examples/ipsec-secgw: support event vector in lookaside mode

Added vector support for event crypto adapter in lookaside mode.
Once --event-vector is enabled, event crypto adapter will group
processed crypto operation into rte_event_vector event with type
RTE_EVENT_TYPE_CRYPTODEV_VECTOR.

Signed-off-by: Volodymyr Fialko <vfialko@marvell.com>
Acked-by: Akhil Goyal <gakhil@marvell.com>
This commit is contained in:
Volodymyr Fialko 2022-10-10 18:56:28 +02:00 committed by Akhil Goyal
parent f44481ef43
commit 1d5078c6cf
5 changed files with 264 additions and 57 deletions

View File

@ -95,6 +95,9 @@ The application supports two modes of operation: poll mode and event mode.
(default vector-size is 16) and vector-tmo (default vector-tmo is 102400ns).
By default event vectorization is disabled and it can be enabled using event-vector
option.
For the event devices, crypto device pairs which support the capability
``RTE_EVENT_CRYPTO_ADAPTER_CAP_EVENT_VECTOR`` vector aggregation
could also be enable using event-vector option.
Additionally the event mode introduces two submodes of processing packets:

View File

@ -792,12 +792,15 @@ eh_start_eventdev(struct eventmode_conf *em_conf)
static int
eh_initialize_crypto_adapter(struct eventmode_conf *em_conf)
{
struct rte_event_crypto_adapter_queue_conf queue_conf;
struct rte_event_dev_info evdev_default_conf = {0};
struct rte_event_port_conf port_conf = {0};
struct eventdev_params *eventdev_config;
char mp_name[RTE_MEMPOOL_NAMESIZE];
const uint8_t nb_qp_per_cdev = 1;
uint8_t eventdev_id, cdev_id, n;
uint32_t cap;
int ret;
uint32_t cap, nb_elem;
int ret, socket_id;
if (!em_conf->enable_event_crypto_adapter)
return 0;
@ -852,10 +855,35 @@ eh_initialize_crypto_adapter(struct eventmode_conf *em_conf)
return ret;
}
memset(&queue_conf, 0, sizeof(queue_conf));
if ((cap & RTE_EVENT_CRYPTO_ADAPTER_CAP_EVENT_VECTOR) &&
(em_conf->ext_params.event_vector)) {
queue_conf.flags |= RTE_EVENT_CRYPTO_ADAPTER_EVENT_VECTOR;
queue_conf.vector_sz = em_conf->ext_params.vector_size;
/*
* Currently all sessions configured with same response
* info fields, so packets will be aggregated to the
* same vector. This allows us to configure number of
* vectors only to hold all queue pair descriptors.
*/
nb_elem = (qp_desc_nb / queue_conf.vector_sz) + 1;
nb_elem *= nb_qp_per_cdev;
socket_id = rte_cryptodev_socket_id(cdev_id);
snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
"QP_VEC_%u_%u", socket_id, cdev_id);
queue_conf.vector_mp = rte_event_vector_pool_create(
mp_name, nb_elem, 0,
queue_conf.vector_sz, socket_id);
if (queue_conf.vector_mp == NULL) {
EH_LOG_ERR("failed to create event vector pool");
return -ENOMEM;
}
}
/* Add crypto queue pairs to event crypto adapter */
ret = rte_event_crypto_adapter_queue_pair_add(cdev_id, eventdev_id,
-1, /* adds all the pre configured queue pairs to the instance */
NULL);
&queue_conf);
if (ret < 0) {
EH_LOG_ERR("Failed to add queue pairs to event crypto adapter %d", ret);
return ret;

View File

@ -85,7 +85,7 @@ static uint16_t nb_txd = IPSEC_SECGW_TX_DESC_DEFAULT;
/*
* Configurable number of descriptors per queue pair
*/
static uint32_t qp_desc_nb = 2048;
uint32_t qp_desc_nb = 2048;
#define ETHADDR_TO_UINT64(addr) __BYTES_TO_UINT64( \
(addr)->addr_bytes[0], (addr)->addr_bytes[1], \

View File

@ -145,6 +145,7 @@ extern bool per_port_pool;
extern uint32_t mtu_size;
extern uint32_t frag_tbl_sz;
extern uint32_t qp_desc_nb;
#define SS_F (1U << 0) /* Single SA mode */
#define INL_PR_F (1U << 1) /* Inline Protocol */

