
for (i = 0; i < events_len; i++) {
const struct rte_event *event = &events[i];
if (likely(num_release == 0 ||
event->op != RTE_EVENT_OP_RELEASE))
dsw_port_buffer_event(dsw, source_port, event);
}
DSW_LOG_DP_PORT(DEBUG, source_port->id, "%d non-release events "
"accepted.\n", num_non_release);
return num_non_release;
}
uint16_t
dsw_event_enqueue_burst(void *port, const struct rte_event events[],
uint16_t events_len)
{
return dsw_event_enqueue_burst_generic(port, events, events_len, false,
0, 0, 0);
}
uint16_t
dsw_event_enqueue_new_burst(void *port, const struct rte_event events[],
uint16_t events_len)
{
return dsw_event_enqueue_burst_generic(port, events, events_len, true,
events_len, 0, events_len);
}
uint16_t
dsw_event_enqueue_forward_burst(void *port, const struct rte_event events[],
uint16_t events_len)
{
return dsw_event_enqueue_burst_generic(port, events, events_len, true,
0, 0, events_len);
}
uint16_t
dsw_event_dequeue(void *port, struct rte_event *events, uint64_t wait)
{
return dsw_event_dequeue_burst(port, events, 1, wait);
}
static uint16_t
dsw_port_dequeue_burst(struct dsw_port *port, struct rte_event *events,
uint16_t num)
{
return rte_event_ring_dequeue_burst(port->in_ring, events, num, NULL);
}
uint16_t
dsw_event_dequeue_burst(void *port, struct rte_event *events, uint16_t num,
uint64_t wait __rte_unused)
{
struct dsw_port *source_port = port;
struct dsw_evdev *dsw = source_port->dsw;
uint16_t dequeued;
source_port->pending_releases = 0;
if (unlikely(num > source_port->dequeue_depth))
num = source_port->dequeue_depth;
dequeued = dsw_port_dequeue_burst(source_port, events, num);
source_port->pending_releases = dequeued;
if (dequeued > 0) {
DSW_LOG_DP_PORT(DEBUG, source_port->id, "Dequeued %d events.\n",
dequeued);
dsw_port_return_credits(dsw, source_port, dequeued);
}
/* XXX: Assuming the port can't produce any more work,
* consider flushing the output buffer, on dequeued ==
* 0.
*/
return dequeued;
}

View File

@ -3,4 +3,4 @@
allow_experimental_apis = true
deps += ['bus_vdev']
sources = files('dsw_evdev.c')
sources = files('dsw_evdev.c', 'dsw_event.c')