net/qede: support LRO/TSO offloads

This patch includes slowpath configuration and fastpath changes
to support LRO and TSO. A bit of revamping is needed in order
to make use of existing packet classification schemes in Rx fastpath
and for SG element processing in Tx.

Signed-off-by: Harish Patil <harish.patil@qlogic.com>
This commit is contained in:
Harish Patil 2017-03-29 13:37:01 -07:00 committed by Ferruh Yigit
parent 622075356e
commit 29540be7ef
9 changed files with 602 additions and 208 deletions

View File

@ -36,3 +36,5 @@ x86-64 = Y
Usage doc = Y
N-tuple filter = Y
Flow director = Y
LRO = Y
TSO = Y

View File

@ -31,4 +31,6 @@ Stats per queue = Y
Multiprocess aware = Y
Linux UIO = Y
x86-64 = Y
LRO = Y
TSO = Y
Usage doc = Y

View File

@ -61,13 +61,13 @@ Supported Features
- Scatter-Gather
- VXLAN tunneling offload
- N-tuple filter and flow director (limited support)
- LRO/TSO
Non-supported Features
----------------------
- SR-IOV PF
- GENEVE and NVGRE Tunneling offloads
- LRO/TSO
- NPAR
Supported QLogic Adapters

View File

@ -18,8 +18,8 @@ qed_start_vport(struct ecore_dev *edev, struct qed_start_vport_params *p_params)
u8 tx_switching = 0;
struct ecore_sp_vport_start_params start = { 0 };
start.tpa_mode = p_params->gro_enable ? ECORE_TPA_MODE_GRO :
ECORE_TPA_MODE_NONE;
start.tpa_mode = p_params->enable_lro ? ECORE_TPA_MODE_RSC :
ECORE_TPA_MODE_NONE;
start.remove_inner_vlan = p_params->remove_inner_vlan;
start.tx_switching = tx_switching;
start.only_untagged = false; /* untagged only */
@ -29,7 +29,6 @@ qed_start_vport(struct ecore_dev *edev, struct qed_start_vport_params *p_params)
start.concrete_fid = p_hwfn->hw_info.concrete_fid;
start.handle_ptp_pkts = p_params->handle_ptp_pkts;
start.vport_id = p_params->vport_id;
start.max_buffers_per_cqe = 16; /* TODO-is this right */
start.mtu = p_params->mtu;
/* @DPDK - Disable FW placement */
start.zero_placement_offset = 1;
@ -120,6 +119,7 @@ qed_update_vport(struct ecore_dev *edev, struct qed_update_vport_params *params)
sp_params.update_accept_any_vlan_flg =
params->update_accept_any_vlan_flg;
sp_params.mtu = params->mtu;
sp_params.sge_tpa_params = params->sge_tpa_params;
for_each_hwfn(edev, i) {
struct ecore_hwfn *p_hwfn = &edev->hwfns[i];

View File

@ -59,12 +59,13 @@ struct qed_update_vport_params {
uint8_t accept_any_vlan;
uint8_t update_rss_flg;
uint16_t mtu;
struct ecore_sge_tpa_params *sge_tpa_params;
};
struct qed_start_vport_params {
bool remove_inner_vlan;
bool handle_ptp_pkts;
bool gro_enable;
bool enable_lro;
bool drop_ttl0;
uint8_t vport_id;
uint16_t mtu;

