examples/l3fwd: modularize
The main problem with l3fwd is that it is too monolithic with everything being in one file, and the various options all controlled by compile time flags. This means that it's hard to read and understand, and when making any changes, you need to go to a lot of work to try and ensure you cover all the code paths, since a compile of the app will not touch large parts of the l3fwd codebase. Following changes were done to fix the issues mentioned above - Split out the various lpm and hash specific functionality into separate files, so that l3fwd code has one file for common code e.g. args processing, mempool creation, and then individual files for the various forwarding approaches. Following are new file lists main.c (Common code for args processing, memppol creation, etc) l3fwd_em.c (Hash/Exact match aka 'EM' functionality) l3fwd_em_sse.h (SSE4_1 buffer optimizated 'EM' code) l3fwd_lpm.c (Longest Prefix Match aka 'LPM' functionality) l3fwd_lpm_sse.h (SSE4_1 buffer optimizated 'LPM' code) l3fwd.h (Common include for 'EM' and 'LPM') - The choosing of the lpm/hash path should be done at runtime, not compile time, via a command-line argument. This will ensure that both code paths get compiled in a single go Following examples show runtime options provided Select 'LPM' or 'EM' based on run time selection f.e. > l3fwd -c 0x1 -n 1 -- -p 0x1 -E ... (EM) > l3fwd -c 0x1 -n 1 -- -p 0x1 -L ... (LPM) Options "E" and "L" are mutualy-exclusive. If none selected, "L" is default. Signed-off-by: Ravi Kerur <rkerur@gmail.com> Signed-off-by: Piotr Azarewicz <piotrx.t.azarewicz@intel.com> Tested-by: Tomasz Kulasek <tomaszx.kulasek@intel.com> Acked-by: Tomasz Kulasek <tomaszx.kulasek@intel.com> Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
This commit is contained in:
parent
d505ba80a1
commit
268888b5b0
@ -1,6 +1,6 @@
|
||||
# BSD LICENSE
|
||||
#
|
||||
# Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
|
||||
# Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
@ -42,15 +42,10 @@ include $(RTE_SDK)/mk/rte.vars.mk
|
||||
APP = l3fwd
|
||||
|
||||
# all source are stored in SRCS-y
|
||||
SRCS-y := main.c
|
||||
SRCS-y := main.c l3fwd_lpm.c l3fwd_em.c
|
||||
|
||||
CFLAGS += -I$(SRCDIR)
|
||||
CFLAGS += -O3 $(USER_FLAGS)
|
||||
CFLAGS += $(WERROR_FLAGS)
|
||||
|
||||
# workaround for a gcc bug with noreturn attribute
|
||||
# http://gcc.gnu.org/bugzilla/show_bug.cgi?id=12603
|
||||
ifeq ($(CONFIG_RTE_TOOLCHAIN_GCC),y)
|
||||
CFLAGS_main.o += -Wno-return-type
|
||||
endif
|
||||
|
||||
include $(RTE_SDK)/mk/rte.extapp.mk
|
||||
|
211
examples/l3fwd/l3fwd.h
Normal file
211
examples/l3fwd/l3fwd.h
Normal file
@ -0,0 +1,211 @@
|
||||
/*-
|
||||
* BSD LICENSE
|
||||
*
|
||||
* Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* * Neither the name of Intel Corporation nor the names of its
|
||||
* contributors may be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifndef __L3_FWD_H__
|
||||
#define __L3_FWD_H__
|
||||
|
||||
#define DO_RFC_1812_CHECKS
|
||||
|
||||
#define RTE_LOGTYPE_L3FWD RTE_LOGTYPE_USER1
|
||||
|
||||
#define MAX_PKT_BURST 32
|
||||
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
|
||||
|
||||
#define MAX_RX_QUEUE_PER_LCORE 16
|
||||
|
||||
/*
|
||||
* Try to avoid TX buffering if we have at least MAX_TX_BURST packets to send.
|
||||
*/
|
||||
#define MAX_TX_BURST (MAX_PKT_BURST / 2)
|
||||
|
||||
#define NB_SOCKETS 8
|
||||
|
||||
/* Configure how many packets ahead to prefetch, when reading packets */
|
||||
#define PREFETCH_OFFSET 3
|
||||
|
||||
/* Hash parameters. */
|
||||
#ifdef RTE_ARCH_X86_64
|
||||
/* default to 4 million hash entries (approx) */
|
||||
#define L3FWD_HASH_ENTRIES (1024*1024*4)
|
||||
#else
|
||||
/* 32-bit has less address-space for hugepage memory, limit to 1M entries */
|
||||
#define L3FWD_HASH_ENTRIES (1024*1024*1)
|
||||
#endif
|
||||
#define HASH_ENTRY_NUMBER_DEFAULT 4
|
||||
|
||||
struct mbuf_table {
|
||||
uint16_t len;
|
||||
struct rte_mbuf *m_table[MAX_PKT_BURST];
|
||||
};
|
||||
|
||||
struct lcore_rx_queue {
|
||||
uint8_t port_id;
|
||||
uint8_t queue_id;
|
||||
} __rte_cache_aligned;
|
||||
|
||||
struct lcore_conf {
|
||||
uint16_t n_rx_queue;
|
||||
struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
|
||||
uint16_t tx_queue_id[RTE_MAX_ETHPORTS];
|
||||
struct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
|
||||
void *ipv4_lookup_struct;
|
||||
void *ipv6_lookup_struct;
|
||||
} __rte_cache_aligned;
|
||||
|
||||
extern volatile bool force_quit;
|
||||
|
||||
/* ethernet addresses of ports */
|
||||
extern uint64_t dest_eth_addr[RTE_MAX_ETHPORTS];
|
||||
extern struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
|
||||
|
||||
/* mask of enabled ports */
|
||||
extern uint32_t enabled_port_mask;
|
||||
|
||||
/* Used only in exact match mode. */
|
||||
extern int ipv6; /**< ipv6 is false by default. */
|
||||
extern uint32_t hash_entry_number;
|
||||
|
||||
extern __m128i val_eth[RTE_MAX_ETHPORTS];
|
||||
|
||||
extern struct lcore_conf lcore_conf[RTE_MAX_LCORE];
|
||||
|
||||
/* Send burst of packets on an output interface */
|
||||
static inline int
|
||||
send_burst(struct lcore_conf *qconf, uint16_t n, uint8_t port)
|
||||
{
|
||||
struct rte_mbuf **m_table;
|
||||
int ret;
|
||||
uint16_t queueid;
|
||||
|
||||
queueid = qconf->tx_queue_id[port];
|
||||
m_table = (struct rte_mbuf **)qconf->tx_mbufs[port].m_table;
|
||||
|
||||
ret = rte_eth_tx_burst(port, queueid, m_table, n);
|
||||
if (unlikely(ret < n)) {
|
||||
do {
|
||||
rte_pktmbuf_free(m_table[ret]);
|
||||
} while (++ret < n);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Enqueue a single packet, and send burst if queue is filled */
|
||||
static inline int
|
||||
send_single_packet(struct lcore_conf *qconf,
|
||||
struct rte_mbuf *m, uint8_t port)
|
||||
{
|
||||
uint16_t len;
|
||||
|
||||
len = qconf->tx_mbufs[port].len;
|
||||
qconf->tx_mbufs[port].m_table[len] = m;
|
||||
len++;
|
||||
|
||||
/* enough pkts to be sent */
|
||||
if (unlikely(len == MAX_PKT_BURST)) {
|
||||
send_burst(qconf, MAX_PKT_BURST, port);
|
||||
len = 0;
|
||||
}
|
||||
|
||||
qconf->tx_mbufs[port].len = len;
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef DO_RFC_1812_CHECKS
|
||||
static inline int
|
||||
is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len)
|
||||
{
|
||||
/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
|
||||
/*
|
||||
* 1. The packet length reported by the Link Layer must be large
|
||||
* enough to hold the minimum length legal IP datagram (20 bytes).
|
||||
*/
|
||||
if (link_len < sizeof(struct ipv4_hdr))
|
||||
return -1;
|
||||
|
||||
/* 2. The IP checksum must be correct. */
|
||||
/* this is checked in H/W */
|
||||
|
||||
/*
|
||||
* 3. The IP version number must be 4. If the version number is not 4
|
||||
* then the packet may be another version of IP, such as IPng or
|
||||
* ST-II.
|
||||
*/
|
||||
if (((pkt->version_ihl) >> 4) != 4)
|
||||
return -3;
|
||||
/*
|
||||
* 4. The IP header length field must be large enough to hold the
|
||||
* minimum length legal IP datagram (20 bytes = 5 words).
|
||||
*/
|
||||
if ((pkt->version_ihl & 0xf) < 5)
|
||||
return -4;
|
||||
|
||||
/*
|
||||
* 5. The IP total length field must be large enough to hold the IP
|
||||
* datagram header, whose length is specified in the IP header length
|
||||
* field.
|
||||
*/
|
||||
if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr))
|
||||
return -5;
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif /* DO_RFC_1812_CHECKS */
|
||||
|
||||
/* Function pointers for LPM or EM functionality. */
|
||||
void
|
||||
setup_lpm(const int socketid);
|
||||
|
||||
void
|
||||
setup_hash(const int socketid);
|
||||
|
||||
int
|
||||
em_main_loop(__attribute__((unused)) void *dummy);
|
||||
|
||||
int
|
||||
lpm_main_loop(__attribute__((unused)) void *dummy);
|
||||
|
||||
/* Return ipv4/ipv6 fwd lookup struct for LPM or EM. */
|
||||
void *
|
||||
em_get_ipv4_l3fwd_lookup_struct(const int socketid);
|
||||
|
||||
void *
|
||||
em_get_ipv6_l3fwd_lookup_struct(const int socketid);
|
||||
|
||||
void *
|
||||
lpm_get_ipv4_l3fwd_lookup_struct(const int socketid);
|
||||
|
||||
void *
|
||||
lpm_get_ipv6_l3fwd_lookup_struct(const int socketid);
|
||||
|
||||
#endif /* __L3_FWD_H__ */
|
751
examples/l3fwd/l3fwd_em.c
Normal file
751
examples/l3fwd/l3fwd_em.c
Normal file
@ -0,0 +1,751 @@
|
||||
/*-
|
||||
* BSD LICENSE
|
||||
*
|
||||
* Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* * Neither the name of Intel Corporation nor the names of its
|
||||
* contributors may be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <inttypes.h>
|
||||
#include <sys/types.h>
|
||||
#include <string.h>
|
||||
#include <sys/queue.h>
|
||||
#include <stdarg.h>
|
||||
#include <errno.h>
|
||||
#include <getopt.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#include <rte_debug.h>
|
||||
#include <rte_ether.h>
|
||||
#include <rte_ethdev.h>
|
||||
#include <rte_ring.h>
|
||||
#include <rte_mempool.h>
|
||||
#include <rte_cycles.h>
|
||||
#include <rte_mbuf.h>
|
||||
#include <rte_ip.h>
|
||||
#include <rte_tcp.h>
|
||||
#include <rte_udp.h>
|
||||
#include <rte_hash.h>
|
||||
|
||||
#include "l3fwd.h"
|
||||
|
||||
#ifdef RTE_MACHINE_CPUFLAG_SSE4_2
|
||||
#include <rte_hash_crc.h>
|
||||
#define DEFAULT_HASH_FUNC rte_hash_crc
|
||||
#else
|
||||
#include <rte_jhash.h>
|
||||
#define DEFAULT_HASH_FUNC rte_jhash
|
||||
#endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */
|
||||
|
||||
#define IPV6_ADDR_LEN 16
|
||||
|
||||
struct ipv4_5tuple {
|
||||
uint32_t ip_dst;
|
||||
uint32_t ip_src;
|
||||
uint16_t port_dst;
|
||||
uint16_t port_src;
|
||||
uint8_t proto;
|
||||
} __attribute__((__packed__));
|
||||
|
||||
union ipv4_5tuple_host {
|
||||
struct {
|
||||
uint8_t pad0;
|
||||
uint8_t proto;
|
||||
uint16_t pad1;
|
||||
uint32_t ip_src;
|
||||
uint32_t ip_dst;
|
||||
uint16_t port_src;
|
||||
uint16_t port_dst;
|
||||
};
|
||||
__m128i xmm;
|
||||
};
|
||||
|