View File

@ -349,18 +349,11 @@ crypto_op_reset(const struct rte_ipsec_session *ss, struct rte_mbuf *mb[],
}
}
static inline int
event_crypto_enqueue(struct ipsec_ctx *ctx __rte_unused, struct rte_mbuf *pkt,
struct ipsec_sa *sa, const struct eh_event_link_info *ev_link)
static inline void
crypto_prepare_event(struct rte_mbuf *pkt, struct rte_ipsec_session *sess, struct rte_event *ev)
{
struct ipsec_mbuf_metadata *priv;
struct rte_ipsec_session *sess;
struct rte_crypto_op *cop;
struct rte_event cev;
int ret;
/* Get IPsec session */
sess = ipsec_get_primary_session(sa);
/* Get pkt private data */
priv = get_priv(pkt);
@ -370,13 +363,39 @@ event_crypto_enqueue(struct ipsec_ctx *ctx __rte_unused, struct rte_mbuf *pkt,
crypto_op_reset(sess, &pkt, &cop, 1);
/* Update event_ptr with rte_crypto_op */
cev.event = 0;
cev.event_ptr = cop;
ev->event = 0;
ev->event_ptr = cop;
}
static inline void
free_pkts_from_events(struct rte_event events[], uint16_t count)
{
struct rte_crypto_op *cop;
int i;
for (i = 0; i < count; i++) {
cop = events[i].event_ptr;
free_pkts(&cop->sym->m_src, 1);
}
}
static inline int
event_crypto_enqueue(struct rte_mbuf *pkt,
struct ipsec_sa *sa, const struct eh_event_link_info *ev_link)
{
struct rte_ipsec_session *sess;
struct rte_event ev;
int ret;
/* Get IPsec session */
sess = ipsec_get_primary_session(sa);
crypto_prepare_event(pkt, sess, &ev);
/* Enqueue event to crypto adapter */
ret = rte_event_crypto_adapter_enqueue(ev_link->eventdev_id,
ev_link->event_port_id, &cev, 1);
if (unlikely(ret <= 0)) {
ev_link->event_port_id, &ev, 1);
if (unlikely(ret != 1)) {
/* pkt will be freed by the caller */
RTE_LOG_DP(DEBUG, IPSEC, "Cannot enqueue event: %i (errno: %i)\n", ret, rte_errno);
return rte_errno;
@ -448,7 +467,7 @@ process_ipsec_ev_inbound(struct ipsec_ctx *ctx, struct route_table *rt,
goto drop_pkt_and_exit;
}
if (unlikely(event_crypto_enqueue(ctx, pkt, sa, ev_link)))
if (unlikely(event_crypto_enqueue(pkt, sa, ev_link)))
goto drop_pkt_and_exit;
return PKT_POSTED;
@ -463,7 +482,7 @@ process_ipsec_ev_inbound(struct ipsec_ctx *ctx, struct route_table *rt,
goto drop_pkt_and_exit;
}
if (unlikely(event_crypto_enqueue(ctx, pkt, sa, ev_link)))
if (unlikely(event_crypto_enqueue(pkt, sa, ev_link)))
goto drop_pkt_and_exit;
return PKT_POSTED;
@ -615,7 +634,7 @@ process_ipsec_ev_outbound(struct ipsec_ctx *ctx, struct route_table *rt,
/* prepare pkt - advance start to L3 */
rte_pktmbuf_adj(pkt, RTE_ETHER_HDR_LEN);
if (likely(event_crypto_enqueue(ctx, pkt, sa, ev_link) == 0))
if (likely(event_crypto_enqueue(pkt, sa, ev_link) == 0))
return PKT_POSTED;
drop_pkt_and_exit:
@ -626,15 +645,13 @@ process_ipsec_ev_outbound(struct ipsec_ctx *ctx, struct route_table *rt,
}
static inline int
ipsec_ev_route_pkts(struct rte_event_vector *vec, struct route_table *rt,
struct ipsec_traffic *t, struct sa_ctx *sa_ctx)
ipsec_ev_route_ip_pkts(struct rte_event_vector *vec, struct route_table *rt,
struct ipsec_traffic *t)
{
struct rte_ipsec_session *sess;