View File

@ -769,7 +769,7 @@ static int qede_init_vport(struct qede_dev *qdev)
int rc;
start.remove_inner_vlan = 1;
start.gro_enable = 0;
start.enable_lro = qdev->enable_lro;
start.mtu = ETHER_MTU + QEDE_ETH_OVERHEAD;
start.vport_id = 0;
start.drop_ttl0 = false;
@ -866,11 +866,6 @@ static int qede_dev_configure(struct rte_eth_dev *eth_dev)
if (rxmode->enable_scatter == 1)
eth_dev->data->scattered_rx = 1;
if (rxmode->enable_lro == 1) {
DP_ERR(edev, "LRO is not supported\n");
return -EINVAL;
}
if (!rxmode->hw_strip_crc)
DP_INFO(edev, "L2 CRC stripping is always enabled in hw\n");
@ -878,6 +873,13 @@ static int qede_dev_configure(struct rte_eth_dev *eth_dev)
DP_INFO(edev, "IP/UDP/TCP checksum offload is always enabled "
"in hw\n");
if (rxmode->enable_lro) {
qdev->enable_lro = true;
/* Enable scatter mode for LRO */
if (!rxmode->enable_scatter)
eth_dev->data->scattered_rx = 1;
}
/* Check for the port restart case */
if (qdev->state != QEDE_DEV_INIT) {
rc = qdev->ops->vport_stop(edev, 0);
@ -957,13 +959,15 @@ static int qede_dev_configure(struct rte_eth_dev *eth_dev)
static const struct rte_eth_desc_lim qede_rx_desc_lim = {
.nb_max = NUM_RX_BDS_MAX,
.nb_min = 128,
.nb_align = 128 /* lowest common multiple */
.nb_align = 128 /* lowest common multiple */
};
static const struct rte_eth_desc_lim qede_tx_desc_lim = {
.nb_max = NUM_TX_BDS_MAX,
.nb_min = 256,
.nb_align = 256
.nb_align = 256,
.nb_seg_max = ETH_TX_MAX_BDS_PER_LSO_PACKET,
.nb_mtu_seg_max = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET
};
static void
@ -1005,12 +1009,16 @@ qede_dev_info_get(struct rte_eth_dev *eth_dev,
DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM |
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM);
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_RX_OFFLOAD_TCP_LRO);
dev_info->tx_offload_capa = (DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM);
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_VXLAN_TNL_TSO);
memset(&link, 0, sizeof(struct qed_link_output));
qdev->ops->common->get_link(edev, &link);
@ -2107,6 +2115,7 @@ static int qede_common_dev_init(struct rte_eth_dev *eth_dev, bool is_vf)
eth_dev->rx_pkt_burst = qede_recv_pkts;
eth_dev->tx_pkt_burst = qede_xmit_pkts;
eth_dev->tx_pkt_prepare = qede_xmit_prep_pkts;
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
DP_NOTICE(edev, false,

View File

@ -193,8 +193,7 @@ struct qede_dev {
uint16_t rss_ind_table[ECORE_RSS_IND_TABLE_SIZE];
uint64_t rss_hf;
uint8_t rss_key_len;
uint32_t flags;
bool gro_disable;
bool enable_lro;
uint16_t num_queues;
uint8_t fp_num_tx;
uint8_t fp_num_rx;