||||
#define XMM_NUM_IN_IPV6_5TUPLE 3
|
||||
|
||||
struct ipv6_5tuple {
|
||||
uint8_t ip_dst[IPV6_ADDR_LEN];
|
||||
uint8_t ip_src[IPV6_ADDR_LEN];
|
||||
uint16_t port_dst;
|
||||
uint16_t port_src;
|
||||
uint8_t proto;
|
||||
} __attribute__((__packed__));
|
||||
|
||||
union ipv6_5tuple_host {
|
||||
struct {
|
||||
uint16_t pad0;
|
||||
uint8_t proto;
|
||||
uint8_t pad1;
|
||||
uint8_t ip_src[IPV6_ADDR_LEN];
|
||||
uint8_t ip_dst[IPV6_ADDR_LEN];
|
||||
uint16_t port_src;
|
||||
uint16_t port_dst;
|
||||
uint64_t reserve;
|
||||
};
|
||||
__m128i xmm[XMM_NUM_IN_IPV6_5TUPLE];
|
||||
};
|
||||
|
||||
struct ipv4_l3fwd_em_route {
|
||||
struct ipv4_5tuple key;
|
||||
uint8_t if_out;
|
||||
};
|
||||
|
||||
struct ipv6_l3fwd_em_route {
|
||||
struct ipv6_5tuple key;
|
||||
uint8_t if_out;
|
||||
};
|
||||
|
||||
static struct ipv4_l3fwd_em_route ipv4_l3fwd_em_route_array[] = {
|
||||
{{IPv4(101, 0, 0, 0), IPv4(100, 10, 0, 1), 101, 11, IPPROTO_TCP}, 0},
|
||||
{{IPv4(201, 0, 0, 0), IPv4(200, 20, 0, 1), 102, 12, IPPROTO_TCP}, 1},
|
||||
{{IPv4(111, 0, 0, 0), IPv4(100, 30, 0, 1), 101, 11, IPPROTO_TCP}, 2},
|
||||
{{IPv4(211, 0, 0, 0), IPv4(200, 40, 0, 1), 102, 12, IPPROTO_TCP}, 3},
|
||||
};
|
||||
|
||||
static struct ipv6_l3fwd_em_route ipv6_l3fwd_em_route_array[] = {
|
||||
{{
|
||||
{0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
|
||||
{0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
|
||||
101, 11, IPPROTO_TCP}, 0},
|
||||
|
||||
{{
|
||||
{0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
|
||||
{0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
|
||||
102, 12, IPPROTO_TCP}, 1},
|
||||
|
||||
{{
|
||||
{0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
|
||||
{0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
|
||||
101, 11, IPPROTO_TCP}, 2},
|
||||
|
||||
{{
|
||||
{0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
|
||||
{0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
|
||||
102, 12, IPPROTO_TCP}, 3},
|
||||
};
|
||||
|
||||
struct rte_hash *ipv4_l3fwd_em_lookup_struct[NB_SOCKETS];
|
||||
struct rte_hash *ipv6_l3fwd_em_lookup_struct[NB_SOCKETS];
|
||||
|
||||
static inline uint32_t
|
||||
ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len,
|
||||
uint32_t init_val)
|
||||
{
|
||||
const union ipv4_5tuple_host *k;
|
||||
uint32_t t;
|
||||
const uint32_t *p;
|
||||
|
||||
k = data;
|
||||
t = k->proto;
|
||||
p = (const uint32_t *)&k->port_src;
|
||||
|
||||
#ifdef RTE_MACHINE_CPUFLAG_SSE4_2
|
||||
init_val = rte_hash_crc_4byte(t, init_val);
|
||||
init_val = rte_hash_crc_4byte(k->ip_src, init_val);
|
||||
init_val = rte_hash_crc_4byte(k->ip_dst, init_val);
|
||||
init_val = rte_hash_crc_4byte(*p, init_val);
|
||||
#else /* RTE_MACHINE_CPUFLAG_SSE4_2 */
|
||||
init_val = rte_jhash_1word(t, init_val);
|
||||
init_val = rte_jhash_1word(k->ip_src, init_val);
|
||||
init_val = rte_jhash_1word(k->ip_dst, init_val);
|
||||
init_val = rte_jhash_1word(*p, init_val);
|
||||
#endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */
|
||||
|
||||
return init_val;
|
||||
}
|
||||
|
||||
static inline uint32_t
|
||||
ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len,
|
||||
uint32_t init_val)
|
||||
{
|
||||
const union ipv6_5tuple_host *k;
|
||||
uint32_t t;
|
||||
const uint32_t *p;
|
||||
#ifdef RTE_MACHINE_CPUFLAG_SSE4_2
|
||||
const uint32_t *ip_src0, *ip_src1, *ip_src2, *ip_src3;
|
||||
const uint32_t *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3;
|
||||
#endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */
|
||||
|
||||
k = data;
|
||||
t = k->proto;
|
||||
p = (const uint32_t *)&k->port_src;
|
||||
|
||||
#ifdef RTE_MACHINE_CPUFLAG_SSE4_2
|
||||
ip_src0 = (const uint32_t *) k->ip_src;
|
||||
ip_src1 = (const uint32_t *)(k->ip_src+4);
|
||||
ip_src2 = (const uint32_t *)(k->ip_src+8);
|
||||
ip_src3 = (const uint32_t *)(k->ip_src+12);
|
||||
ip_dst0 = (const uint32_t *) k->ip_dst;
|
||||
ip_dst1 = (const uint32_t *)(k->ip_dst+4);
|
||||
ip_dst2 = (const uint32_t *)(k->ip_dst+8);
|
||||
ip_dst3 = (const uint32_t *)(k->ip_dst+12);
|
||||
init_val = rte_hash_crc_4byte(t, init_val);
|
||||
init_val = rte_hash_crc_4byte(*ip_src0, init_val);
|
||||
init_val = rte_hash_crc_4byte(*ip_src1, init_val);
|
||||
init_val = rte_hash_crc_4byte(*ip_src2, init_val);
|
||||
init_val = rte_hash_crc_4byte(*ip_src3, init_val);
|
||||
init_val = rte_hash_crc_4byte(*ip_dst0, init_val);
|
||||
init_val = rte_hash_crc_4byte(*ip_dst1, init_val);
|
||||
init_val = rte_hash_crc_4byte(*ip_dst2, init_val);
|
||||
init_val = rte_hash_crc_4byte(*ip_dst3, init_val);
|
||||
init_val = rte_hash_crc_4byte(*p, init_val);
|
||||
#else /* RTE_MACHINE_CPUFLAG_SSE4_2 */
|
||||
init_val = rte_jhash_1word(t, init_val);
|
||||
init_val = rte_jhash(k->ip_src,
|
||||
sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
|
||||
init_val = rte_jhash(k->ip_dst,
|
||||
sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
|
||||
init_val = rte_jhash_1word(*p, init_val);
|
||||
#endif /* RTE_MACHINE_CPUFLAG_SSE4_2 */
|
||||
return init_val;
|
||||
}
|
||||
|
||||
#define IPV4_L3FWD_EM_NUM_ROUTES \
|
||||
(sizeof(ipv4_l3fwd_em_route_array) / sizeof(ipv4_l3fwd_em_route_array[0]))
|
||||
|
||||
#define IPV6_L3FWD_EM_NUM_ROUTES \
|
||||
(sizeof(ipv6_l3fwd_em_route_array) / sizeof(ipv6_l3fwd_em_route_array[0]))
|
||||
|
||||
static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
|
||||
static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
|
||||
|
||||
static __m128i mask0;
|
||||
static __m128i mask1;
|
||||
static __m128i mask2;
|
||||
|
||||
static inline uint8_t
|
||||
em_get_ipv4_dst_port(void *ipv4_hdr, uint8_t portid, void *lookup_struct)
|
||||
{
|
||||
int ret = 0;
|
||||
union ipv4_5tuple_host key;
|
||||
struct rte_hash *ipv4_l3fwd_lookup_struct =
|
||||
(struct rte_hash *)lookup_struct;
|
||||
|
||||
ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct ipv4_hdr, time_to_live);
|
||||
__m128i data = _mm_loadu_si128((__m128i *)(ipv4_hdr));
|
||||
|
||||
/*
|
||||
* Get 5 tuple: dst port, src port, dst IP address,
|
||||
* src IP address and protocol.
|
||||
*/
|
||||
key.xmm = _mm_and_si128(data, mask0);
|
||||
|
||||
/* Find destination port */
|
||||
ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
|
||||
return (uint8_t)((ret < 0) ? portid : ipv4_l3fwd_out_if[ret]);
|
||||
}
|
||||
|
||||
static inline uint8_t
|
||||
em_get_ipv6_dst_port(void *ipv6_hdr, uint8_t portid, void *lookup_struct)
|
||||
{
|
||||
int ret = 0;
|
||||
union ipv6_5tuple_host key;
|
||||
struct rte_hash *ipv6_l3fwd_lookup_struct =
|
||||
(struct rte_hash *)lookup_struct;
|
||||
|
||||
ipv6_hdr = (uint8_t *)ipv6_hdr + offsetof(struct ipv6_hdr, payload_len);
|
||||
__m128i data0 =
|
||||
_mm_loadu_si128((__m128i *)(ipv6_hdr));
|
||||
__m128i data1 =
|
||||
_mm_loadu_si128((__m128i *)(((uint8_t *)ipv6_hdr)+
|
||||
sizeof(__m128i)));
|
||||
__m128i data2 =
|
||||
_mm_loadu_si128((__m128i *)(((uint8_t *)ipv6_hdr)+
|
||||
sizeof(__m128i)+sizeof(__m128i)));
|
||||
|
||||
/* Get part of 5 tuple: src IP address lower 96 bits and protocol */
|
||||
key.xmm[0] = _mm_and_si128(data0, mask1);
|
||||
|
||||
/*
|
||||
* Get part of 5 tuple: dst IP address lower 96 bits
|
||||
* and src IP address higher 32 bits.
|
||||
*/
|
||||
key.xmm[1] = data1;
|
||||
|
||||
/*
|
||||
* Get part of 5 tuple: dst port and src port
|
||||
* and dst IP address higher 32 bits.
|
||||
*/
|
||||
key.xmm[2] = _mm_and_si128(data2, mask2);
|
||||
|
||||
/* Find destination port */
|
||||
ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
|
||||
return (uint8_t)((ret < 0) ? portid : ipv6_l3fwd_out_if[ret]);
|
||||
}
|
||||
|
||||
static inline __attribute__((always_inline)) void
|
||||
l3fwd_em_simple_forward(struct rte_mbuf *m, uint8_t portid,
|
||||
struct lcore_conf *qconf)
|
||||
{
|
||||
struct ether_hdr *eth_hdr;
|
||||
struct ipv4_hdr *ipv4_hdr;
|
||||
uint8_t dst_port;
|
||||
|
||||
eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
|
||||
|
||||
if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
|
||||
/* Handle IPv4 headers.*/
|
||||
ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *,
|
||||
sizeof(struct ether_hdr));
|
||||
|
||||
#ifdef DO_RFC_1812_CHECKS
|
||||
/* Check to make sure the packet is valid (RFC1812) */
|
||||
if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
|
||||
rte_pktmbuf_free(m);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
dst_port = em_get_ipv4_dst_port(ipv4_hdr, portid,
|
||||
qconf->ipv4_lookup_struct);
|
||||
|
||||
if (dst_port >= RTE_MAX_ETHPORTS ||
|
||||
(enabled_port_mask & 1 << dst_port) == 0)
|
||||
dst_port = portid;
|
||||
|
||||
#ifdef DO_RFC_1812_CHECKS
|
||||
/* Update time to live and header checksum */
|
||||
--(ipv4_hdr->time_to_live);
|
||||
++(ipv4_hdr->hdr_checksum);
|
||||
#endif
|
||||
/* dst addr */
|
||||
*(uint64_t *)ð_hdr->d_addr = dest_eth_addr[dst_port];
|
||||
|
||||
/* src addr */
|
||||
ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr);
|
||||
|
||||
send_single_packet(qconf, m, dst_port);
|
||||
} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
|
||||
/* Handle IPv6 headers.*/
|
||||
struct ipv6_hdr *ipv6_hdr;
|
||||
|
||||
ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct ipv6_hdr *,
|
||||
sizeof(struct ether_hdr));
|
||||
|
||||
dst_port = em_get_ipv6_dst_port(ipv6_hdr, portid,
|
||||
qconf->ipv6_lookup_struct);
|
||||
|
||||
if (dst_port >= RTE_MAX_ETHPORTS ||
|
||||
(enabled_port_mask & 1 << dst_port) == 0)
|
||||
dst_port = portid;
|
||||
|
||||
/* dst addr */
|
||||
*(uint64_t *)ð_hdr->d_addr = dest_eth_addr[dst_port];
|
||||
|
||||
/* src addr */
|
||||
ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr);
|
||||
|
||||
send_single_packet(qconf, m, dst_port);
|
||||
} else {
|
||||
/* Free the mbuf that contains non-IPV4/IPV6 packet */
|
||||
rte_pktmbuf_free(m);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Include header file if SSE4_1 is enabled for
|
||||
* buffer optimization i.e. ENABLE_MULTI_BUFFER_OPTIMIZE=1.
