examples/vhost: clean switch worker

switch_worker() is the last piece of code that is messy yet it touches
virtio/vhost device.

Here do a cleanup, so that we will be less painful for later vhost ABI
refactoring.

The cleanup is straight forward: break long lines, move some code into
functions. The last, comment a bit on switch_worker().

Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
This commit is contained in:
Yuanhan Liu 2016-05-02 14:23:49 -07:00
parent bdb19b771e
commit 273ecdbc06

View File

@ -212,6 +212,8 @@ struct mbuf_table {
/* TX queue for each data core. */
struct mbuf_table lcore_tx_queue[RTE_MAX_LCORE];
#define MBUF_TABLE_DRAIN_TSC ((rte_get_tsc_hz() + US_PER_S - 1) \
/ US_PER_S * BURST_TX_DRAIN_US)
#define VLAN_HLEN 4
/* Per-device statistics struct */
@ -914,16 +916,35 @@ static void virtio_tx_offload(struct rte_mbuf *m)
tcp_hdr->cksum = get_psd_sum(l3_hdr, m->ol_flags);
}
static inline void
free_pkts(struct rte_mbuf **pkts, uint16_t n)
{
while (n--)
rte_pktmbuf_free(pkts[n]);
}
static inline void __attribute__((always_inline))
do_drain_mbuf_table(struct mbuf_table *tx_q)
{
uint16_t count;
count = rte_eth_tx_burst(ports[0], tx_q->txq_id,
tx_q->m_table, tx_q->len);
if (unlikely(count < tx_q->len))
free_pkts(&tx_q->m_table[count], tx_q->len - count);
tx_q->len = 0;
}
/*
* This function routes the TX packet to the correct interface. This may be a local device
* or the physical port.
* This function routes the TX packet to the correct interface. This
* may be a local device or the physical port.
*/
static inline void __attribute__((always_inline))
virtio_tx_route(struct vhost_dev *vdev, struct rte_mbuf *m, uint16_t vlan_tag)
{
struct mbuf_table *tx_q;
struct rte_mbuf **m_table;
unsigned len, ret, offset = 0;
unsigned offset = 0;
const uint16_t lcore_id = rte_lcore_id();
struct virtio_net *dev = vdev->dev;
struct ether_hdr *nh;
@ -959,7 +980,6 @@ queue2nic:
/*Add packet to the port tx queue*/
tx_q = &lcore_tx_queue[lcore_id];
len = tx_q->len;
nh = rte_pktmbuf_mtod(m, struct ether_hdr *);
if (unlikely(nh->ether_type == rte_cpu_to_be_16(ETHER_TYPE_VLAN))) {
@ -997,55 +1017,130 @@ queue2nic:
if (m->ol_flags & PKT_TX_TCP_SEG)
virtio_tx_offload(m);
tx_q->m_table[len] = m;
len++;
tx_q->m_table[tx_q->len++] = m;
if (enable_stats) {
dev_statistics[dev->device_fh].tx_total++;
dev_statistics[dev->device_fh].tx++;
}
if (unlikely(len == MAX_PKT_BURST)) {
m_table = (struct rte_mbuf **)tx_q->m_table;
ret = rte_eth_tx_burst(ports[0], (uint16_t)tx_q->txq_id, m_table, (uint16_t) len);
/* Free any buffers not handled by TX and update the port stats. */
if (unlikely(ret < len)) {
do {
rte_pktmbuf_free(m_table[ret]);
} while (++ret < len);
}
if (unlikely(tx_q->len == MAX_PKT_BURST))
do_drain_mbuf_table(tx_q);
}
len = 0;
static inline void __attribute__((always_inline))
drain_mbuf_table(struct mbuf_table *tx_q)
{
static uint64_t prev_tsc;
uint64_t cur_tsc;
if (tx_q->len == 0)
return;
cur_tsc = rte_rdtsc();