View File

@ -6,10 +6,9 @@
* See LICENSE.qede_pmd for copyright and licensing details.
*/
#include <rte_net.h>
#include "qede_rxtx.h"
static bool gro_disable = 1; /* mod_param */
static inline int qede_alloc_rx_buffer(struct qede_rx_queue *rxq)
{
struct rte_mbuf *new_mb = NULL;
@ -352,7 +351,6 @@ static void qede_init_fp(struct qede_dev *qdev)
snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", "qdev", i);
}
qdev->gro_disable = gro_disable;
}
void qede_free_fp_arrays(struct qede_dev *qdev)
@ -509,6 +507,30 @@ qede_update_rx_prod(struct qede_dev *edev, struct qede_rx_queue *rxq)
PMD_RX_LOG(DEBUG, rxq, "bd_prod %u cqe_prod %u", bd_prod, cqe_prod);
}
static void
qede_update_sge_tpa_params(struct ecore_sge_tpa_params *sge_tpa_params,
uint16_t mtu, bool enable)
{
/* Enable LRO in split mode */
sge_tpa_params->tpa_ipv4_en_flg = enable;
sge_tpa_params->tpa_ipv6_en_flg = enable;
sge_tpa_params->tpa_ipv4_tunn_en_flg = enable;
sge_tpa_params->tpa_ipv6_tunn_en_flg = enable;
/* set if tpa enable changes */
sge_tpa_params->update_tpa_en_flg = 1;
/* set if tpa parameters should be handled */
sge_tpa_params->update_tpa_param_flg = enable;
sge_tpa_params->max_buffers_per_cqe = 20;
sge_tpa_params->tpa_pkt_split_flg = 1;
sge_tpa_params->tpa_hdr_data_split_flg = 0;
sge_tpa_params->tpa_gro_consistent_flg = 0;
sge_tpa_params->tpa_max_aggs_num = ETH_TPA_MAX_AGGS_NUM;
sge_tpa_params->tpa_max_size = 0x7FFF;
sge_tpa_params->tpa_min_size_to_start = mtu / 2;
sge_tpa_params->tpa_min_size_to_cont = mtu / 2;
}
static int qede_start_queues(struct rte_eth_dev *eth_dev, bool clear_stats)
{
struct qede_dev *qdev = eth_dev->data->dev_private;
@ -516,6 +538,7 @@ static int qede_start_queues(struct rte_eth_dev *eth_dev, bool clear_stats)
struct ecore_queue_start_common_params q_params;
struct qed_dev_info *qed_info = &qdev->dev_info.common;
struct qed_update_vport_params vport_update_params;
struct ecore_sge_tpa_params tpa_params;
struct qede_tx_queue *txq;
struct qede_fastpath *fp;
dma_addr_t p_phys_table;
@ -529,10 +552,10 @@ static int qede_start_queues(struct rte_eth_dev *eth_dev, bool clear_stats)
if (fp->type & QEDE_FASTPATH_RX) {
struct ecore_rxq_start_ret_params ret_params;
p_phys_table = ecore_chain_get_pbl_phys(&fp->rxq->
rx_comp_ring);
page_cnt = ecore_chain_get_page_cnt(&fp->rxq->
rx_comp_ring);
p_phys_table =
ecore_chain_get_pbl_phys(&fp->rxq->rx_comp_ring);
page_cnt =
ecore_chain_get_page_cnt(&fp->rxq->rx_comp_ring);
memset(&ret_params, 0, sizeof(ret_params));
memset(&q_params, 0, sizeof(q_params));
@ -625,6 +648,14 @@ static int qede_start_queues(struct rte_eth_dev *eth_dev, bool clear_stats)
vport_update_params.tx_switching_flg = 1;
}
/* TPA */
if (qdev->enable_lro) {
DP_INFO(edev, "Enabling LRO\n");
memset(&tpa_params, 0, sizeof(struct ecore_sge_tpa_params));
qede_update_sge_tpa_params(&tpa_params, qdev->mtu, true);
vport_update_params.sge_tpa_params = &tpa_params;
}
rc = qdev->ops->vport_update(edev, &vport_update_params);
if (rc) {
