net/e1000: fix i219 hang on reset/close

Unit hang may occur if multiple descriptors are available in the rings
during reset or close. This state can be detected by configure status
by bit 8 in register. If the bit is set and there are pending
descriptors in one of the rings, we must flush them before reset or
close.

Fixes: 805803445a ("e1000: support EM devices (also known as e1000/e1000e)")
Cc: stable@dpdk.org

Signed-off-by: Xiao Zhang <xiao.zhang@intel.com>
Reviewed-by: Xiaolong Ye <xiaolong.ye@intel.com>
This commit is contained in:
Xiao Zhang 2019-07-22 23:11:52 +08:00 committed by Ferruh Yigit
parent 760d966ab3
commit 1fc9701238
3 changed files with 120 additions and 0 deletions

View File

@ -35,6 +35,9 @@
#define IGB_MAX_RX_QUEUE_NUM 8
#define IGB_MAX_RX_QUEUE_NUM_82576 16
#define E1000_I219_MAX_RX_QUEUE_NUM 2
#define E1000_I219_MAX_TX_QUEUE_NUM 2
#define E1000_SYN_FILTER_ENABLE 0x00000001 /* syn filter enable field */
#define E1000_SYN_FILTER_QUEUE 0x0000000E /* syn filter queue field */
#define E1000_SYN_FILTER_QUEUE_SHIFT 1 /* syn filter queue field */
@ -522,5 +525,6 @@ int igb_action_rss_same(const struct rte_flow_action_rss *comp,
int igb_config_rss_filter(struct rte_eth_dev *dev,
struct igb_rte_flow_rss_conf *conf,
bool add);
void em_flush_desc_rings(struct rte_eth_dev *dev);
#endif /* _E1000_ETHDEV_H_ */

View File

@ -737,6 +737,11 @@ eth_em_stop(struct rte_eth_dev *dev)
em_lsc_intr_disable(hw);
e1000_reset_hw(hw);
/* Flush desc rings for i219 */
if (hw->mac.type >= e1000_pch_spt)
em_flush_desc_rings(dev);
if (hw->mac.type >= e1000_82544)
E1000_WRITE_REG(hw, E1000_WUC, 0);

View File

@ -18,6 +18,7 @@
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
@ -59,6 +60,11 @@
#define E1000_TX_OFFLOAD_NOTSUP_MASK \
(PKT_TX_OFFLOAD_MASK ^ E1000_TX_OFFLOAD_MASK)
/* PCI offset for querying configuration status register */
#define PCI_CFG_STATUS_REG 0x06
#define FLUSH_DESC_REQUIRED 0x100
/**
* Structure associated with each descriptor of the RX ring of a RX queue.
*/
@ -2016,3 +2022,108 @@ em_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
qinfo->conf.offloads = txq->offloads;
}
static void
e1000_flush_tx_ring(struct rte_eth_dev *dev)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
volatile struct e1000_data_desc *tx_desc;
volatile uint32_t *tdt_reg_addr;
uint32_t tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
uint16_t size = 512;
struct em_tx_queue *txq;
int i;
if (dev->data->tx_queues == NULL)
return;
tctl = E1000_READ_REG(hw, E1000_TCTL);
E1000_WRITE_REG(hw, E1000_TCTL, tctl | E1000_TCTL_EN);
for (i = 0; i < dev->data->nb_tx_queues &&
i < E1000_I219_MAX_TX_QUEUE_NUM; i++) {
txq = dev->data->tx_queues[i];
tdt = E1000_READ_REG(hw, E1000_TDT(i));
if (tdt != txq->tx_tail)
return;
tx_desc = &txq->tx_ring[txq->tx_tail];
tx_desc->buffer_addr = rte_cpu_to_le_64(txq->tx_ring_phys_addr);
tx_desc->lower.data = rte_cpu_to_le_32(txd_lower | size);
tx_desc->upper.data = 0;
rte_wmb();
txq->tx_tail++;
if (txq->tx_tail == txq->nb_tx_desc)
txq->tx_tail = 0;
rte_io_wmb();
tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(i));
E1000_PCI_REG_WRITE_RELAXED(tdt_reg_addr, txq->tx_tail);
usec_delay(250);
}
}
static void
e1000_flush_rx_ring(struct rte_eth_dev *dev)
{
uint32_t rctl, rxdctl;
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
int i;
rctl = E1000_READ_REG(hw, E1000_RCTL);
E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
E1000_WRITE_FLUSH(hw);
usec_delay(150);
for (i = 0; i < dev->data->nb_rx_queues &&
i < E1000_I219_MAX_RX_QUEUE_NUM; i++) {
rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
/* zero the lower 14 bits (prefetch and host thresholds) */
rxdctl &= 0xffffc000;
/* update thresholds: prefetch threshold to 31,
* host threshold to 1 and make sure the granularity
* is "descriptors" and not "cache lines"
*/
rxdctl |= (0x1F | (1UL << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
}
/* momentarily enable the RX ring for the changes to take effect */
E1000_WRITE_REG(hw, E1000_RCTL, rctl | E1000_RCTL_EN);
E1000_WRITE_FLUSH(hw);
usec_delay(150);
E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
}
/**
* em_flush_desc_rings - remove all descriptors from the descriptor rings
*
* In i219, the descriptor rings must be emptied before resetting/closing the
* HW. Failure to do this will cause the HW to enter a unit hang state which
* can only be released by PCI reset on the device
*
*/
void
em_flush_desc_rings(struct rte_eth_dev *dev)
{
uint32_t fextnvm11, tdlen;
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
uint16_t pci_cfg_status = 0;
fextnvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
E1000_WRITE_REG(hw, E1000_FEXTNVM11,
fextnvm11 | E1000_FEXTNVM11_DISABLE_MULR_FIX);
tdlen = E1000_READ_REG(hw, E1000_TDLEN(0));
rte_pci_read_config(pci_dev, &pci_cfg_status, sizeof(pci_cfg_status),
PCI_CFG_STATUS_REG);
/* do nothing if we're not in faulty state, or if the queue is empty */
if ((pci_cfg_status & FLUSH_DESC_REQUIRED) && tdlen) {
/* flush desc ring */
e1000_flush_tx_ring(dev);
rte_pci_read_config(pci_dev, &pci_cfg_status,
sizeof(pci_cfg_status), PCI_CFG_STATUS_REG);
if (pci_cfg_status & FLUSH_DESC_REQUIRED)
e1000_flush_rx_ring(dev);
}
}