|
||||
*/
|
||||
#if defined(__SSE4_1__)
|
||||
#include "l3fwd_em_sse.h"
|
||||
#else
|
||||
#include "l3fwd_em.h"
|
||||
#endif
|
||||
|
||||
static void
|
||||
convert_ipv4_5tuple(struct ipv4_5tuple *key1,
|
||||
union ipv4_5tuple_host *key2)
|
||||
{
|
||||
key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst);
|
||||
key2->ip_src = rte_cpu_to_be_32(key1->ip_src);
|
||||
key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
|
||||
key2->port_src = rte_cpu_to_be_16(key1->port_src);
|
||||
key2->proto = key1->proto;
|
||||
key2->pad0 = 0;
|
||||
key2->pad1 = 0;
|
||||
}
|
||||
|
||||
static void
|
||||
convert_ipv6_5tuple(struct ipv6_5tuple *key1,
|
||||
union ipv6_5tuple_host *key2)
|
||||
{
|
||||
uint32_t i;
|
||||
|
||||
for (i = 0; i < 16; i++) {
|
||||
key2->ip_dst[i] = key1->ip_dst[i];
|
||||
key2->ip_src[i] = key1->ip_src[i];
|
||||
}
|
||||
key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
|
||||
key2->port_src = rte_cpu_to_be_16(key1->port_src);
|
||||
key2->proto = key1->proto;
|
||||
key2->pad0 = 0;
|
||||
key2->pad1 = 0;
|
||||
key2->reserve = 0;
|
||||
}
|
||||
|
||||
#define BYTE_VALUE_MAX 256
|
||||
#define ALL_32_BITS 0xffffffff
|
||||
#define BIT_8_TO_15 0x0000ff00
|
||||
static inline void
|
||||
populate_ipv4_few_flow_into_table(const struct rte_hash *h)
|
||||
{
|
||||
uint32_t i;
|
||||
int32_t ret;
|
||||
|
||||
mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS,
|
||||
ALL_32_BITS, BIT_8_TO_15);
|
||||
|
||||
for (i = 0; i < IPV4_L3FWD_EM_NUM_ROUTES; i++) {
|
||||
struct ipv4_l3fwd_em_route entry;
|
||||
union ipv4_5tuple_host newkey;
|
||||
|
||||
entry = ipv4_l3fwd_em_route_array[i];
|
||||
convert_ipv4_5tuple(&entry.key, &newkey);
|
||||
ret = rte_hash_add_key(h, (void *) &newkey);
|
||||
if (ret < 0) {
|
||||
rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
|
||||
" to the l3fwd hash.\n", i);
|
||||
}
|
||||
ipv4_l3fwd_out_if[ret] = entry.if_out;
|
||||
}
|
||||
printf("Hash: Adding 0x%" PRIx64 " keys\n",
|
||||
(uint64_t)IPV4_L3FWD_EM_NUM_ROUTES);
|
||||
}
|
||||
|
||||
#define BIT_16_TO_23 0x00ff0000
|
||||
static inline void
|
||||
populate_ipv6_few_flow_into_table(const struct rte_hash *h)
|
||||
{
|
||||
uint32_t i;
|
||||
int32_t ret;
|
||||
|
||||
mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS,
|
||||
ALL_32_BITS, BIT_16_TO_23);
|
||||
|
||||
mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS);
|
||||
|
||||
for (i = 0; i < IPV6_L3FWD_EM_NUM_ROUTES; i++) {
|
||||
struct ipv6_l3fwd_em_route entry;
|
||||
union ipv6_5tuple_host newkey;
|
||||
|
||||
entry = ipv6_l3fwd_em_route_array[i];
|
||||
convert_ipv6_5tuple(&entry.key, &newkey);
|
||||
ret = rte_hash_add_key(h, (void *) &newkey);
|
||||
if (ret < 0) {
|
||||
rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
|
||||
" to the l3fwd hash.\n", i);
|
||||
}
|
||||
ipv6_l3fwd_out_if[ret] = entry.if_out;
|
||||
}
|
||||
printf("Hash: Adding 0x%" PRIx64 "keys\n",
|
||||
(uint64_t)IPV6_L3FWD_EM_NUM_ROUTES);
|
||||
}
|
||||
|
||||
#define NUMBER_PORT_USED 4
|
||||
static inline void
|
||||
populate_ipv4_many_flow_into_table(const struct rte_hash *h,
|
||||
unsigned int nr_flow)
|
||||
{
|
||||
unsigned i;
|
||||
|
||||
mask0 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS,
|
||||
ALL_32_BITS, BIT_8_TO_15);
|
||||
|
||||
for (i = 0; i < nr_flow; i++) {
|
||||
struct ipv4_l3fwd_em_route entry;
|
||||
union ipv4_5tuple_host newkey;
|
||||
|
||||
uint8_t a = (uint8_t)
|
||||
((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
|
||||
uint8_t b = (uint8_t)
|
||||
(((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
|
||||
uint8_t c = (uint8_t)
|
||||
((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
|
||||
|
||||
/* Create the ipv4 exact match flow */
|
||||
memset(&entry, 0, sizeof(entry));
|
||||
switch (i & (NUMBER_PORT_USED - 1)) {
|
||||
case 0:
|
||||
entry = ipv4_l3fwd_em_route_array[0];
|
||||
entry.key.ip_dst = IPv4(101, c, b, a);
|
||||
break;
|
||||
case 1:
|
||||
entry = ipv4_l3fwd_em_route_array[1];
|
||||
entry.key.ip_dst = IPv4(201, c, b, a);
|
||||
break;
|
||||
case 2:
|
||||
entry = ipv4_l3fwd_em_route_array[2];
|
||||
entry.key.ip_dst = IPv4(111, c, b, a);
|
||||
break;
|
||||
case 3:
|
||||
entry = ipv4_l3fwd_em_route_array[3];
|
||||
entry.key.ip_dst = IPv4(211, c, b, a);
|
||||
break;
|
||||
};
|
||||
convert_ipv4_5tuple(&entry.key, &newkey);
|
||||
int32_t ret = rte_hash_add_key(h, (void *) &newkey);
|
||||
|
||||
if (ret < 0)
|
||||
rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
|
||||
|
||||
ipv4_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
|
||||
|
||||
}
|
||||
printf("Hash: Adding 0x%x keys\n", nr_flow);
|
||||
}
|
||||
|
||||
static inline void
|
||||
populate_ipv6_many_flow_into_table(const struct rte_hash *h,
|
||||
unsigned int nr_flow)
|
||||
{
|
||||
unsigned i;
|
||||
|
||||
mask1 = _mm_set_epi32(ALL_32_BITS, ALL_32_BITS,
|
||||
ALL_32_BITS, BIT_16_TO_23);
|
||||
mask2 = _mm_set_epi32(0, 0, ALL_32_BITS, ALL_32_BITS);
|
||||
|
||||
for (i = 0; i < nr_flow; i++) {
|
||||
struct ipv6_l3fwd_em_route entry;
|
||||
union ipv6_5tuple_host newkey;
|
||||
|
||||
uint8_t a = (uint8_t)
|
||||
((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
|
||||
uint8_t b = (uint8_t)
|
||||
(((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
|
||||
uint8_t c = (uint8_t)
|
||||
((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
|
||||
|
||||
/* Create the ipv6 exact match flow */
|
||||
memset(&entry, 0, sizeof(entry));
|
||||
switch (i & (NUMBER_PORT_USED - 1)) {
|
||||
case 0:
|
||||
entry = ipv6_l3fwd_em_route_array[0];
|
||||
break;
|
||||
case 1:
|
||||
entry = ipv6_l3fwd_em_route_array[1];
|
||||
break;
|
||||
case 2:
|
||||
entry = ipv6_l3fwd_em_route_array[2];
|
||||
break;
|
||||
case 3:
|
||||
entry = ipv6_l3fwd_em_route_array[3];
|
||||
break;
|
||||
};
|
||||
entry.key.ip_dst[13] = c;
|
||||
entry.key.ip_dst[14] = b;
|
||||
entry.key.ip_dst[15] = a;
|
||||
convert_ipv6_5tuple(&entry.key, &newkey);
|
||||
int32_t ret = rte_hash_add_key(h, (void *) &newkey);
|
||||
|
||||
if (ret < 0)
|
||||
rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
|
||||
|
||||
ipv6_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
|
||||
|
||||
}
|
||||
printf("Hash: Adding 0x%x keys\n", nr_flow);
|
||||
}
|
||||
|
||||
int
|
||||
em_main_loop(__attribute__((unused)) void *dummy)
|
||||
{
|
||||
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
|
||||
unsigned lcore_id;
|
||||
uint64_t prev_tsc, diff_tsc, cur_tsc;
|
||||
int i, nb_rx;
|
||||
uint8_t portid, queueid;
|
||||
struct lcore_conf *qconf;
|
||||
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
|
||||
US_PER_S * BURST_TX_DRAIN_US;
|
||||
|
||||
prev_tsc = 0;
|
||||
|
||||
lcore_id = rte_lcore_id();
|
||||
qconf = &lcore_conf[lcore_id];
|
||||
|
||||
if (qconf->n_rx_queue == 0) {
|
||||
RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
|
||||
return 0;
|
||||
}
|
||||
|
||||
RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
|
||||
|
||||
for (i = 0; i < qconf->n_rx_queue; i++) {
|
||||
|
||||
portid = qconf->rx_queue_list[i].port_id;
|
||||
queueid = qconf->rx_queue_list[i].queue_id;
|
||||
RTE_LOG(INFO, L3FWD,
|
||||
" -- lcoreid=%u portid=%hhu rxqueueid=%hhu\n",
|
||||
lcore_id, portid, queueid);
|
||||
}
|
||||
|
||||
while (!force_quit) {
|
||||
|
||||
cur_tsc = rte_rdtsc();
|
||||
|
||||
/*
|
||||
* TX burst queue drain
|
||||
*/
|
||||
diff_tsc = cur_tsc - prev_tsc;
|
||||
if (unlikely(diff_tsc > drain_tsc)) {
|
||||
|
||||
/*
|
||||
* This could be optimized (use queueid instead of
|
||||
* portid), but it is not called so often
|
||||
*/
|
||||
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
|
||||
if (qconf->tx_mbufs[portid].len == 0)
|
||||
continue;
|
||||
send_burst(qconf,
|
||||
qconf->tx_mbufs[portid].len,
|
||||
portid);
|
||||
qconf->tx_mbufs[portid].len = 0;
|
||||
}
|
||||
|
||||
prev_tsc = cur_tsc;
|
||||
}
|
||||
|
||||
/*
|
||||
* Read packet from RX queues
|
||||
*/
|
||||
for (i = 0; i < qconf->n_rx_queue; ++i) {
|
||||
portid = qconf->rx_queue_list[i].port_id;
|
||||
queueid = qconf->rx_queue_list[i].queue_id;
|
||||
nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
|
||||
MAX_PKT_BURST);
|
||||
if (nb_rx == 0)
|
||||
continue;
|
||||
|
||||
/*
|
||||
* For SSE4_1 use ENABLE_MULTI_BUFFER_OPTIMIZE=1
|
||||
* code.
|
||||
*/
|
||||
#if defined(__SSE4_1__)
|
||||
l3fwd_em_send_packets(nb_rx, pkts_burst,
|
||||
portid, qconf);
|
||||
#else
|
||||
l3fwd_em_no_opt_send_packets(nb_rx, pkts_burst,
|
||||
portid, qconf);
|
||||
#endif /* __SSE_4_1__ */
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize exact match (hash) parameters.
|
||||
*/
|
||||
void
|
||||
setup_hash(const int socketid)
|
||||
{
|
||||
struct rte_hash_parameters ipv4_l3fwd_hash_params = {
|
||||
.name = NULL,
|
||||
.entries = L3FWD_HASH_ENTRIES,
|
||||
.key_len = sizeof(union ipv4_5tuple_host),
|
||||
.hash_func = ipv4_hash_crc,
|
||||
.hash_func_init_val = 0,
|
||||
};
|
||||
|
||||
struct rte_hash_parameters ipv6_l3fwd_hash_params = {
|
||||
.name = NULL,
|
||||
.entries = L3FWD_HASH_ENTRIES,
|
||||
.key_len = sizeof(union ipv6_5tuple_host),
|
||||
.hash_func = ipv6_hash_crc,
|
||||
.hash_func_init_val = 0,
|
||||
};
|
||||
|
||||
char s[64];
|
||||
|
||||
/* create ipv4 hash */
|
||||
snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
|
||||
ipv4_l3fwd_hash_params.name = s;
|
||||
ipv4_l3fwd_hash_params.socket_id = socketid;
|
||||
ipv4_l3fwd_em_lookup_struct[socketid] =
|
||||
rte_hash_create(&ipv4_l3fwd_hash_params);
|
||||
if (ipv4_l3fwd_em_lookup_struct[socketid] == NULL)
|
||||
rte_exit(EXIT_FAILURE,
|
||||
"Unable to create the l3fwd hash on socket %d\n",
|
||||
socketid);
|
||||
|
||||
/* create ipv6 hash */
|
||||
snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
|
||||
ipv6_l3fwd_hash_params.name = s;
|
||||
ipv6_l3fwd_hash_params.socket_id = socketid;
|
||||
ipv6_l3fwd_em_lookup_struct[socketid] =
|
||||
rte_hash_create(&ipv6_l3fwd_hash_params);
|
||||
if (ipv6_l3fwd_em_lookup_struct[socketid] == NULL)
|
||||
rte_exit(EXIT_FAILURE,
|
||||
"Unable to create the l3fwd hash on socket %d\n",
|
||||
socketid);
|
||||
|
||||
if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
|
||||
/* For testing hash matching with a large number of flows we
|
||||
* generate millions of IP 5-tuples with an incremented dst
|
||||
* address to initialize the hash table. */
|
||||
if (ipv6 == 0) {
|
||||
/* populate the ipv4 hash */
|
||||
populate_ipv4_many_flow_into_table(
|
||||
ipv4_l3fwd_em_lookup_struct[socketid],
|
||||
hash_entry_number);
|
||||
} else {
|
||||
/* populate the ipv6 hash */
|
||||
populate_ipv6_many_flow_into_table(
|
||||
ipv6_l3fwd_em_lookup_struct[socketid],
|
||||
hash_entry_number);
|
||||
}
|
||||
} else {
|
||||
/*
|
||||
* Use data in ipv4/ipv6 l3fwd lookup table
|
||||
* directly to initialize the hash table.
|
||||
*/
|
||||
if (ipv6 == 0) {
|
||||
/* populate the ipv4 hash */
|
||||
populate_ipv4_few_flow_into_table(
|
||||
ipv4_l3fwd_em_lookup_struct[socketid]);
|
||||
} else {
|
||||
/* populate the ipv6 hash */
|
||||
populate_ipv6_few_flow_into_table(
|
||||
ipv6_l3fwd_em_lookup_struct[socketid]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Return ipv4/ipv6 em fwd lookup struct. */
|
||||
void *
|
||||
em_get_ipv4_l3fwd_lookup_struct(const int socketid)
|
||||
{
|
||||
return ipv4_l3fwd_em_lookup_struct[socketid];
|
||||
}
|
||||
|
||||
void *
|
||||
em_get_ipv6_l3fwd_lookup_struct(const int socketid)
|
||||
{
|
||||
return ipv6_l3fwd_em_lookup_struct[socketid];
|
||||
}
|
66
examples/l3fwd/l3fwd_em.h
Normal file
66
examples/l3fwd/l3fwd_em.h
Normal file
@ -0,0 +1,66 @@
|
||||
/*-
|
||||
* BSD LICENSE
|
||||
*
|
||||
* Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* * Neither the name of Intel Corporation nor the names of its
|
||||
* contributors may be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifndef __L3FWD_EM_H__
|
||||
#define __L3FWD_EM_H__
|
||||
|
||||
/*
|
||||
* Buffer non-optimized handling of packets, invoked
|
||||
* from main_loop.
|
||||
*/
|
||||
static inline void
|
||||
l3fwd_em_no_opt_send_packets(int nb_rx, struct rte_mbuf **pkts_burst,
|
||||
uint8_t portid, struct lcore_conf *qconf)
|
||||
{
|
||||
int32_t j;
|
||||
|
||||
/* Prefetch first packets */
|
||||
for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++)
|
||||
rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[j], void *));
|
||||
|
||||
/*
|
||||
* Prefetch and forward already prefetched
|
||||
* packets.