DP_ERR(edev, "Update V-PORT failed %d\n", rc);
@ -761,6 +792,94 @@ static inline uint32_t qede_rx_cqe_to_pkt_type(uint16_t flags)
return RTE_PTYPE_UNKNOWN;
}
static inline void
qede_rx_process_tpa_cont_cqe(struct qede_dev *qdev,
struct qede_rx_queue *rxq,
struct eth_fast_path_rx_tpa_cont_cqe *cqe)
{
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct qede_agg_info *tpa_info;
struct rte_mbuf *temp_frag; /* Pointer to mbuf chain head */
struct rte_mbuf *curr_frag;
uint8_t list_count = 0;
uint16_t cons_idx;
uint8_t i;
PMD_RX_LOG(INFO, rxq, "TPA cont[%02x] - len_list [%04x %04x]\n",
cqe->tpa_agg_index, rte_le_to_cpu_16(cqe->len_list[0]),
rte_le_to_cpu_16(cqe->len_list[1]));
tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
temp_frag = tpa_info->mbuf;
assert(temp_frag);
for (i = 0; cqe->len_list[i]; i++) {
cons_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
curr_frag = rxq->sw_rx_ring[cons_idx].mbuf;
qede_rx_bd_ring_consume(rxq);
curr_frag->data_len = rte_le_to_cpu_16(cqe->len_list[i]);
temp_frag->next = curr_frag;
temp_frag = curr_frag;
list_count++;
}
/* Allocate RX mbuf on the RX BD ring for those many consumed */
for (i = 0 ; i < list_count ; i++) {
if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
DP_ERR(edev, "Failed to allocate mbuf for LRO cont\n");
tpa_info->state = QEDE_AGG_STATE_ERROR;
}
}
}
static inline void
qede_rx_process_tpa_end_cqe(struct qede_dev *qdev,
struct qede_rx_queue *rxq,
struct eth_fast_path_rx_tpa_end_cqe *cqe)
{
struct ecore_dev *edev = QEDE_INIT_EDEV(qdev);
struct qede_agg_info *tpa_info;
struct rte_mbuf *temp_frag; /* Pointer to mbuf chain head */
struct rte_mbuf *curr_frag;
struct rte_mbuf *rx_mb;
uint8_t list_count = 0;
uint16_t cons_idx;
uint8_t i;
PMD_RX_LOG(INFO, rxq, "TPA End[%02x] - len_list [%04x %04x]\n",
cqe->tpa_agg_index, rte_le_to_cpu_16(cqe->len_list[0]),
rte_le_to_cpu_16(cqe->len_list[1]));
tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
temp_frag = tpa_info->mbuf;
assert(temp_frag);
for (i = 0; cqe->len_list[i]; i++) {
cons_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
curr_frag = rxq->sw_rx_ring[cons_idx].mbuf;
qede_rx_bd_ring_consume(rxq);
curr_frag->data_len = rte_le_to_cpu_16(cqe->len_list[i]);
temp_frag->next = curr_frag;
temp_frag = curr_frag;
list_count++;
}
/* Allocate RX mbuf on the RX BD ring for those many consumed */
for (i = 0 ; i < list_count ; i++) {
if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
DP_ERR(edev, "Failed to allocate mbuf for lro end\n");
tpa_info->state = QEDE_AGG_STATE_ERROR;
}
}
/* Update total length and frags based on end TPA */
rx_mb = rxq->tpa_info[cqe->tpa_agg_index].mbuf;
/* TBD: Add sanity checks here */
rx_mb->nb_segs = cqe->num_of_bds;
rx_mb->pkt_len = cqe->total_packet_len;
tpa_info->state = QEDE_AGG_STATE_NONE;
}
static inline uint32_t qede_rx_cqe_to_tunn_pkt_type(uint16_t flags)
{
uint32_t val;
@ -875,13 +994,20 @@ qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
uint16_t pkt_len; /* Sum of all BD segments */