if (unlikely(cur_tsc - prev_tsc > MBUF_TABLE_DRAIN_TSC)) {
prev_tsc = cur_tsc;
RTE_LOG(DEBUG, VHOST_DATA,
"TX queue drained after timeout with burst size %u\n",
tx_q->len);
do_drain_mbuf_table(tx_q);
}
}
static inline void __attribute__((always_inline))
drain_eth_rx(struct vhost_dev *vdev)
{
uint16_t rx_count, enqueue_count;
struct virtio_net *dev = vdev->dev;
struct rte_mbuf *pkts[MAX_PKT_BURST];
rx_count = rte_eth_rx_burst(ports[0], vdev->vmdq_rx_q,
pkts, MAX_PKT_BURST);
if (!rx_count)
return;
/*
* When "enable_retry" is set, here we wait and retry when there
* is no enough free slots in the queue to hold @rx_count packets,
* to diminish packet loss.
*/
if (enable_retry &&
unlikely(rx_count > rte_vring_available_entries(dev,
VIRTIO_RXQ))) {
uint32_t retry;
for (retry = 0; retry < burst_rx_retry_num; retry++) {
rte_delay_us(burst_rx_delay_time);
if (rx_count <= rte_vring_available_entries(dev,
VIRTIO_RXQ))
break;
}
}
tx_q->len = len;
return;
enqueue_count = rte_vhost_enqueue_burst(dev, VIRTIO_RXQ,
pkts, rx_count);
if (enable_stats) {
uint64_t fh = dev->device_fh;
rte_atomic64_add(&dev_statistics[fh].rx_total_atomic, rx_count);
rte_atomic64_add(&dev_statistics[fh].rx_atomic, enqueue_count);
}
free_pkts(pkts, rx_count);
}
static inline void __attribute__((always_inline))
drain_virtio_tx(struct vhost_dev *vdev)
{
struct rte_mbuf *pkts[MAX_PKT_BURST];
uint16_t count;
uint16_t i;
count = rte_vhost_dequeue_burst(vdev->dev, VIRTIO_TXQ, mbuf_pool,
pkts, MAX_PKT_BURST);
/* setup VMDq for the first packet */
if (unlikely(vdev->ready == DEVICE_MAC_LEARNING) && count) {
if (vdev->remove || link_vmdq(vdev, pkts[0]) == -1)
free_pkts(pkts, count);
}
for (i = 0; i < count; ++i) {
virtio_tx_route(vdev, pkts[i],
vlan_tags[(uint16_t)vdev->dev->device_fh]);
}
}
/*
* This function is called by each data core. It handles all RX/TX registered with the
* core. For TX the specific lcore linked list is used. For RX, MAC addresses are compared
* with all devices in the main linked list.
* Main function of vhost-switch. It basically does:
*
* for each vhost device {
* - drain_eth_rx()
*
* Which drains the host eth Rx queue linked to the vhost device,
* and deliver all of them to guest virito Rx ring associated with
* this vhost device.
*
* - drain_virtio_tx()
*
* Which drains the guest virtio Tx queue and deliver all of them
* to the target, which could be another vhost device, or the
* physical eth dev. The route is done in function "virtio_tx_route".
* }
*/
static int
switch_worker(__attribute__((unused)) void *arg)
switch_worker(void *arg __rte_unused)
{
struct virtio_net *dev = NULL;
struct vhost_dev *vdev = NULL;
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
unsigned i;
unsigned lcore_id = rte_lcore_id();
struct vhost_dev *vdev;
struct mbuf_table *tx_q;
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
uint64_t prev_tsc, diff_tsc, cur_tsc, ret_count = 0;
unsigned ret, i;
const uint16_t lcore_id = rte_lcore_id();