|
||||
*/
|
||||
for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
|
||||
rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
|
||||
j + PREFETCH_OFFSET], void *));
|
||||
l3fwd_em_simple_forward(pkts_burst[j], portid, qconf);
|
||||
}
|
||||
|
||||
/* Forward remaining prefetched packets */
|
||||
for (; j < nb_rx; j++)
|
||||
l3fwd_em_simple_forward(pkts_burst[j], portid, qconf);
|
||||
}
|
||||
|
||||
#endif /* __L3FWD_EM_H__ */
|
479
examples/l3fwd/l3fwd_em_sse.h
Normal file
479
examples/l3fwd/l3fwd_em_sse.h
Normal file
@ -0,0 +1,479 @@
|
||||
/*-
|
||||
* BSD LICENSE
|
||||
*
|
||||
* Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* * Neither the name of Intel Corporation nor the names of its
|
||||
* contributors may be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifndef __L3FWD_EM_SSE_H__
|
||||
#define __L3FWD_EM_SSE_H__
|
||||
|
||||
#define MASK_ALL_PKTS 0xff
|
||||
#define EXCLUDE_1ST_PKT 0xfe
|
||||
#define EXCLUDE_2ND_PKT 0xfd
|
||||
#define EXCLUDE_3RD_PKT 0xfb
|
||||
#define EXCLUDE_4TH_PKT 0xf7
|
||||
#define EXCLUDE_5TH_PKT 0xef
|
||||
#define EXCLUDE_6TH_PKT 0xdf
|
||||
#define EXCLUDE_7TH_PKT 0xbf
|
||||
#define EXCLUDE_8TH_PKT 0x7f
|
||||
|
||||
static inline void
|
||||
simple_ipv4_fwd_8pkts(struct rte_mbuf *m[8], uint8_t portid,
|
||||
struct lcore_conf *qconf)
|
||||
{
|
||||
struct ether_hdr *eth_hdr[8];
|
||||
struct ipv4_hdr *ipv4_hdr[8];
|
||||
uint8_t dst_port[8];
|
||||
int32_t ret[8];
|
||||
union ipv4_5tuple_host key[8];
|
||||
__m128i data[8];
|
||||
|
||||
eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct ether_hdr *);
|
||||
eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct ether_hdr *);
|
||||
eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct ether_hdr *);
|
||||
eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct ether_hdr *);
|
||||
eth_hdr[4] = rte_pktmbuf_mtod(m[4], struct ether_hdr *);
|
||||
eth_hdr[5] = rte_pktmbuf_mtod(m[5], struct ether_hdr *);
|
||||
eth_hdr[6] = rte_pktmbuf_mtod(m[6], struct ether_hdr *);
|
||||
eth_hdr[7] = rte_pktmbuf_mtod(m[7], struct ether_hdr *);
|
||||
|
||||
/* Handle IPv4 headers.*/
|
||||
ipv4_hdr[0] = rte_pktmbuf_mtod_offset(m[0], struct ipv4_hdr *,
|
||||
sizeof(struct ether_hdr));
|
||||
ipv4_hdr[1] = rte_pktmbuf_mtod_offset(m[1], struct ipv4_hdr *,
|
||||
sizeof(struct ether_hdr));
|
||||
ipv4_hdr[2] = rte_pktmbuf_mtod_offset(m[2], struct ipv4_hdr *,
|
||||
sizeof(struct ether_hdr));
|
||||
ipv4_hdr[3] = rte_pktmbuf_mtod_offset(m[3], struct ipv4_hdr *,
|
||||
sizeof(struct ether_hdr));
|
||||
ipv4_hdr[4] = rte_pktmbuf_mtod_offset(m[4], struct ipv4_hdr *,
|
||||
sizeof(struct ether_hdr));
|
||||
ipv4_hdr[5] = rte_pktmbuf_mtod_offset(m[5], struct ipv4_hdr *,
|
||||
sizeof(struct ether_hdr));
|
||||
ipv4_hdr[6] = rte_pktmbuf_mtod_offset(m[6], struct ipv4_hdr *,
|
||||
sizeof(struct ether_hdr));
|
||||
ipv4_hdr[7] = rte_pktmbuf_mtod_offset(m[7], struct ipv4_hdr *,
|
||||
sizeof(struct ether_hdr));
|
||||
|
||||
#ifdef DO_RFC_1812_CHECKS
|
||||
/* Check to make sure the packet is valid (RFC1812) */
|
||||
uint8_t valid_mask = MASK_ALL_PKTS;
|
||||
|
||||
if (is_valid_ipv4_pkt(ipv4_hdr[0], m[0]->pkt_len) < 0) {
|
||||
rte_pktmbuf_free(m[0]);
|
||||
valid_mask &= EXCLUDE_1ST_PKT;
|
||||
}
|
||||
if (is_valid_ipv4_pkt(ipv4_hdr[1], m[1]->pkt_len) < 0) {
|
||||
rte_pktmbuf_free(m[1]);
|
||||
valid_mask &= EXCLUDE_2ND_PKT;
|
||||
}
|
||||
if (is_valid_ipv4_pkt(ipv4_hdr[2], m[2]->pkt_len) < 0) {
|
||||
rte_pktmbuf_free(m[2]);
|
||||
valid_mask &= EXCLUDE_3RD_PKT;
|
||||
}
|
||||
if (is_valid_ipv4_pkt(ipv4_hdr[3], m[3]->pkt_len) < 0) {
|
||||
rte_pktmbuf_free(m[3]);
|
||||
valid_mask &= EXCLUDE_4TH_PKT;
|
||||
}
|
||||
if (is_valid_ipv4_pkt(ipv4_hdr[4], m[4]->pkt_len) < 0) {
|
||||
rte_pktmbuf_free(m[4]);
|
||||
valid_mask &= EXCLUDE_5TH_PKT;
|
||||
}
|
||||
if (is_valid_ipv4_pkt(ipv4_hdr[5], m[5]->pkt_len) < 0) {
|
||||
rte_pktmbuf_free(m[5]);
|
||||
valid_mask &= EXCLUDE_6TH_PKT;
|
||||
}
|
||||
if (is_valid_ipv4_pkt(ipv4_hdr[6], m[6]->pkt_len) < 0) {
|
||||
rte_pktmbuf_free(m[6]);
|
||||
valid_mask &= EXCLUDE_7TH_PKT;
|
||||
}
|
||||
if (is_valid_ipv4_pkt(ipv4_hdr[7], m[7]->pkt_len) < 0) {
|
||||
rte_pktmbuf_free(m[7]);
|
||||
valid_mask &= EXCLUDE_8TH_PKT;
|
||||
}
|
||||
if (unlikely(valid_mask != MASK_ALL_PKTS)) {
|
||||
if (valid_mask == 0) {
|
||||
return;
|
||||
} else {
|
||||
uint8_t i = 0;
|
||||
|
||||
for (i = 0; i < 8; i++) {
|
||||
if ((0x1 << i) & valid_mask) {
|
||||
l3fwd_em_simple_forward(m[i],
|
||||
portid, qconf);
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
#endif /* End of #ifdef DO_RFC_1812_CHECKS */
|
||||
|
||||
data[0] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[0], __m128i *,
|
||||
sizeof(struct ether_hdr) +
|
||||
offsetof(struct ipv4_hdr, time_to_live)));
|
||||
data[1] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[1], __m128i *,
|
||||
sizeof(struct ether_hdr) +
|
||||
offsetof(struct ipv4_hdr, time_to_live)));
|
||||
data[2] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[2], __m128i *,
|
||||
sizeof(struct ether_hdr) +
|
||||
offsetof(struct ipv4_hdr, time_to_live)));
|
||||
data[3] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[3], __m128i *,
|
||||
sizeof(struct ether_hdr) +
|
||||
offsetof(struct ipv4_hdr, time_to_live)));
|
||||
data[4] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[4], __m128i *,
|
||||
sizeof(struct ether_hdr) +
|
||||
offsetof(struct ipv4_hdr, time_to_live)));
|
||||
data[5] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[5], __m128i *,
|
||||
sizeof(struct ether_hdr) +
|
||||
offsetof(struct ipv4_hdr, time_to_live)));
|
||||
data[6] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[6], __m128i *,
|
||||
sizeof(struct ether_hdr) +
|
||||
offsetof(struct ipv4_hdr, time_to_live)));
|
||||
data[7] = _mm_loadu_si128(rte_pktmbuf_mtod_offset(m[7], __m128i *,
|
||||
sizeof(struct ether_hdr) +
|
||||
offsetof(struct ipv4_hdr, time_to_live)));
|
||||
|
||||
key[0].xmm = _mm_and_si128(data[0], mask0);
|
||||
key[1].xmm = _mm_and_si128(data[1], mask0);
|
||||
key[2].xmm = _mm_and_si128(data[2], mask0);
|
||||
key[3].xmm = _mm_and_si128(data[3], mask0);
|
||||
key[4].xmm = _mm_and_si128(data[4], mask0);
|
||||
key[5].xmm = _mm_and_si128(data[5], mask0);
|
||||
key[6].xmm = _mm_and_si128(data[6], mask0);
|
||||
key[7].xmm = _mm_and_si128(data[7], mask0);
|
||||
|
||||
const void *key_array[8] = {&key[0], &key[1], &key[2], &key[3],
|
||||
&key[4], &key[5], &key[6], &key[7]};
|
||||
|
||||
rte_hash_lookup_multi(qconf->ipv4_lookup_struct, &key_array[0], 8, ret);
|
||||
dst_port[0] = (uint8_t) ((ret[0] < 0) ?
|
||||
portid : ipv4_l3fwd_out_if[ret[0]]);
|
||||
dst_port[1] = (uint8_t) ((ret[1] < 0) ?
|
||||
portid : ipv4_l3fwd_out_if[ret[1]]);
|
||||
dst_port[2] = (uint8_t) ((ret[2] < 0) ?
|
||||
portid : ipv4_l3fwd_out_if[ret[2]]);
|
||||
dst_port[3] = (uint8_t) ((ret[3] < 0) ?
|
||||
portid : ipv4_l3fwd_out_if[ret[3]]);
|
||||
dst_port[4] = (uint8_t) ((ret[4] < 0) ?
|
||||
portid : ipv4_l3fwd_out_if[ret[4]]);
|
||||
dst_port[5] = (uint8_t) ((ret[5] < 0) ?
|
||||
portid : ipv4_l3fwd_out_if[ret[5]]);
|
||||
dst_port[6] = (uint8_t) ((ret[6] < 0) ?
|
||||
portid : ipv4_l3fwd_out_if[ret[6]]);
|
||||
dst_port[7] = (uint8_t) ((ret[7] < 0) ?
|
||||
portid : ipv4_l3fwd_out_if[ret[7]]);
|
||||
|
||||
if (dst_port[0] >= RTE_MAX_ETHPORTS ||
|
||||
(enabled_port_mask & 1 << dst_port[0]) == 0)
|
||||
dst_port[0] = portid;
|
||||
|
||||
if (dst_port[1] >= RTE_MAX_ETHPORTS ||
|
||||
(enabled_port_mask & 1 << dst_port[1]) == 0)
|
||||
dst_port[1] = portid;
|
||||
|
||||
if (dst_port[2] >= RTE_MAX_ETHPORTS ||
|
||||
(enabled_port_mask & 1 << dst_port[2]) == 0)
|
||||
dst_port[2] = portid;
|
||||
|
||||
if (dst_port[3] >= RTE_MAX_ETHPORTS ||
|
||||
(enabled_port_mask & 1 << dst_port[3]) == 0)
|
||||
dst_port[3] = portid;
|
||||
|
||||
if (dst_port[4] >= RTE_MAX_ETHPORTS ||
|
||||
(enabled_port_mask & 1 << dst_port[4]) == 0)
|
||||
dst_port[4] = portid;
|
||||
|
||||
if (dst_port[5] >= RTE_MAX_ETHPORTS ||
|
||||
(enabled_port_mask & 1 << dst_port[5]) == 0)
|
||||
dst_port[5] = portid;
|
||||
|
||||
if (dst_port[6] >= RTE_MAX_ETHPORTS ||
|
||||
(enabled_port_mask & 1 << dst_port[6]) == 0)
|
||||
dst_port[6] = portid;
|
||||
|
||||
if (dst_port[7] >= RTE_MAX_ETHPORTS ||
|
||||
(enabled_port_mask & 1 << dst_port[7]) == 0)
|
||||
dst_port[7] = portid;
|
||||
|
||||
#ifdef DO_RFC_1812_CHECKS
|
||||
/* Update time to live and header checksum */
|
||||
--(ipv4_hdr[0]->time_to_live);
|
||||
--(ipv4_hdr[1]->time_to_live);
|
||||
--(ipv4_hdr[2]->time_to_live);
|
||||
--(ipv4_hdr[3]->time_to_live);
|
||||
++(ipv4_hdr[0]->hdr_checksum);
|
||||
++(ipv4_hdr[1]->hdr_checksum);
|
||||
++(ipv4_hdr[2]->hdr_checksum);
|
||||
++(ipv4_hdr[3]->hdr_checksum);
|
||||
--(ipv4_hdr[4]->time_to_live);
|
||||
--(ipv4_hdr[5]->time_to_live);
|
||||
--(ipv4_hdr[6]->time_to_live);
|
||||
--(ipv4_hdr[7]->time_to_live);
|
||||