uint16_t len; /* Length of first BD */
uint8_t num_segs = 1;
uint16_t pad;
uint16_t preload_idx;
uint8_t csum_flag;
uint16_t parse_flag;
enum rss_hash_type htype;
uint8_t tunn_parse_flag;
uint8_t j;
struct eth_fast_path_rx_tpa_start_cqe *cqe_start_tpa;
uint64_t ol_flags;
uint32_t packet_type;
uint16_t vlan_tci;
bool tpa_start_flg;
uint8_t bitfield_val;
uint8_t offset, tpa_agg_idx, flags;
struct qede_agg_info *tpa_info;
hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
@ -892,16 +1018,53 @@ qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
return 0;
while (sw_comp_cons != hw_comp_cons) {
ol_flags = 0;
packet_type = RTE_PTYPE_UNKNOWN;
vlan_tci = 0;
tpa_start_flg = false;
/* Get the CQE from the completion ring */
cqe =
(union eth_rx_cqe *)ecore_chain_consume(&rxq->rx_comp_ring);
cqe_type = cqe->fast_path_regular.type;
PMD_RX_LOG(INFO, rxq, "Rx CQE type %d\n", cqe_type);
if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
PMD_RX_LOG(DEBUG, rxq, "Got a slowath CQE");
switch (cqe_type) {
case ETH_RX_CQE_TYPE_REGULAR:
fp_cqe = &cqe->fast_path_regular;
break;
case ETH_RX_CQE_TYPE_TPA_START:
cqe_start_tpa = &cqe->fast_path_tpa_start;
tpa_info = &rxq->tpa_info[cqe_start_tpa->tpa_agg_index];
tpa_start_flg = true;
PMD_RX_LOG(INFO, rxq,
"TPA start[%u] - len %04x [header %02x]"
" [bd_list[0] %04x], [seg_len %04x]\n",
cqe_start_tpa->tpa_agg_index,
rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd),
cqe_start_tpa->header_len,
rte_le_to_cpu_16(cqe_start_tpa->ext_bd_len_list[0]),
rte_le_to_cpu_16(cqe_start_tpa->seg_len));
break;
case ETH_RX_CQE_TYPE_TPA_CONT:
qede_rx_process_tpa_cont_cqe(qdev, rxq,
&cqe->fast_path_tpa_cont);
continue;
case ETH_RX_CQE_TYPE_TPA_END:
qede_rx_process_tpa_end_cqe(qdev, rxq,
&cqe->fast_path_tpa_end);
tpa_agg_idx = cqe->fast_path_tpa_end.tpa_agg_index;
rx_mb = rxq->tpa_info[tpa_agg_idx].mbuf;
PMD_RX_LOG(INFO, rxq, "TPA end reason %d\n",
cqe->fast_path_tpa_end.end_reason);
goto tpa_end;
case ETH_RX_CQE_TYPE_SLOW_PATH:
PMD_RX_LOG(INFO, rxq, "Got unexpected slowpath CQE\n");
qdev->ops->eth_cqe_completion(edev, fp->id,
(struct eth_slow_path_rx_cqe *)cqe);
/* fall-thru */
default:
goto next_cqe;
}
@ -910,69 +1073,93 @@ qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
rx_mb = rxq->sw_rx_ring[sw_rx_index].mbuf;
assert(rx_mb != NULL);
/* non GRO */
fp_cqe = &cqe->fast_path_regular;
len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
pad = fp_cqe->placement_offset;
assert((len + pad) <= rx_mb->buf_len);
PMD_RX_LOG(DEBUG, rxq,
"CQE type = 0x%x, flags = 0x%x, vlan = 0x%x"
" len = %u, parsing_flags = %d",
cqe_type, fp_cqe->bitfields,
rte_le_to_cpu_16(fp_cqe->vlan_tag),
len, rte_le_to_cpu_16(fp_cqe->pars_flags.flags));
/* If this is an error packet then drop it */
parse_flag =
rte_le_to_cpu_16(cqe->fast_path_regular.pars_flags.flags);
rx_mb->ol_flags = 0;
/* Handle regular CQE or TPA start CQE */
if (!tpa_start_flg) {
parse_flag = rte_le_to_cpu_16(fp_cqe->pars_flags.flags);
bitfield_val = fp_cqe->bitfields;