const uint16_t num_cores = (uint16_t)rte_lcore_count();
uint16_t rx_count = 0;
uint16_t tx_count;
uint32_t retry = 0;
RTE_LOG(INFO, VHOST_DATA, "Procesing on Core %u started\n", lcore_id);
prev_tsc = 0;
tx_q = &lcore_tx_queue[lcore_id];
for (i = 0; i < num_cores; i ++) {
for (i = 0; i < rte_lcore_count(); i++) {
if (lcore_ids[i] == lcore_id) {
tx_q->txq_id = i;
break;
@ -1053,34 +1148,7 @@ switch_worker(__attribute__((unused)) void *arg)
}
while(1) {
cur_tsc = rte_rdtsc();
/*
* TX burst queue drain
*/
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {
if (tx_q->len) {
RTE_LOG(DEBUG, VHOST_DATA,
"TX queue drained after timeout with burst size %u\n",
tx_q->len);
/*Tx any packets in the queue*/
ret = rte_eth_tx_burst(ports[0], (uint16_t)tx_q->txq_id,
(struct rte_mbuf **)tx_q->m_table,
(uint16_t)tx_q->len);
if (unlikely(ret < tx_q->len)) {
do {
rte_pktmbuf_free(tx_q->m_table[ret]);
} while (++ret < tx_q->len);
}
tx_q->len = 0;
}
prev_tsc = cur_tsc;
}
drain_mbuf_table(tx_q);
/*
* Inform the configuration core that we have exited the
@ -1090,69 +1158,20 @@ switch_worker(__attribute__((unused)) void *arg)
lcore_info[lcore_id].dev_removal_flag = ACK_DEV_REMOVAL;
/*
* Process devices
* Process vhost devices
*/
TAILQ_FOREACH(vdev, &lcore_info[lcore_id].vdev_list, next) {
uint64_t fh;
dev = vdev->dev;
fh = dev->device_fh;
if (unlikely(vdev->remove)) {
unlink_vmdq(vdev);
vdev->ready = DEVICE_SAFE_REMOVE;
continue;
}
if (likely(vdev->ready == DEVICE_RX)) {
/*Handle guest RX*/
rx_count = rte_eth_rx_burst(ports[0],
vdev->vmdq_rx_q, pkts_burst, MAX_PKT_BURST);
if (likely(vdev->ready == DEVICE_RX))
drain_eth_rx(vdev);
if (rx_count) {
/*
* Retry is enabled and the queue is full then we wait and retry to avoid packet loss
* Here MAX_PKT_BURST must be less than virtio queue size
*/
if (enable_retry && unlikely(rx_count > rte_vring_available_entries(dev, VIRTIO_RXQ))) {
for (retry = 0; retry < burst_rx_retry_num; retry++) {
rte_delay_us(burst_rx_delay_time);
if (rx_count <= rte_vring_available_entries(dev, VIRTIO_RXQ))
break;
}
}
ret_count = rte_vhost_enqueue_burst(dev, VIRTIO_RXQ, pkts_burst, rx_count);
if (enable_stats) {
rte_atomic64_add(
&dev_statistics[fh].rx_total_atomic,
rx_count);
rte_atomic64_add(
&dev_statistics[fh].rx_atomic,
ret_count);
}
while (likely(rx_count)) {
rx_count--;
rte_pktmbuf_free(pkts_burst[rx_count]);
}
}
}
if (likely(!vdev->remove)) {
/* Handle guest TX*/
tx_count = rte_vhost_dequeue_burst(dev, VIRTIO_TXQ, mbuf_pool, pkts_burst, MAX_PKT_BURST);
/* If this is the first received packet we need to learn the MAC and setup VMDQ */
if (unlikely(vdev->ready == DEVICE_MAC_LEARNING) && tx_count) {
if (vdev->remove || (link_vmdq(vdev, pkts_burst[0]) == -1)) {
while (tx_count)
rte_pktmbuf_free(pkts_burst[--tx_count]);
}
}
for (i = 0; i < tx_count; ++i) {
virtio_tx_route(vdev, pkts_burst[i],
vlan_tags[(uint16_t)dev->device_fh]);
}
}
if (likely(!vdev->remove))
drain_virtio_tx(vdev);
}
}