++(ipv4_hdr[4]->hdr_checksum);
|
||||
++(ipv4_hdr[5]->hdr_checksum);
|
||||
++(ipv4_hdr[6]->hdr_checksum);
|
||||
++(ipv4_hdr[7]->hdr_checksum);
|
||||
#endif
|
||||
|
||||
/* dst addr */
|
||||
*(uint64_t *)ð_hdr[0]->d_addr = dest_eth_addr[dst_port[0]];
|
||||
*(uint64_t *)ð_hdr[1]->d_addr = dest_eth_addr[dst_port[1]];
|
||||
*(uint64_t *)ð_hdr[2]->d_addr = dest_eth_addr[dst_port[2]];
|
||||
*(uint64_t *)ð_hdr[3]->d_addr = dest_eth_addr[dst_port[3]];
|
||||
*(uint64_t *)ð_hdr[4]->d_addr = dest_eth_addr[dst_port[4]];
|
||||
*(uint64_t *)ð_hdr[5]->d_addr = dest_eth_addr[dst_port[5]];
|
||||
*(uint64_t *)ð_hdr[6]->d_addr = dest_eth_addr[dst_port[6]];
|
||||
*(uint64_t *)ð_hdr[7]->d_addr = dest_eth_addr[dst_port[7]];
|
||||
|
||||
/* src addr */
|
||||
ether_addr_copy(&ports_eth_addr[dst_port[0]], ð_hdr[0]->s_addr);
|
||||
ether_addr_copy(&ports_eth_addr[dst_port[1]], ð_hdr[1]->s_addr);
|
||||
ether_addr_copy(&ports_eth_addr[dst_port[2]], ð_hdr[2]->s_addr);
|
||||
ether_addr_copy(&ports_eth_addr[dst_port[3]], ð_hdr[3]->s_addr);
|
||||
ether_addr_copy(&ports_eth_addr[dst_port[4]], ð_hdr[4]->s_addr);
|
||||
ether_addr_copy(&ports_eth_addr[dst_port[5]], ð_hdr[5]->s_addr);
|
||||
ether_addr_copy(&ports_eth_addr[dst_port[6]], ð_hdr[6]->s_addr);
|
||||
ether_addr_copy(&ports_eth_addr[dst_port[7]], ð_hdr[7]->s_addr);
|
||||
|
||||
send_single_packet(qconf, m[0], (uint8_t)dst_port[0]);
|
||||
send_single_packet(qconf, m[1], (uint8_t)dst_port[1]);
|
||||
send_single_packet(qconf, m[2], (uint8_t)dst_port[2]);
|
||||
send_single_packet(qconf, m[3], (uint8_t)dst_port[3]);
|
||||
send_single_packet(qconf, m[4], (uint8_t)dst_port[4]);
|
||||
send_single_packet(qconf, m[5], (uint8_t)dst_port[5]);
|
||||
send_single_packet(qconf, m[6], (uint8_t)dst_port[6]);
|
||||
send_single_packet(qconf, m[7], (uint8_t)dst_port[7]);
|
||||
}
|
||||
|
||||
static inline void
|
||||
get_ipv6_5tuple(struct rte_mbuf *m0, __m128i mask0,
|
||||
__m128i mask1, union ipv6_5tuple_host *key)
|
||||
{
|
||||
__m128i tmpdata0 = _mm_loadu_si128(
|
||||
rte_pktmbuf_mtod_offset(m0, __m128i *,
|
||||
sizeof(struct ether_hdr) +
|
||||
offsetof(struct ipv6_hdr, payload_len)));
|
||||
|
||||
__m128i tmpdata1 = _mm_loadu_si128(
|
||||
rte_pktmbuf_mtod_offset(m0, __m128i *,
|
||||
sizeof(struct ether_hdr) +
|
||||
offsetof(struct ipv6_hdr, payload_len) +
|
||||
sizeof(__m128i)));
|
||||
|
||||
__m128i tmpdata2 = _mm_loadu_si128(
|
||||
rte_pktmbuf_mtod_offset(m0, __m128i *,
|
||||
sizeof(struct ether_hdr) +
|
||||
offsetof(struct ipv6_hdr, payload_len) +
|
||||
sizeof(__m128i) + sizeof(__m128i)));
|
||||
|
||||
key->xmm[0] = _mm_and_si128(tmpdata0, mask0);
|
||||
key->xmm[1] = tmpdata1;
|
||||
key->xmm[2] = _mm_and_si128(tmpdata2, mask1);
|
||||
}
|
||||
|
||||
static inline void
|
||||
simple_ipv6_fwd_8pkts(struct rte_mbuf *m[8], uint8_t portid,
|
||||
struct lcore_conf *qconf)
|
||||
{
|
||||
struct ether_hdr *eth_hdr[8];
|
||||
__attribute__((unused)) struct ipv6_hdr *ipv6_hdr[8];
|
||||
uint8_t dst_port[8];
|
||||
int32_t ret[8];
|
||||
union ipv6_5tuple_host key[8];
|
||||
|
||||
eth_hdr[0] = rte_pktmbuf_mtod(m[0], struct ether_hdr *);
|
||||
eth_hdr[1] = rte_pktmbuf_mtod(m[1], struct ether_hdr *);
|
||||
eth_hdr[2] = rte_pktmbuf_mtod(m[2], struct ether_hdr *);
|
||||
eth_hdr[3] = rte_pktmbuf_mtod(m[3], struct ether_hdr *);
|
||||
eth_hdr[4] = rte_pktmbuf_mtod(m[4], struct ether_hdr *);
|
||||
eth_hdr[5] = rte_pktmbuf_mtod(m[5], struct ether_hdr *);
|
||||
eth_hdr[6] = rte_pktmbuf_mtod(m[6], struct ether_hdr *);
|
||||
eth_hdr[7] = rte_pktmbuf_mtod(m[7], struct ether_hdr *);
|
||||
|
||||
/* Handle IPv6 headers.*/
|
||||
ipv6_hdr[0] = rte_pktmbuf_mtod_offset(m[0], struct ipv6_hdr *,
|
||||
sizeof(struct ether_hdr));
|
||||
ipv6_hdr[1] = rte_pktmbuf_mtod_offset(m[1], struct ipv6_hdr *,
|
||||
sizeof(struct ether_hdr));
|
||||
ipv6_hdr[2] = rte_pktmbuf_mtod_offset(m[2], struct ipv6_hdr *,
|
||||
sizeof(struct ether_hdr));
|
||||
ipv6_hdr[3] = rte_pktmbuf_mtod_offset(m[3], struct ipv6_hdr *,
|
||||
sizeof(struct ether_hdr));
|
||||
ipv6_hdr[4] = rte_pktmbuf_mtod_offset(m[4], struct ipv6_hdr *,
|
||||
sizeof(struct ether_hdr));
|
||||
ipv6_hdr[5] = rte_pktmbuf_mtod_offset(m[5], struct ipv6_hdr *,
|
||||
sizeof(struct ether_hdr));
|
||||
ipv6_hdr[6] = rte_pktmbuf_mtod_offset(m[6], struct ipv6_hdr *,
|
||||
sizeof(struct ether_hdr));
|
||||
ipv6_hdr[7] = rte_pktmbuf_mtod_offset(m[7], struct ipv6_hdr *,
|
||||
sizeof(struct ether_hdr));
|
||||
|
||||
get_ipv6_5tuple(m[0], mask1, mask2, &key[0]);
|
||||
get_ipv6_5tuple(m[1], mask1, mask2, &key[1]);
|
||||
get_ipv6_5tuple(m[2], mask1, mask2, &key[2]);
|
||||
get_ipv6_5tuple(m[3], mask1, mask2, &key[3]);
|
||||
get_ipv6_5tuple(m[4], mask1, mask2, &key[4]);
|
||||
get_ipv6_5tuple(m[5], mask1, mask2, &key[5]);
|
||||
get_ipv6_5tuple(m[6], mask1, mask2, &key[6]);
|
||||
get_ipv6_5tuple(m[7], mask1, mask2, &key[7]);
|
||||
|
||||
const void *key_array[8] = {&key[0], &key[1], &key[2], &key[3],
|
||||
&key[4], &key[5], &key[6], &key[7]};
|
||||
|
||||
rte_hash_lookup_multi(qconf->ipv6_lookup_struct, &key_array[0], 8, ret);
|
||||
dst_port[0] = (uint8_t) ((ret[0] < 0) ?
|
||||
portid : ipv6_l3fwd_out_if[ret[0]]);
|
||||
dst_port[1] = (uint8_t) ((ret[1] < 0) ?
|
||||
portid : ipv6_l3fwd_out_if[ret[1]]);
|
||||
dst_port[2] = (uint8_t) ((ret[2] < 0) ?
|
||||
portid : ipv6_l3fwd_out_if[ret[2]]);
|
||||
dst_port[3] = (uint8_t) ((ret[3] < 0) ?
|
||||
portid : ipv6_l3fwd_out_if[ret[3]]);
|
||||
dst_port[4] = (uint8_t) ((ret[4] < 0) ?
|
||||
portid : ipv6_l3fwd_out_if[ret[4]]);
|
||||
dst_port[5] = (uint8_t) ((ret[5] < 0) ?
|
||||
portid : ipv6_l3fwd_out_if[ret[5]]);
|
||||
dst_port[6] = (uint8_t) ((ret[6] < 0) ?
|
||||
portid : ipv6_l3fwd_out_if[ret[6]]);
|
||||
dst_port[7] = (uint8_t) ((ret[7] < 0) ?
|
||||
portid : ipv6_l3fwd_out_if[ret[7]]);
|
||||
|
||||
if (dst_port[0] >= RTE_MAX_ETHPORTS ||
|
||||
(enabled_port_mask & 1 << dst_port[0]) == 0)
|
||||
dst_port[0] = portid;
|
||||
|
||||
if (dst_port[1] >= RTE_MAX_ETHPORTS ||
|
||||
(enabled_port_mask & 1 << dst_port[1]) == 0)
|
||||
dst_port[1] = portid;
|
||||
|
||||
if (dst_port[2] >= RTE_MAX_ETHPORTS ||
|
||||
(enabled_port_mask & 1 << dst_port[2]) == 0)
|
||||
dst_port[2] = portid;
|
||||
|
||||
if (dst_port[3] >= RTE_MAX_ETHPORTS ||
|
||||
(enabled_port_mask & 1 << dst_port[3]) == 0)
|
||||
dst_port[3] = portid;
|
||||
|
||||
if (dst_port[4] >= RTE_MAX_ETHPORTS ||
|
||||
(enabled_port_mask & 1 << dst_port[4]) == 0)
|
||||
dst_port[4] = portid;
|
||||
|
||||
if (dst_port[5] >= RTE_MAX_ETHPORTS ||
|
||||
(enabled_port_mask & 1 << dst_port[5]) == 0)
|
||||
dst_port[5] = portid;
|
||||
|
||||
if (dst_port[6] >= RTE_MAX_ETHPORTS ||
|
||||
(enabled_port_mask & 1 << dst_port[6]) == 0)
|
||||
dst_port[6] = portid;
|
||||
|
||||
if (dst_port[7] >= RTE_MAX_ETHPORTS ||
|
||||
(enabled_port_mask & 1 << dst_port[7]) == 0)
|
||||
dst_port[7] = portid;
|
||||
|
||||
/* dst addr */
|
||||
*(uint64_t *)ð_hdr[0]->d_addr = dest_eth_addr[dst_port[0]];
|
||||
*(uint64_t *)ð_hdr[1]->d_addr = dest_eth_addr[dst_port[1]];
|
||||
*(uint64_t *)ð_hdr[2]->d_addr = dest_eth_addr[dst_port[2]];
|
||||
*(uint64_t *)ð_hdr[3]->d_addr = dest_eth_addr[dst_port[3]];
|
||||
*(uint64_t *)ð_hdr[4]->d_addr = dest_eth_addr[dst_port[4]];
|
||||
*(uint64_t *)ð_hdr[5]->d_addr = dest_eth_addr[dst_port[5]];
|
||||
*(uint64_t *)ð_hdr[6]->d_addr = dest_eth_addr[dst_port[6]];
|
||||
*(uint64_t *)ð_hdr[7]->d_addr = dest_eth_addr[dst_port[7]];
|
||||
|
||||
/* src addr */
|
||||
ether_addr_copy(&ports_eth_addr[dst_port[0]], ð_hdr[0]->s_addr);
|
||||
ether_addr_copy(&ports_eth_addr[dst_port[1]], ð_hdr[1]->s_addr);
|
||||
ether_addr_copy(&ports_eth_addr[dst_port[2]], ð_hdr[2]->s_addr);
|
||||
ether_addr_copy(&ports_eth_addr[dst_port[3]], ð_hdr[3]->s_addr);
|
||||
ether_addr_copy(&ports_eth_addr[dst_port[4]], ð_hdr[4]->s_addr);
|
||||
ether_addr_copy(&ports_eth_addr[dst_port[5]], ð_hdr[5]->s_addr);
|
||||
ether_addr_copy(&ports_eth_addr[dst_port[6]], ð_hdr[6]->s_addr);
|
||||
ether_addr_copy(&ports_eth_addr[dst_port[7]], ð_hdr[7]->s_addr);
|
||||
|
||||
send_single_packet(qconf, m[0], (uint8_t)dst_port[0]);
|
||||
send_single_packet(qconf, m[1], (uint8_t)dst_port[1]);
|
||||
send_single_packet(qconf, m[2], (uint8_t)dst_port[2]);
|
||||
send_single_packet(qconf, m[3], (uint8_t)dst_port[3]);
|
||||
send_single_packet(qconf, m[4], (uint8_t)dst_port[4]);
|
||||
send_single_packet(qconf, m[5], (uint8_t)dst_port[5]);
|
||||
send_single_packet(qconf, m[6], (uint8_t)dst_port[6]);
|
||||
send_single_packet(qconf, m[7], (uint8_t)dst_port[7]);
|
||||
}
|
||||
|
||||
/*
|
||||
* Buffer optimized handling of packets, invoked
|
||||
* from main_loop.
|
||||
*/
|
||||
static inline void
|
||||
l3fwd_em_send_packets(int nb_rx, struct rte_mbuf **pkts_burst,
|
||||
uint8_t portid, struct lcore_conf *qconf)
|
||||
{
|
||||
int32_t j;
|
||||
|
||||
/*
|
||||
* Send nb_rx - nb_rx%8 packets
|
||||
* in groups of 8.