offset = fp_cqe->placement_offset;
len = rte_le_to_cpu_16(fp_cqe->len_on_first_bd);
pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
} else {
parse_flag =
rte_le_to_cpu_16(cqe_start_tpa->pars_flags.flags);
bitfield_val = cqe_start_tpa->bitfields;
offset = cqe_start_tpa->placement_offset;
/* seg_len = len_on_first_bd */
len = rte_le_to_cpu_16(cqe_start_tpa->len_on_first_bd);
tpa_info->start_cqe_bd_len = len +
cqe_start_tpa->header_len;
tpa_info->mbuf = rx_mb;
}
if (qede_tunn_exist(parse_flag)) {
PMD_RX_LOG(DEBUG, rxq, "Rx tunneled packet");
PMD_RX_LOG(INFO, rxq, "Rx tunneled packet\n");
if (unlikely(qede_check_tunn_csum_l4(parse_flag))) {
PMD_RX_LOG(ERR, rxq,
"L4 csum failed, flags = 0x%x",
"L4 csum failed, flags = 0x%x\n",
parse_flag);
rxq->rx_hw_errors++;
rx_mb->ol_flags |= PKT_RX_L4_CKSUM_BAD;
ol_flags |= PKT_RX_L4_CKSUM_BAD;
} else {
tunn_parse_flag =
fp_cqe->tunnel_pars_flags.flags;
rx_mb->packet_type =
qede_rx_cqe_to_tunn_pkt_type(
tunn_parse_flag);
ol_flags |= PKT_RX_L4_CKSUM_GOOD;
if (tpa_start_flg)
flags =
cqe_start_tpa->tunnel_pars_flags.flags;
else
flags = fp_cqe->tunnel_pars_flags.flags;
tunn_parse_flag = flags;
packet_type =
qede_rx_cqe_to_tunn_pkt_type(tunn_parse_flag);
}
} else {
PMD_RX_LOG(DEBUG, rxq, "Rx non-tunneled packet");
PMD_RX_LOG(INFO, rxq, "Rx non-tunneled packet\n");
if (unlikely(qede_check_notunn_csum_l4(parse_flag))) {
PMD_RX_LOG(ERR, rxq,
"L4 csum failed, flags = 0x%x",
"L4 csum failed, flags = 0x%x\n",
parse_flag);
rxq->rx_hw_errors++;
rx_mb->ol_flags |= PKT_RX_L4_CKSUM_BAD;
} else if (unlikely(qede_check_notunn_csum_l3(rx_mb,
ol_flags |= PKT_RX_L4_CKSUM_BAD;
} else {
ol_flags |= PKT_RX_L4_CKSUM_GOOD;
}
if (unlikely(qede_check_notunn_csum_l3(rx_mb,
parse_flag))) {
PMD_RX_LOG(ERR, rxq,
"IP csum failed, flags = 0x%x",
"IP csum failed, flags = 0x%x\n",
parse_flag);
rxq->rx_hw_errors++;
rx_mb->ol_flags |= PKT_RX_IP_CKSUM_BAD;
ol_flags |= PKT_RX_IP_CKSUM_BAD;
} else {
rx_mb->packet_type =
ol_flags |= PKT_RX_IP_CKSUM_GOOD;
packet_type =
qede_rx_cqe_to_pkt_type(parse_flag);
}
}
PMD_RX_LOG(INFO, rxq, "packet_type 0x%x", rx_mb->packet_type);
if (CQE_HAS_VLAN(parse_flag)) {
vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
ol_flags |= PKT_RX_VLAN_PKT;
}
if (CQE_HAS_OUTER_VLAN(parse_flag)) {
vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
ol_flags |= PKT_RX_QINQ_PKT;
rx_mb->vlan_tci_outer = 0;
}
/* RSS Hash */
htype = (uint8_t)GET_FIELD(bitfield_val,
ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
if (qdev->rss_enable && htype) {
ol_flags |= PKT_RX_RSS_HASH;
rx_mb->hash.rss = rte_le_to_cpu_32(fp_cqe->rss_hash);
PMD_RX_LOG(INFO, rxq, "Hash result 0x%x\n",
rx_mb->hash.rss);
}
if (unlikely(qede_alloc_rx_buffer(rxq) != 0)) {
PMD_RX_LOG(ERR, rxq,
"New buffer allocation failed,"
"dropping incoming packet");
"dropping incoming packet\n");
qede_recycle_rx_bd_ring(rxq, qdev, fp_cqe->bd_num);
rte_eth_devices[rxq->port_id].
data->rx_mbuf_alloc_failed++;
@ -980,7 +1167,8 @@ qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