struct rte_ether_hdr *ethhdr;
uint32_t sa_idx, i, j = 0;
uint16_t port_id = 0;
struct rte_mbuf *pkt;
struct ipsec_sa *sa;
uint16_t port_id = 0;
uint32_t i, j = 0;
/* Route IPv4 packets */
for (i = 0; i < t->ip4.num; i++) {
@ -668,28 +685,90 @@ ipsec_ev_route_pkts(struct rte_event_vector *vec, struct route_table *rt,
free_pkts(&pkt, 1);
}
return j;
}
static inline int
ipsec_ev_inbound_route_pkts(struct rte_event_vector *vec,
struct route_table *rt,
struct ipsec_traffic *t,
const struct eh_event_link_info *ev_link)
{
uint32_t ret, i, j, ev_len = 0;
struct rte_event events[MAX_PKTS];
struct rte_ipsec_session *sess;
struct rte_mbuf *pkt;
struct ipsec_sa *sa;
j = ipsec_ev_route_ip_pkts(vec, rt, t);
/* Route ESP packets */
for (i = 0; i < t->ipsec.num; i++) {
pkt = t->ipsec.pkts[i];
sa = ipsec_mask_saptr(t->ipsec.saptr[i]);
if (unlikely(sa == NULL)) {
free_pkts(&pkt, 1);
continue;
}
sess = ipsec_get_primary_session(sa);
crypto_prepare_event(pkt, sess, &events[ev_len]);
ev_len++;
}
if (ev_len) {
ret = rte_event_crypto_adapter_enqueue(ev_link->eventdev_id,
ev_link->event_port_id, events, ev_len);
if (ret < ev_len) {
RTE_LOG_DP(DEBUG, IPSEC, "Cannot enqueue events: %i (errno: %i)\n",
ev_len, rte_errno);
free_pkts_from_events(&events[ret], ev_len - ret);
return -rte_errno;
}
}
return j;
}
static inline int
ipsec_ev_outbound_route_pkts(struct rte_event_vector *vec, struct route_table *rt,
struct ipsec_traffic *t, struct sa_ctx *sa_ctx,
const struct eh_event_link_info *ev_link)
{
uint32_t sa_idx, ret, i, j, ev_len = 0;
struct rte_event events[MAX_PKTS];
struct rte_ipsec_session *sess;
struct rte_ether_hdr *ethhdr;
uint16_t port_id = 0;
struct rte_mbuf *pkt;
struct ipsec_sa *sa;
j = ipsec_ev_route_ip_pkts(vec, rt, t);
/* Handle IPsec packets.
* For lookaside IPsec packets, submit to cryptodev queue.
* For inline IPsec packets, route the packet.
*/
for (i = 0; i < t->ipsec.num; i++) {
/* Validate sa_idx */
sa_idx = t->ipsec.res[i];
pkt = t->ipsec.pkts[i];
if (unlikely(sa_idx >= sa_ctx->nb_sa))
if (unlikely(sa_idx >= sa_ctx->nb_sa)) {
free_pkts(&pkt, 1);
else {
/* Else the packet has to be protected */
sa = &(sa_ctx->sa[sa_idx]);
/* Get IPsec session */
sess = ipsec_get_primary_session(sa);
/* Allow only inline protocol for now */
if (unlikely(sess->type !=
RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL)) {
RTE_LOG(ERR, IPSEC, "SA type not supported\n");
free_pkts(&pkt, 1);
continue;
}
continue;
}
/* Else the packet has to be protected */
sa = &(sa_ctx->sa[sa_idx]);
/* Get IPsec session */
sess = ipsec_get_primary_session(sa);
switch (sess->type) {
case RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL:
rte_pktmbuf_adj(pkt, RTE_ETHER_HDR_LEN);
crypto_prepare_event(pkt, sess, &events[ev_len]);
ev_len++;
break;
case RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL:
rte_security_set_pkt_metadata(sess->security.ctx,
sess->security.ses, pkt, NULL);
pkt->ol_flags |= RTE_MBUF_F_TX_SEC_OFFLOAD;
port_id = sa->portid;