|
||||
*/
|
||||
int32_t n = RTE_ALIGN_FLOOR(nb_rx, 8);
|
||||
|
||||
for (j = 0; j < n; j += 8) {
|
||||
|
||||
uint32_t pkt_type =
|
||||
pkts_burst[j]->packet_type &
|
||||
pkts_burst[j+1]->packet_type &
|
||||
pkts_burst[j+2]->packet_type &
|
||||
pkts_burst[j+3]->packet_type &
|
||||
pkts_burst[j+4]->packet_type &
|
||||
pkts_burst[j+5]->packet_type &
|
||||
pkts_burst[j+6]->packet_type &
|
||||
pkts_burst[j+7]->packet_type;
|
||||
|
||||
if (pkt_type & RTE_PTYPE_L3_IPV4) {
|
||||
simple_ipv4_fwd_8pkts(
|
||||
&pkts_burst[j], portid, qconf);
|
||||
} else if (pkt_type & RTE_PTYPE_L3_IPV6) {
|
||||
simple_ipv6_fwd_8pkts(&pkts_burst[j],
|
||||
portid, qconf);
|
||||
} else {
|
||||
l3fwd_em_simple_forward(pkts_burst[j], portid, qconf);
|
||||
l3fwd_em_simple_forward(pkts_burst[j+1], portid, qconf);
|
||||
l3fwd_em_simple_forward(pkts_burst[j+2], portid, qconf);
|
||||
l3fwd_em_simple_forward(pkts_burst[j+3], portid, qconf);
|
||||
l3fwd_em_simple_forward(pkts_burst[j+4], portid, qconf);
|
||||
l3fwd_em_simple_forward(pkts_burst[j+5], portid, qconf);
|
||||
l3fwd_em_simple_forward(pkts_burst[j+6], portid, qconf);
|
||||
l3fwd_em_simple_forward(pkts_burst[j+7], portid, qconf);
|
||||
}
|
||||
}
|
||||
for (; j < nb_rx ; j++)
|
||||
l3fwd_em_simple_forward(pkts_burst[j], portid, qconf);
|
||||
}
|
||||
|
||||
#endif /* __L3FWD_EM_SSE_H__ */
|
305
examples/l3fwd/l3fwd_lpm.c
Normal file
305
examples/l3fwd/l3fwd_lpm.c
Normal file
@ -0,0 +1,305 @@
|
||||
/*-
|
||||
* BSD LICENSE
|
||||
*
|
||||
* Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* * Neither the name of Intel Corporation nor the names of its
|
||||
* contributors may be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <inttypes.h>
|
||||
#include <sys/types.h>
|
||||
#include <string.h>
|
||||
#include <sys/queue.h>
|
||||
#include <stdarg.h>
|
||||
#include <errno.h>
|
||||
#include <getopt.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#include <rte_debug.h>
|
||||
#include <rte_ether.h>
|
||||
#include <rte_ethdev.h>
|
||||
#include <rte_ring.h>
|
||||
#include <rte_mempool.h>
|
||||
#include <rte_cycles.h>
|
||||
#include <rte_mbuf.h>
|
||||
#include <rte_ip.h>
|
||||
#include <rte_tcp.h>
|
||||
#include <rte_udp.h>
|
||||
#include <rte_lpm.h>
|
||||
#include <rte_lpm6.h>
|
||||
|
||||
#include "l3fwd.h"
|
||||
|
||||
struct ipv4_l3fwd_lpm_route {
|
||||
uint32_t ip;
|
||||
uint8_t depth;
|
||||
uint8_t if_out;
|
||||
};
|
||||
|
||||
struct ipv6_l3fwd_lpm_route {
|
||||
uint8_t ip[16];
|
||||
uint8_t depth;
|
||||
uint8_t if_out;
|
||||
};
|
||||
|
||||
static struct ipv4_l3fwd_lpm_route ipv4_l3fwd_lpm_route_array[] = {
|
||||
{IPv4(1, 1, 1, 0), 24, 0},
|
||||
{IPv4(2, 1, 1, 0), 24, 1},
|
||||
{IPv4(3, 1, 1, 0), 24, 2},
|
||||
{IPv4(4, 1, 1, 0), 24, 3},
|
||||
{IPv4(5, 1, 1, 0), 24, 4},
|
||||
{IPv4(6, 1, 1, 0), 24, 5},
|
||||
{IPv4(7, 1, 1, 0), 24, 6},
|
||||
{IPv4(8, 1, 1, 0), 24, 7},
|
||||
};
|
||||
|
||||
static struct ipv6_l3fwd_lpm_route ipv6_l3fwd_lpm_route_array[] = {
|
||||
{{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 0},
|
||||
{{2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 1},
|
||||
{{3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 2},
|
||||
{{4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 3},
|
||||
{{5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 4},
|
||||
{{6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 5},
|
||||
{{7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 6},
|
||||
{{8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 7},
|
||||
};
|
||||
|
||||
#define IPV4_L3FWD_LPM_NUM_ROUTES \
|
||||
(sizeof(ipv4_l3fwd_lpm_route_array) / sizeof(ipv4_l3fwd_lpm_route_array[0]))
|
||||
#define IPV6_L3FWD_LPM_NUM_ROUTES \
|
||||
(sizeof(ipv6_l3fwd_lpm_route_array) / sizeof(ipv6_l3fwd_lpm_route_array[0]))
|
||||
|
||||
#define IPV4_L3FWD_LPM_MAX_RULES 1024
|
||||
#define IPV6_L3FWD_LPM_MAX_RULES 1024
|
||||
#define IPV6_L3FWD_LPM_NUMBER_TBL8S (1 << 16)
|
||||
|
||||
/* Used to mark destination port as 'invalid'. */
|
||||
#define BAD_PORT ((uint16_t)-1)
|
||||
|
||||
#define FWDSTEP 4
|
||||
|
||||
/* replace first 12B of the ethernet header. */
|
||||
#define MASK_ETH 0x3f
|
||||
|
||||
struct rte_lpm *ipv4_l3fwd_lpm_lookup_struct[NB_SOCKETS];
|
||||
struct rte_lpm6 *ipv6_l3fwd_lpm_lookup_struct[NB_SOCKETS];
|
||||
|
||||
/*
|
||||
* Include header file if SSE4_1 is enabled for
|
||||
* buffer optimization i.e. ENABLE_MULTI_BUFFER_OPTIMIZE=1.
|
||||
*/
|
||||
#if defined(__SSE4_1__)
|
||||
#include "l3fwd_lpm_sse.h"
|
||||
#else
|
||||
#include "l3fwd_lpm.h"
|
||||
#endif
|
||||
|
||||
/* main processing loop */
|
||||
int
|
||||
lpm_main_loop(__attribute__((unused)) void *dummy)
|
||||
{
|
||||
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
|
||||
unsigned lcore_id;
|
||||
uint64_t prev_tsc, diff_tsc, cur_tsc;
|
||||
int i, nb_rx;
|
||||
uint8_t portid, queueid;
|
||||
struct lcore_conf *qconf;
|
||||
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
|
||||
US_PER_S * BURST_TX_DRAIN_US;
|
||||
|
||||
prev_tsc = 0;
|
||||
|
||||
lcore_id = rte_lcore_id();
|
||||
qconf = &lcore_conf[lcore_id];
|
||||
|
||||
if (qconf->n_rx_queue == 0) {
|
||||
RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
|
||||
return 0;
|
||||
}
|
||||
|
||||
RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
|
||||
|
||||
for (i = 0; i < qconf->n_rx_queue; i++) {
|
||||
|
||||
portid = qconf->rx_queue_list[i].port_id;
|
||||
queueid = qconf->rx_queue_list[i].queue_id;
|
||||
RTE_LOG(INFO, L3FWD,
|
||||
" -- lcoreid=%u portid=%hhu rxqueueid=%hhu\n",
|
||||
lcore_id, portid, queueid);
|
||||
}
|
||||
|
||||
while (!force_quit) {
|
||||
|
||||
cur_tsc = rte_rdtsc();
|
||||
|
||||
/*
|
||||
* TX burst queue drain
|
||||
*/
|
||||
diff_tsc = cur_tsc - prev_tsc;
|
||||
if (unlikely(diff_tsc > drain_tsc)) {
|
||||
|
||||
/*
|
||||
* This could be optimized (use queueid instead of
|
||||
* portid), but it is not called so often
|
||||
*/
|
||||
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
|
||||
if (qconf->tx_mbufs[portid].len == 0)
|
||||
continue;
|
||||
send_burst(qconf,
|
||||
qconf->tx_mbufs[portid].len,
|
||||
portid);
|
||||
qconf->tx_mbufs[portid].len = 0;
|
||||
}
|
||||
|
||||
prev_tsc = cur_tsc;
|
||||
}
|
||||
|
||||
/*
|
||||
* Read packet from RX queues
|
||||
*/
|
||||
for (i = 0; i < qconf->n_rx_queue; ++i) {
|
||||
portid = qconf->rx_queue_list[i].port_id;
|
||||
queueid = qconf->rx_queue_list[i].queue_id;
|
||||
nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
|
||||
MAX_PKT_BURST);
|
||||
if (nb_rx == 0)
|
||||
continue;
|
||||
|
||||
/*
|
||||
* For SSE4_1 use ENABLE_MULTI_BUFFER_OPTIMIZE=1
|
||||
* code.
|
||||
*/
|
||||
#if defined(__SSE4_1__)
|
||||
l3fwd_lpm_send_packets(nb_rx, pkts_burst,
|
||||
portid, qconf);
|
||||
#else
|
||||
l3fwd_lpm_no_opt_send_packets(nb_rx, pkts_burst,
|
||||
portid, qconf);
|
||||
#endif /* __SSE_4_1__ */
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void
|
||||
setup_lpm(const int socketid)
|
||||
{
|
||||
struct rte_lpm6_config config;
|
||||
unsigned i;
|
||||
int ret;
|
||||
char s[64];
|
||||
|
||||
/* create the LPM table */
|
||||
snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
|
||||
ipv4_l3fwd_lpm_lookup_struct[socketid] = rte_lpm_create(s, socketid,
|
||||
IPV4_L3FWD_LPM_MAX_RULES, 0);
|
||||
if (ipv4_l3fwd_lpm_lookup_struct[socketid] == NULL)
|
||||
rte_exit(EXIT_FAILURE,
|
||||
"Unable to create the l3fwd LPM table on socket %d\n",
|
||||
socketid);
|
||||
|
||||
/* populate the LPM table */
|
||||
for (i = 0; i < IPV4_L3FWD_LPM_NUM_ROUTES; i++) {
|
||||
|
||||
/* skip unused ports */
|
||||
if ((1 << ipv4_l3fwd_lpm_route_array[i].if_out &
|
||||
enabled_port_mask) == 0)
|
||||
continue;
|
||||
|
||||
ret = rte_lpm_add(ipv4_l3fwd_lpm_lookup_struct[socketid],
|
||||
ipv4_l3fwd_lpm_route_array[i].ip,
|
||||
ipv4_l3fwd_lpm_route_array[i].depth,
|
||||
ipv4_l3fwd_lpm_route_array[i].if_out);
|
||||
|
||||
if (ret < 0) {
|
||||
rte_exit(EXIT_FAILURE,
|
||||
"Unable to add entry %u to the l3fwd LPM table on socket %d\n",
|
||||
i, socketid);
|
||||
}
|
||||
|
||||
printf("LPM: Adding route 0x%08x / %d (%d)\n",
|
||||
(unsigned)ipv4_l3fwd_lpm_route_array[i].ip,
|
||||
ipv4_l3fwd_lpm_route_array[i].depth,
|
||||
ipv4_l3fwd_lpm_route_array[i].if_out);
|
||||
}
|
||||
|
||||
/* create the LPM6 table */
|
||||
snprintf(s, sizeof(s), "IPV6_L3FWD_LPM_%d", socketid);
|
||||
|
||||
config.max_rules = IPV6_L3FWD_LPM_MAX_RULES;
|
||||
config.number_tbl8s = IPV6_L3FWD_LPM_NUMBER_TBL8S;
|
||||
config.flags = 0;
|
||||
ipv6_l3fwd_lpm_lookup_struct[socketid] = rte_lpm6_create(s, socketid,
|
||||
&config);
|
||||
if (ipv6_l3fwd_lpm_lookup_struct[socketid] == NULL)
|
||||
rte_exit(EXIT_FAILURE,
|
||||
"Unable to create the l3fwd LPM table on socket %d\n",
|
||||
socketid);
|
||||
|
||||
/* populate the LPM table */
|
||||
for (i = 0; i < IPV6_L3FWD_LPM_NUM_ROUTES; i++) {
|
||||
|
||||
/* skip unused ports */
|
||||
if ((1 << ipv6_l3fwd_lpm_route_array[i].if_out &
|
||||
enabled_port_mask) == 0)
|
||||
continue;
|
||||
|
||||
ret = rte_lpm6_add(ipv6_l3fwd_lpm_lookup_struct[socketid],
|
||||
ipv6_l3fwd_lpm_route_array[i].ip,
|
||||
ipv6_l3fwd_lpm_route_array[i].depth,
|
||||
ipv6_l3fwd_lpm_route_array[i].if_out);
|
||||
|
||||
if (ret < 0) {
|
||||
rte_exit(EXIT_FAILURE,
|
||||
"Unable to add entry %u to the l3fwd LPM table on socket %d\n",
|
||||
i, socketid);
|
||||
}
|
||||
|
||||
printf("LPM: Adding route %s / %d (%d)\n",
|
||||
"IPV6",
|
||||
ipv6_l3fwd_lpm_route_array[i].depth,
|
||||
ipv6_l3fwd_lpm_route_array[i].if_out);
|
||||
}
|
||||
}
|
||||
|
||||
/* Return ipv4/ipv6 lpm fwd lookup struct. */
|
||||
void *
|
||||
lpm_get_ipv4_l3fwd_lookup_struct(const int socketid)
|
||||
{
|
||||
return ipv4_l3fwd_lpm_lookup_struct[socketid];
|
||||
}
|
||||
|
||||
void *
|
||||
lpm_get_ipv6_l3fwd_lookup_struct(const int socketid)
|
||||
{
|
||||
return ipv6_l3fwd_lpm_lookup_struct[socketid];
|
||||
}
|
151
examples/l3fwd/l3fwd_lpm.h
Normal file
151
examples/l3fwd/l3fwd_lpm.h
Normal file
@ -0,0 +1,151 @@
|
||||
/*-
|
||||
* BSD LICENSE
|
||||
*
|
||||
* Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* * Neither the name of Intel Corporation nor the names of its
|
||||
* contributors may be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifndef __L3FWD_LPM_H__
|
||||
#define __L3FWD_LPM_H__
|
||||
|
||||
static inline uint8_t
|
||||
lpm_get_ipv4_dst_port(void *ipv4_hdr, uint8_t portid, void *lookup_struct)
|
||||
{
|
||||
uint8_t next_hop;
|
||||
struct rte_lpm *ipv4_l3fwd_lookup_struct =
|
||||
(struct rte_lpm *)lookup_struct;
|
||||
|
||||
return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
|
||||
rte_be_to_cpu_32(((struct ipv4_hdr *)ipv4_hdr)->dst_addr),
|
||||
&next_hop) == 0) ? next_hop : portid);
|
||||
}
|
||||
|
||||
static inline uint8_t
|
||||
lpm_get_ipv6_dst_port(void *ipv6_hdr, uint8_t portid, void *lookup_struct)
|
||||
{
|
||||
uint8_t next_hop;
|
||||
struct rte_lpm6 *ipv6_l3fwd_lookup_struct =
|
||||
(struct rte_lpm6 *)lookup_struct;
|
||||
|
||||
return (uint8_t) ((rte_lpm6_lookup(ipv6_l3fwd_lookup_struct,
|
||||
((struct ipv6_hdr *)ipv6_hdr)->dst_addr,
|
||||
&next_hop) == 0) ? next_hop : portid);
|
||||
}
|
||||
|
||||
static inline __attribute__((always_inline)) void
|
||||
l3fwd_lpm_simple_forward(struct rte_mbuf *m, uint8_t portid,
|
||||
struct lcore_conf *qconf)
|
||||
{
|
||||
struct ether_hdr *eth_hdr;
|
||||
struct ipv4_hdr *ipv4_hdr;
|
||||
uint8_t dst_port;
|
||||
|
||||
eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
|
||||
|
||||
if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
|
||||
/* Handle IPv4 headers.*/
|
||||
ipv4_hdr = rte_pktmbuf_mtod_offset(m, struct ipv4_hdr *,
|
||||
sizeof(struct ether_hdr));
|
||||
|
||||
#ifdef DO_RFC_1812_CHECKS
|
||||
/* Check to make sure the packet is valid (RFC1812) */
|
||||
if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt_len) < 0) {
|
||||
rte_pktmbuf_free(m);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
dst_port = lpm_get_ipv4_dst_port(ipv4_hdr, portid,
|
||||
qconf->ipv4_lookup_struct);
|
||||
|
||||
if (dst_port >= RTE_MAX_ETHPORTS ||
|
||||
(enabled_port_mask & 1 << dst_port) == 0)
|
||||
dst_port = portid;
|
||||
|
||||
#ifdef DO_RFC_1812_CHECKS
|
||||
/* Update time to live and header checksum */
|
||||
--(ipv4_hdr->time_to_live);
|
||||
++(ipv4_hdr->hdr_checksum);
|
||||
#endif
|
||||
/* dst addr */
|
||||
*(uint64_t *)ð_hdr->d_addr = dest_eth_addr[dst_port];
|
||||
|
||||
/* src addr */
|
||||
ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr);
|
||||
|
||||
send_single_packet(qconf, m, dst_port);
|
||||
} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
|
||||
/* Handle IPv6 headers.*/
|
||||
struct ipv6_hdr *ipv6_hdr;
|
||||
|
||||
ipv6_hdr = rte_pktmbuf_mtod_offset(m, struct ipv6_hdr *,
|
||||
sizeof(struct ether_hdr));
|
||||
|
||||
dst_port = lpm_get_ipv6_dst_port(ipv6_hdr, portid,
|
||||
qconf->ipv6_lookup_struct);
|
||||
|
||||
if (dst_port >= RTE_MAX_ETHPORTS ||
|
||||
(enabled_port_mask & 1 << dst_port) == 0)
|
||||
dst_port = portid;
|
||||
|
||||
/* dst addr */
|
||||
*(uint64_t *)ð_hdr->d_addr = dest_eth_addr[dst_port];
|
||||
|
||||
/* src addr */
|
||||
ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr);
|
||||
|
||||
send_single_packet(qconf, m, dst_port);
|
||||
} else {
|
||||
/* Free the mbuf that contains non-IPV4/IPV6 packet */
|
||||
rte_pktmbuf_free(m);
|
||||
}
|
||||
}
|
||||
|
||||
static inline void
|
||||
l3fwd_lpm_no_opt_send_packets(int nb_rx, struct rte_mbuf **pkts_burst,
|
||||
uint8_t portid, struct lcore_conf *qconf)
|
||||
{
|
||||
int32_t j;
|
||||
|
||||
/* Prefetch first packets */
|
||||
for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++)
|
||||
rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[j], void *));
|
||||
|
||||
/* Prefetch and forward already prefetched packets. */
|
||||
for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
|
||||
rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
|
||||
j + PREFETCH_OFFSET], void *));
|
||||
l3fwd_lpm_simple_forward(pkts_burst[j], portid, qconf);
|
||||
}
|
||||
|
||||
/* Forward remaining prefetched packets */
|
||||
for (; j < nb_rx; j++)
|
||||
l3fwd_lpm_simple_forward(pkts_burst[j], portid, qconf);
|
||||
}
|
||||
|
||||
#endif /* __L3FWD_LPM_H__ */
|
610
examples/l3fwd/l3fwd_lpm_sse.h
Normal file
610
examples/l3fwd/l3fwd_lpm_sse.h
Normal file
@ -0,0 +1,610 @@
|
||||
/*-
|
||||
* BSD LICENSE
|
||||
*
|
||||
* Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* * Neither the name of Intel Corporation nor the names of its
|
||||
* contributors may be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifndef __L3FWD_LPM_SSE_H__
|
||||
#define __L3FWD_LPM_SSE_H__
|
||||
|
||||
static inline __attribute__((always_inline)) void
|
||||
send_packetsx4(struct lcore_conf *qconf, uint8_t port,
|
||||
struct rte_mbuf *m[], uint32_t num)
|
||||
{
|
||||
uint32_t len, j, n;
|
||||
|
||||
len = qconf->tx_mbufs[port].len;
|
||||
|
||||
/*
|
||||
* If TX buffer for that queue is empty, and we have enough packets,
|
||||
* then send them straightway.
|
||||
*/
|
||||
if (num >= MAX_TX_BURST && len == 0) {
|
||||
n = rte_eth_tx_burst(port, qconf->tx_queue_id[port], m, num);
|
||||
if (unlikely(n < num)) {
|
||||
do {
|
||||
rte_pktmbuf_free(m[n]);
|
||||
} while (++n < num);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* Put packets into TX buffer for that queue.
|
||||
*/
|
||||
|
||||
n = len + num;
|
||||
n = (n > MAX_PKT_BURST) ? MAX_PKT_BURST - len : num;
|
||||
|
||||
j = 0;
|
||||
switch (n % FWDSTEP) {
|
||||
while (j < n) {
|
||||
case 0:
|
||||
qconf->tx_mbufs[port].m_table[len + j] = m[j];
|
||||
j++;
|
||||
case 3:
|
||||
qconf->tx_mbufs[port].m_table[len + j] = m[j];
|
||||
j++;
|
||||
case 2:
|
||||
qconf->tx_mbufs[port].m_table[len + j] = m[j];
|
||||
j++;
|
||||
case 1:
|
||||
qconf->tx_mbufs[port].m_table[len + j] = m[j];
|
||||
j++;
|
||||
}
|
||||
}
|
||||
|
||||
len += n;
|
||||
|
||||
/* enough pkts to be sent */
|
||||
if (unlikely(len == MAX_PKT_BURST)) {
|
||||
|
||||
send_burst(qconf, MAX_PKT_BURST, port);
|
||||
|
||||
/* copy rest of the packets into the TX buffer. */
|
||||
len = num - n;
|
||||
j = 0;
|
||||
switch (len % FWDSTEP) {
|
||||
while (j < len) {
|
||||
case 0:
|
||||
qconf->tx_mbufs[port].m_table[j] = m[n + j];
|
||||
j++;
|
||||
case 3:
|
||||
qconf->tx_mbufs[port].m_table[j] = m[n + j];
|
||||
j++;
|
||||
case 2:
|
||||
qconf->tx_mbufs[port].m_table[j] = m[n + j];
|
||||
j++;
|
||||
case 1:
|
||||
qconf->tx_mbufs[port].m_table[j] = m[n + j];
|
||||
j++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
qconf->tx_mbufs[port].len = len;
|
||||
}
|
||||
|
||||
#ifdef DO_RFC_1812_CHECKS
|
||||
|
||||
#define IPV4_MIN_VER_IHL 0x45
|
||||
#define IPV4_MAX_VER_IHL 0x4f
|
||||
#define IPV4_MAX_VER_IHL_DIFF (IPV4_MAX_VER_IHL - IPV4_MIN_VER_IHL)
|
||||
|
||||
/* Minimum value of IPV4 total length (20B) in network byte order. */
|
||||
#define IPV4_MIN_LEN_BE (sizeof(struct ipv4_hdr) << 8)
|
||||
|
||||
/*
|
||||
* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2:
|
||||
* - The IP version number must be 4.
|
||||
* - The IP header length field must be large enough to hold the
|
||||
* minimum length legal IP datagram (20 bytes = 5 words).
|
||||
* - The IP total length field must be large enough to hold the IP
|
||||
* datagram header, whose length is specified in the IP header length
|
||||
* field.
|
||||
* If we encounter invalid IPV4 packet, then set destination port for it
|
||||
* to BAD_PORT value.
|
||||
*/
|
||||
static inline __attribute__((always_inline)) void
|
||||
rfc1812_process(struct ipv4_hdr *ipv4_hdr, uint16_t *dp, uint32_t ptype)
|
||||
{
|
||||
uint8_t ihl;
|
||||
|
||||
if (RTE_ETH_IS_IPV4_HDR(ptype)) {
|
||||
ihl = ipv4_hdr->version_ihl - IPV4_MIN_VER_IHL;
|
||||
|
||||
ipv4_hdr->time_to_live--;
|
||||
ipv4_hdr->hdr_checksum++;
|
||||
|
||||
if (ihl > IPV4_MAX_VER_IHL_DIFF ||
|
||||
((uint8_t)ipv4_hdr->total_length == 0 &&
|
||||
ipv4_hdr->total_length < IPV4_MIN_LEN_BE)) {
|
||||
dp[0] = BAD_PORT;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
#define rfc1812_process(mb, dp) do { } while (0)
|
||||
#endif /* DO_RFC_1812_CHECKS */
|
||||
|
||||
static inline __attribute__((always_inline)) uint16_t
|
||||
get_dst_port(const struct lcore_conf *qconf, struct rte_mbuf *pkt,
|
||||
uint32_t dst_ipv4, uint8_t portid)
|
||||
{
|
||||
uint8_t next_hop;
|
||||
struct ipv6_hdr *ipv6_hdr;
|
||||
struct ether_hdr *eth_hdr;
|
||||
|
||||
if (RTE_ETH_IS_IPV4_HDR(pkt->packet_type)) {
|
||||
if (rte_lpm_lookup(qconf->ipv4_lookup_struct, dst_ipv4,
|
||||
&next_hop) != 0)
|
||||
next_hop = portid;
|
||||
} else if (RTE_ETH_IS_IPV6_HDR(pkt->packet_type)) {
|
||||
eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
|
||||
ipv6_hdr = (struct ipv6_hdr *)(eth_hdr + 1);
|
||||
if (rte_lpm6_lookup(qconf->ipv6_lookup_struct,
|
||||
ipv6_hdr->dst_addr, &next_hop) != 0)
|
||||
next_hop = portid;
|
||||
} else {
|
||||
next_hop = portid;
|
||||
}
|
||||
|
||||
return next_hop;
|
||||
}
|
||||
|
||||
static inline void
|
||||
process_packet(struct lcore_conf *qconf, struct rte_mbuf *pkt,
|
||||
uint16_t *dst_port, uint8_t portid)
|
||||
{
|
||||
struct ether_hdr *eth_hdr;
|
||||
struct ipv4_hdr *ipv4_hdr;
|
||||
uint32_t dst_ipv4;
|
||||
uint16_t dp;
|
||||
__m128i te, ve;
|
||||
|
||||
eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
|
||||
ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
|
||||
|
||||
dst_ipv4 = ipv4_hdr->dst_addr;
|
||||
dst_ipv4 = rte_be_to_cpu_32(dst_ipv4);
|
||||
dp = get_dst_port(qconf, pkt, dst_ipv4, portid);
|
||||
|
||||
te = _mm_loadu_si128((__m128i *)eth_hdr);
|
||||
ve = val_eth[dp];
|
||||
|
||||
dst_port[0] = dp;
|
||||
rfc1812_process(ipv4_hdr, dst_port, pkt->packet_type);
|
||||
|
||||
te = _mm_blend_epi16(te, ve, MASK_ETH);
|
||||
_mm_storeu_si128((__m128i *)eth_hdr, te);
|
||||
}
|
||||
|
||||
/*
|
||||
* Read packet_type and destination IPV4 addresses from 4 mbufs.
|
||||
*/
|
||||
static inline void
|
||||
processx4_step1(struct rte_mbuf *pkt[FWDSTEP],
|
||||
__m128i *dip,
|
||||
uint32_t *ipv4_flag)
|
||||
{
|
||||
struct ipv4_hdr *ipv4_hdr;
|
||||
struct ether_hdr *eth_hdr;
|
||||
uint32_t x0, x1, x2, x3;
|
||||
|
||||
eth_hdr = rte_pktmbuf_mtod(pkt[0], struct ether_hdr *);
|
||||
ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
|
||||
x0 = ipv4_hdr->dst_addr;
|
||||
ipv4_flag[0] = pkt[0]->packet_type & RTE_PTYPE_L3_IPV4;
|
||||
|
||||
eth_hdr = rte_pktmbuf_mtod(pkt[1], struct ether_hdr *);
|
||||
ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
|
||||
x1 = ipv4_hdr->dst_addr;
|
||||
ipv4_flag[0] &= pkt[1]->packet_type;
|
||||
|
||||
eth_hdr = rte_pktmbuf_mtod(pkt[2], struct ether_hdr *);
|
||||
ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
|
||||
x2 = ipv4_hdr->dst_addr;
|
||||
ipv4_flag[0] &= pkt[2]->packet_type;
|
||||
|
||||
eth_hdr = rte_pktmbuf_mtod(pkt[3], struct ether_hdr *);
|
||||
ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
|
||||
x3 = ipv4_hdr->dst_addr;
|
||||
ipv4_flag[0] &= pkt[3]->packet_type;
|
||||
|
||||
dip[0] = _mm_set_epi32(x3, x2, x1, x0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Lookup into LPM for destination port.
|
||||
* If lookup fails, use incoming port (portid) as destination port.
|
||||
*/
|
||||
static inline void
|
||||
processx4_step2(const struct lcore_conf *qconf,
|
||||
__m128i dip,
|
||||
uint32_t ipv4_flag,
|
||||
uint8_t portid,
|
||||
struct rte_mbuf *pkt[FWDSTEP],
|
||||
uint16_t dprt[FWDSTEP])
|
||||
{
|
||||
rte_xmm_t dst;
|
||||
const __m128i bswap_mask = _mm_set_epi8(12, 13, 14, 15, 8, 9, 10, 11,
|
||||
4, 5, 6, 7, 0, 1, 2, 3);
|
||||
|
||||
/* Byte swap 4 IPV4 addresses. */
|
||||
dip = _mm_shuffle_epi8(dip, bswap_mask);
|
||||
|
||||
/* if all 4 packets are IPV4. */
|
||||
if (likely(ipv4_flag)) {
|
||||
rte_lpm_lookupx4(qconf->ipv4_lookup_struct, dip, dprt, portid);
|
||||
} else {
|
||||
dst.x = dip;
|
||||
dprt[0] = get_dst_port(qconf, pkt[0], dst.u32[0], portid);
|
||||
dprt[1] = get_dst_port(qconf, pkt[1], dst.u32[1], portid);
|
||||
dprt[2] = get_dst_port(qconf, pkt[2], dst.u32[2], portid);
|
||||
dprt[3] = get_dst_port(qconf, pkt[3], dst.u32[3], portid);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Update source and destination MAC addresses in the ethernet header.