@ -703,6 +782,22 @@ ipsec_ev_route_pkts(struct rte_event_vector *vec, struct route_table *rt,
ipsec_event_pre_forward(pkt, port_id);
ev_vector_attr_update(vec, pkt);
vec->mbufs[j++] = pkt;
break;
default:
RTE_LOG(ERR, IPSEC, "SA type not supported\n");
free_pkts(&pkt, 1);
break;
}
}
if (ev_len) {
ret = rte_event_crypto_adapter_enqueue(ev_link->eventdev_id,
ev_link->event_port_id, events, ev_len);
if (ret < ev_len) {
RTE_LOG_DP(DEBUG, IPSEC, "Cannot enqueue events: %i (errno: %i)\n",
ev_len, rte_errno);
free_pkts_from_events(&events[ret], ev_len - ret);
return -rte_errno;
}
}
@ -727,6 +822,19 @@ classify_pkt(struct rte_mbuf *pkt, struct ipsec_traffic *t)
t->ip6.data[t->ip6.num] = nlp;
t->ip6.pkts[(t->ip6.num)++] = pkt;
break;
case PKT_TYPE_IPSEC_IPV4:
rte_pktmbuf_adj(pkt, RTE_ETHER_HDR_LEN);
ipv4_pkt_l3_len_set(pkt);
t->ipsec.pkts[(t->ipsec.num)++] = pkt;
break;
case PKT_TYPE_IPSEC_IPV6:
rte_pktmbuf_adj(pkt, RTE_ETHER_HDR_LEN);
if (ipv6_pkt_l3_len_set(pkt) != 0) {
free_pkts(&pkt, 1);
return;
}
t->ipsec.pkts[(t->ipsec.num)++] = pkt;
break;
default:
RTE_LOG_DP(DEBUG, IPSEC_ESP, "Unsupported packet type = %d\n",
type);
@ -737,7 +845,8 @@ classify_pkt(struct rte_mbuf *pkt, struct ipsec_traffic *t)
static inline int
process_ipsec_ev_inbound_vector(struct ipsec_ctx *ctx, struct route_table *rt,
struct rte_event_vector *vec)
struct rte_event_vector *vec,
const struct eh_event_link_info *ev_link)
{
struct ipsec_traffic t;
struct rte_mbuf *pkt;
@ -767,12 +876,16 @@ process_ipsec_ev_inbound_vector(struct ipsec_ctx *ctx, struct route_table *rt,
check_sp_sa_bulk(ctx->sp4_ctx, ctx->sa_ctx, &t.ip4);
check_sp_sa_bulk(ctx->sp6_ctx, ctx->sa_ctx, &t.ip6);
return ipsec_ev_route_pkts(vec, rt, &t, ctx->sa_ctx);
if (t.ipsec.num != 0)
sad_lookup(&ctx->sa_ctx->sad, t.ipsec.pkts, t.ipsec.saptr, t.ipsec.num);
return ipsec_ev_inbound_route_pkts(vec, rt, &t, ev_link);
}
static inline int
process_ipsec_ev_outbound_vector(struct ipsec_ctx *ctx, struct route_table *rt,
struct rte_event_vector *vec)
struct rte_event_vector *vec,
const struct eh_event_link_info *ev_link)
{
struct ipsec_traffic t;
struct rte_mbuf *pkt;
@ -795,7 +908,7 @@ process_ipsec_ev_outbound_vector(struct ipsec_ctx *ctx, struct route_table *rt,
check_sp_bulk(ctx->sp4_ctx, &t.ip4, &t.ipsec);
check_sp_bulk(ctx->sp6_ctx, &t.ip6, &t.ipsec);
return ipsec_ev_route_pkts(vec, rt, &t, ctx->sa_ctx);
return ipsec_ev_outbound_route_pkts(vec, rt, &t, ctx->sa_ctx, ev_link);
}
static inline int
@ -854,12 +967,13 @@ ipsec_ev_vector_process(struct lcore_conf_ev_tx_int_port_wrkr *lconf,
ev_vector_attr_init(vec);
core_stats_update_rx(vec->nb_elem);
if (is_unprotected_port(pkt->port))
ret = process_ipsec_ev_inbound_vector(&lconf->inbound,
&lconf->rt, vec);
&lconf->rt, vec, links);
else
ret = process_ipsec_ev_outbound_vector(&lconf->outbound,
&lconf->rt, vec);
&lconf->rt, vec, links);
if (likely(ret > 0)) {
core_stats_update_tx(vec->nb_elem);
@ -899,24 +1013,19 @@ ipsec_ev_vector_drv_mode_process(struct eh_event_link_info *links,
}
static inline int