|
||||
* Perform RFC1812 checks and updates for IPV4 packets.
|
||||
*/
|
||||
static inline void
|
||||
processx4_step3(struct rte_mbuf *pkt[FWDSTEP], uint16_t dst_port[FWDSTEP])
|
||||
{
|
||||
__m128i te[FWDSTEP];
|
||||
__m128i ve[FWDSTEP];
|
||||
__m128i *p[FWDSTEP];
|
||||
|
||||
p[0] = rte_pktmbuf_mtod(pkt[0], __m128i *);
|
||||
p[1] = rte_pktmbuf_mtod(pkt[1], __m128i *);
|
||||
p[2] = rte_pktmbuf_mtod(pkt[2], __m128i *);
|
||||
p[3] = rte_pktmbuf_mtod(pkt[3], __m128i *);
|
||||
|
||||
ve[0] = val_eth[dst_port[0]];
|
||||
te[0] = _mm_loadu_si128(p[0]);
|
||||
|
||||
ve[1] = val_eth[dst_port[1]];
|
||||
te[1] = _mm_loadu_si128(p[1]);
|
||||
|
||||
ve[2] = val_eth[dst_port[2]];
|
||||
te[2] = _mm_loadu_si128(p[2]);
|
||||
|
||||
ve[3] = val_eth[dst_port[3]];
|
||||
te[3] = _mm_loadu_si128(p[3]);
|
||||
|
||||
/* Update first 12 bytes, keep rest bytes intact. */
|
||||
te[0] = _mm_blend_epi16(te[0], ve[0], MASK_ETH);
|
||||
te[1] = _mm_blend_epi16(te[1], ve[1], MASK_ETH);
|
||||
te[2] = _mm_blend_epi16(te[2], ve[2], MASK_ETH);
|
||||
te[3] = _mm_blend_epi16(te[3], ve[3], MASK_ETH);
|
||||
|
||||
_mm_storeu_si128(p[0], te[0]);
|
||||
_mm_storeu_si128(p[1], te[1]);
|
||||
_mm_storeu_si128(p[2], te[2]);
|
||||
_mm_storeu_si128(p[3], te[3]);
|
||||
|
||||
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[0] + 1),
|
||||
&dst_port[0], pkt[0]->packet_type);
|
||||
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[1] + 1),
|
||||
&dst_port[1], pkt[1]->packet_type);
|
||||
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[2] + 1),
|
||||
&dst_port[2], pkt[2]->packet_type);
|
||||
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[3] + 1),
|
||||
&dst_port[3], pkt[3]->packet_type);
|
||||
}
|
||||
|
||||
/*
|
||||
* We group consecutive packets with the same destionation port into one burst.
|
||||
* To avoid extra latency this is done together with some other packet
|
||||
* processing, but after we made a final decision about packet's destination.
|
||||
* To do this we maintain:
|
||||
* pnum - array of number of consecutive packets with the same dest port for
|
||||
* each packet in the input burst.
|
||||
* lp - pointer to the last updated element in the pnum.
|
||||
* dlp - dest port value lp corresponds to.
|
||||
*/
|
||||
|
||||
#define GRPSZ (1 << FWDSTEP)
|
||||
#define GRPMSK (GRPSZ - 1)
|
||||
|
||||
#define GROUP_PORT_STEP(dlp, dcp, lp, pn, idx) do { \
|
||||
if (likely((dlp) == (dcp)[(idx)])) { \
|
||||
(lp)[0]++; \
|
||||
} else { \
|
||||
(dlp) = (dcp)[idx]; \
|
||||
(lp) = (pn) + (idx); \
|
||||
(lp)[0] = 1; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
/*
|
||||
* Group consecutive packets with the same destination port in bursts of 4.
|
||||
* Suppose we have array of destionation ports:
|
||||
* dst_port[] = {a, b, c, d,, e, ... }
|
||||
* dp1 should contain: <a, b, c, d>, dp2: <b, c, d, e>.
|
||||
* We doing 4 comparisions at once and the result is 4 bit mask.
|
||||
* This mask is used as an index into prebuild array of pnum values.
|
||||
*/
|
||||
static inline uint16_t *
|
||||
port_groupx4(uint16_t pn[FWDSTEP + 1], uint16_t *lp, __m128i dp1, __m128i dp2)
|
||||
{
|
||||
static const struct {
|
||||
uint64_t pnum; /* prebuild 4 values for pnum[]. */
|
||||
int32_t idx; /* index for new last updated elemnet. */
|
||||
uint16_t lpv; /* add value to the last updated element. */
|
||||
} gptbl[GRPSZ] = {
|
||||
{
|
||||
/* 0: a != b, b != c, c != d, d != e */
|
||||
.pnum = UINT64_C(0x0001000100010001),
|
||||
.idx = 4,
|
||||
.lpv = 0,
|
||||
},
|
||||
{
|
||||
/* 1: a == b, b != c, c != d, d != e */
|
||||
.pnum = UINT64_C(0x0001000100010002),
|
||||
.idx = 4,
|
||||
.lpv = 1,
|
||||
},
|
||||
{
|
||||
/* 2: a != b, b == c, c != d, d != e */
|
||||
.pnum = UINT64_C(0x0001000100020001),
|
||||
.idx = 4,
|
||||
.lpv = 0,
|
||||
},
|
||||
{
|
||||
/* 3: a == b, b == c, c != d, d != e */
|
||||
.pnum = UINT64_C(0x0001000100020003),
|
||||
.idx = 4,
|
||||
.lpv = 2,
|
||||
},
|
||||
{
|
||||
/* 4: a != b, b != c, c == d, d != e */
|
||||
.pnum = UINT64_C(0x0001000200010001),
|
||||
.idx = 4,
|
||||
.lpv = 0,
|
||||
},
|
||||
{
|
||||
/* 5: a == b, b != c, c == d, d != e */
|
||||
.pnum = UINT64_C(0x0001000200010002),
|
||||
.idx = 4,
|
||||
.lpv = 1,
|
||||
},
|
||||
{
|
||||
/* 6: a != b, b == c, c == d, d != e */
|
||||
.pnum = UINT64_C(0x0001000200030001),
|
||||
.idx = 4,
|
||||
.lpv = 0,
|
||||
},
|
||||
{
|
||||
/* 7: a == b, b == c, c == d, d != e */
|
||||
.pnum = UINT64_C(0x0001000200030004),
|
||||
.idx = 4,
|
||||
.lpv = 3,
|
||||
},
|
||||
{
|
||||
/* 8: a != b, b != c, c != d, d == e */
|
||||
.pnum = UINT64_C(0x0002000100010001),
|
||||
.idx = 3,
|
||||
.lpv = 0,
|
||||
},
|
||||
{
|
||||
/* 9: a == b, b != c, c != d, d == e */
|
||||
.pnum = UINT64_C(0x0002000100010002),
|
||||
.idx = 3,
|
||||
.lpv = 1,
|
||||
},
|
||||
{
|
||||
/* 0xa: a != b, b == c, c != d, d == e */
|
||||
.pnum = UINT64_C(0x0002000100020001),
|
||||
.idx = 3,
|
||||
.lpv = 0,
|
||||
},
|
||||
{
|
||||
/* 0xb: a == b, b == c, c != d, d == e */
|
||||
.pnum = UINT64_C(0x0002000100020003),
|
||||
.idx = 3,
|
||||
.lpv = 2,
|
||||
},
|
||||
{
|
||||
/* 0xc: a != b, b != c, c == d, d == e */
|
||||
.pnum = UINT64_C(0x0002000300010001),
|
||||
.idx = 2,
|
||||
.lpv = 0,
|
||||
},
|
||||
{
|
||||
/* 0xd: a == b, b != c, c == d, d == e */
|
||||
.pnum = UINT64_C(0x0002000300010002),
|
||||
.idx = 2,
|
||||
.lpv = 1,
|
||||
},
|
||||
{
|
||||
/* 0xe: a != b, b == c, c == d, d == e */
|
||||
.pnum = UINT64_C(0x0002000300040001),
|
||||
.idx = 1,
|
||||
.lpv = 0,
|
||||
},
|
||||
{
|
||||
/* 0xf: a == b, b == c, c == d, d == e */
|
||||
.pnum = UINT64_C(0x0002000300040005),
|
||||
.idx = 0,
|
||||
.lpv = 4,
|
||||
},
|
||||
};
|
||||
|
||||
union {
|
||||
uint16_t u16[FWDSTEP + 1];
|
||||
uint64_t u64;
|
||||
} *pnum = (void *)pn;
|
||||
|
||||
int32_t v;
|
||||
|
||||
dp1 = _mm_cmpeq_epi16(dp1, dp2);
|
||||
dp1 = _mm_unpacklo_epi16(dp1, dp1);
|
||||
v = _mm_movemask_ps((__m128)dp1);
|
||||
|
||||
/* update last port counter. */
|
||||
lp[0] += gptbl[v].lpv;
|
||||
|
||||
/* if dest port value has changed. */
|
||||
if (v != GRPMSK) {
|
||||
lp = pnum->u16 + gptbl[v].idx;
|
||||
lp[0] = 1;
|
||||
pnum->u64 = gptbl[v].pnum;
|
||||
}
|
||||
|
||||
return lp;
|
||||
}
|
||||
|
||||
/*
|
||||
* Buffer optimized handling of packets, invoked
|
||||
* from main_loop.
|
||||
*/
|
||||
static inline void
|
||||
l3fwd_lpm_send_packets(int nb_rx, struct rte_mbuf **pkts_burst,
|
||||
uint8_t portid, struct lcore_conf *qconf)
|
||||
{
|
||||
int32_t j, k;
|
||||
uint16_t dlp;
|
||||
uint16_t *lp;
|
||||
uint16_t dst_port[MAX_PKT_BURST];
|
||||
__m128i dip[MAX_PKT_BURST / FWDSTEP];
|
||||
uint32_t ipv4_flag[MAX_PKT_BURST / FWDSTEP];
|
||||
uint16_t pnum[MAX_PKT_BURST + 1];
|
||||
|
||||
k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
|
||||
for (j = 0; j != k; j += FWDSTEP) {
|
||||
processx4_step1(&pkts_burst[j],
|
||||
&dip[j / FWDSTEP],
|
||||
&ipv4_flag[j / FWDSTEP]);
|
||||
}
|
||||
|
||||
k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
|
||||
for (j = 0; j != k; j += FWDSTEP) {
|
||||
processx4_step2(qconf, dip[j / FWDSTEP],
|
||||
ipv4_flag[j / FWDSTEP], portid,
|
||||
&pkts_burst[j], &dst_port[j]);
|
||||
}
|
||||
|
||||
/*
|
||||
* Finish packet processing and group consecutive
|
||||
* packets with the same destination port.
|
||||
*/
|
||||
k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
|
||||
if (k != 0) {
|
||||
__m128i dp1, dp2;
|
||||
|
||||
lp = pnum;
|
||||
lp[0] = 1;
|
||||
|
||||
processx4_step3(pkts_burst, dst_port);
|
||||
|
||||
/* dp1: <d[0], d[1], d[2], d[3], ... > */
|
||||
dp1 = _mm_loadu_si128((__m128i *)dst_port);
|
||||
|
||||
for (j = FWDSTEP; j != k; j += FWDSTEP) {
|
||||
processx4_step3(&pkts_burst[j], &dst_port[j]);
|
||||
|
||||
/*
|
||||
* dp2:
|
||||
* <d[j-3], d[j-2], d[j-1], d[j], ... >
|
||||
*/
|
||||
dp2 = _mm_loadu_si128((__m128i *)
|
||||
&dst_port[j - FWDSTEP + 1]);
|
||||
lp = port_groupx4(&pnum[j - FWDSTEP], lp, dp1, dp2);
|
||||
|
||||
/*
|
||||
* dp1:
|
||||
* <d[j], d[j+1], d[j+2], d[j+3], ... >
|
||||
*/
|
||||
dp1 = _mm_srli_si128(dp2, (FWDSTEP - 1) *
|
||||
sizeof(dst_port[0]));
|
||||
}
|
||||
|
||||
/*
|
||||
* dp2: <d[j-3], d[j-2], d[j-1], d[j-1], ... >
|
||||
*/
|
||||
dp2 = _mm_shufflelo_epi16(dp1, 0xf9);
|
||||
lp = port_groupx4(&pnum[j - FWDSTEP], lp, dp1, dp2);
|
||||
|
||||
/*
|
||||
* remove values added by the last repeated
|
||||
* dst port.
|
||||
*/
|
||||
lp[0]--;
|
||||
dlp = dst_port[j - 1];
|
||||
} else {
|
||||
/* set dlp and lp to the never used values. */
|
||||
dlp = BAD_PORT - 1;
|
||||
lp = pnum + MAX_PKT_BURST;
|
||||
}
|
||||
|
||||
/* Process up to last 3 packets one by one. */
|
||||
switch (nb_rx % FWDSTEP) {
|
||||
case 3:
|
||||
process_packet(qconf, pkts_burst[j], dst_port + j, portid);
|
||||
GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
|
||||
j++;
|
||||
case 2:
|
||||
process_packet(qconf, pkts_burst[j], dst_port + j, portid);
|
||||
GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
|
||||
j++;
|
||||
case 1:
|
||||
process_packet(qconf, pkts_burst[j], dst_port + j, portid);
|
||||
GROUP_PORT_STEP(dlp, dst_port, lp, pnum, j);
|
||||
j++;
|
||||
}
|
||||
|
||||
/*
|
||||
* Send packets out, through destination port.
|
||||
* Consecuteve pacekts with the same destination port
|
||||
* are already grouped together.
|
||||
* If destination port for the packet equals BAD_PORT,
|
||||
* then free the packet without sending it out.
|
||||
*/
|
||||
for (j = 0; j < nb_rx; j += k) {
|
||||
|
||||
int32_t m;
|
||||
uint16_t pn;
|
||||
|
||||
pn = dst_port[j];
|
||||
k = pnum[j];
|
||||
|
||||
if (likely(pn != BAD_PORT)) {
|
||||
send_packetsx4(qconf, pn, pkts_burst + j, k);
|
||||
} else {
|
||||
for (m = j; m != j + k; m++)
|
||||
rte_pktmbuf_free(pkts_burst[m]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* __L3FWD_LPM_SSE_H__ */
|
File diff suppressed because it is too large
Load Diff
Loading…
x
Reference in New Issue
Block a user