ipsec_ev_cryptodev_process(const struct lcore_conf_ev_tx_int_port_wrkr *lconf,
struct rte_event *ev)
ipsec_ev_cryptodev_process_one_pkt(
const struct lcore_conf_ev_tx_int_port_wrkr *lconf,
const struct rte_crypto_op *cop, struct rte_mbuf *pkt)
{
struct rte_ether_hdr *ethhdr;
struct rte_crypto_op *cop;
struct rte_mbuf *pkt;
uint16_t port_id;
struct ip *ip;
/* Get pkt data */
cop = ev->event_ptr;
pkt = cop->sym->m_src;
/* If operation was not successful, drop the packet */
/* If operation was not successful, free the packet */
if (unlikely(cop->status != RTE_CRYPTO_OP_STATUS_SUCCESS)) {
RTE_LOG_DP(INFO, IPSEC, "Crypto operation failed\n");
free_pkts(&pkt, 1);
return PKT_DROPPED;
return -1;
}
ip = rte_pktmbuf_mtod(pkt, struct ip *);
@ -946,13 +1055,76 @@ ipsec_ev_cryptodev_process(const struct lcore_conf_ev_tx_int_port_wrkr *lconf,
if (unlikely(port_id == RTE_MAX_ETHPORTS)) {
RTE_LOG_DP(DEBUG, IPSEC, "Cannot route processed packet\n");
free_pkts(&pkt, 1);
return PKT_DROPPED;
return -1;
}
/* Update Ether with port's MAC addresses */
memcpy(&ethhdr->src_addr, &ethaddr_tbl[port_id].src, sizeof(struct rte_ether_addr));
memcpy(&ethhdr->dst_addr, &ethaddr_tbl[port_id].dst, sizeof(struct rte_ether_addr));
ipsec_event_pre_forward(pkt, port_id);
return 0;
}
static inline void
ipsec_ev_cryptodev_vector_process(
const struct lcore_conf_ev_tx_int_port_wrkr *lconf,
const struct eh_event_link_info *links,
struct rte_event *ev)
{
struct rte_event_vector *vec = ev->vec;
const uint16_t nb_events = 1;
struct rte_crypto_op *cop;
struct rte_mbuf *pkt;
uint16_t enqueued;
int i, n = 0;
ev_vector_attr_init(vec);
/* Transform cop vec into pkt vec */
for (i = 0; i < vec->nb_elem; i++) {
/* Get pkt data */
cop = vec->ptrs[i];
pkt = cop->sym->m_src;
if (ipsec_ev_cryptodev_process_one_pkt(lconf, cop, pkt))
continue;
vec->mbufs[n++] = pkt;
ev_vector_attr_update(vec, pkt);
}
if (n == 0) {
rte_mempool_put(rte_mempool_from_obj(vec), vec);
return;
}
vec->nb_elem = n;
enqueued = rte_event_eth_tx_adapter_enqueue(links[0].eventdev_id,
links[0].event_port_id, ev, nb_events, 0);
if (enqueued != nb_events) {
RTE_LOG_DP(DEBUG, IPSEC, "Failed to enqueue to tx, ret = %u,"
" errno = %i\n", enqueued, rte_errno);
free_pkts(vec->mbufs, vec->nb_elem);
rte_mempool_put(rte_mempool_from_obj(vec), vec);
} else {
core_stats_update_tx(n);
}
}
static inline int
ipsec_ev_cryptodev_process(const struct lcore_conf_ev_tx_int_port_wrkr *lconf,
struct rte_event *ev)
{
struct rte_crypto_op *cop;
struct rte_mbuf *pkt;
/* Get pkt data */
cop = ev->event_ptr;
pkt = cop->sym->m_src;
if (ipsec_ev_cryptodev_process_one_pkt(lconf, cop, pkt))
return PKT_DROPPED;
/* Update event */
ev->mbuf = pkt;
@ -1199,6 +1371,9 @@ ipsec_wrkr_non_burst_int_port_app_mode(struct eh_event_link_info *links,
if (unlikely(ret != PKT_FORWARDED))
continue;
break;
case RTE_EVENT_TYPE_CRYPTODEV_VECTOR:
ipsec_ev_cryptodev_vector_process(&lconf, links, &ev);
continue;
default:
RTE_LOG(ERR, IPSEC, "Invalid event type %u",
ev.event_type);