break;
}
qede_rx_bd_ring_consume(rxq);
if (fp_cqe->bd_num > 1) {
if (!tpa_start_flg && fp_cqe->bd_num > 1) {
PMD_RX_LOG(DEBUG, rxq, "Jumbo-over-BD packet: %02x BDs"
" len on first: %04x Total Len: %04x",
fp_cqe->bd_num, len, pkt_len);
@ -1008,40 +1196,24 @@ qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf);
/* Update rest of the MBUF fields */
rx_mb->data_off = pad + RTE_PKTMBUF_HEADROOM;
rx_mb->nb_segs = fp_cqe->bd_num;
rx_mb->data_len = len;
rx_mb->pkt_len = pkt_len;
rx_mb->data_off = offset + RTE_PKTMBUF_HEADROOM;
rx_mb->port = rxq->port_id;
htype = (uint8_t)GET_FIELD(fp_cqe->bitfields,
ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
if (qdev->rss_enable && htype) {
rx_mb->ol_flags |= PKT_RX_RSS_HASH;
rx_mb->hash.rss = rte_le_to_cpu_32(fp_cqe->rss_hash);
PMD_RX_LOG(DEBUG, rxq, "Hash result 0x%x",
rx_mb->hash.rss);
rx_mb->ol_flags = ol_flags;
rx_mb->data_len = len;
rx_mb->vlan_tci = vlan_tci;
rx_mb->packet_type = packet_type;
PMD_RX_LOG(INFO, rxq, "pkt_type %04x len %04x flags %04lx\n",
packet_type, len, (unsigned long)ol_flags);
if (!tpa_start_flg) {
rx_mb->nb_segs = fp_cqe->bd_num;
rx_mb->pkt_len = pkt_len;
}
rte_prefetch1(rte_pktmbuf_mtod(rx_mb, void *));
if (CQE_HAS_VLAN(parse_flag)) {
rx_mb->vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
rx_mb->ol_flags |= PKT_RX_VLAN_PKT;
tpa_end:
if (!tpa_start_flg) {
rx_pkts[rx_pkt] = rx_mb;
rx_pkt++;
}
if (CQE_HAS_OUTER_VLAN(parse_flag)) {
/* FW does not provide indication of Outer VLAN tag,
* which is always stripped, so vlan_tci_outer is set
* to 0. Here vlan_tag represents inner VLAN tag.
*/
rx_mb->vlan_tci = rte_le_to_cpu_16(fp_cqe->vlan_tag);
rx_mb->ol_flags |= PKT_RX_QINQ_PKT;
rx_mb->vlan_tci_outer = 0;
}
rx_pkts[rx_pkt] = rx_mb;
rx_pkt++;
next_cqe:
ecore_chain_recycle_consumed(&rxq->rx_comp_ring);
sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
@ -1062,101 +1234,91 @@ next_cqe:
return rx_pkt;
}
static inline int
qede_free_tx_pkt(struct ecore_dev *edev, struct qede_tx_queue *txq)
static inline void
qede_free_tx_pkt(struct qede_tx_queue *txq)
{
uint16_t nb_segs, idx = TX_CONS(txq);
struct eth_tx_bd *tx_data_bd;
struct rte_mbuf *mbuf = txq->sw_tx_ring[idx].mbuf;
struct rte_mbuf *mbuf;
uint16_t nb_segs;
uint16_t idx;
uint8_t nbds;
if (unlikely(!mbuf)) {
PMD_TX_LOG(ERR, txq, "null mbuf");
PMD_TX_LOG(ERR, txq,
"tx_desc %u tx_avail %u tx_cons %u tx_prod %u",
txq->nb_tx_desc, txq->nb_tx_avail, idx,
TX_PROD(txq));
return -1;
}
nb_segs = mbuf->nb_segs;
while (nb_segs) {
/* It's like consuming rxbuf in recv() */
idx = TX_CONS(txq);
mbuf = txq->sw_tx_ring[idx].mbuf;
if (mbuf) {
nb_segs = mbuf->nb_segs;
PMD_TX_LOG(DEBUG, txq, "nb_segs to free %u\n", nb_segs);
while (nb_segs) {
/* It's like consuming rxbuf in recv() */
ecore_chain_consume(&txq->tx_pbl);
txq->nb_tx_avail++;
nb_segs--;
}
rte_pktmbuf_free(mbuf);
txq->sw_tx_ring[idx].mbuf = NULL;
txq->sw_tx_cons++;
PMD_TX_LOG(DEBUG, txq, "Freed tx packet\n");
} else {
ecore_chain_consume(&txq->tx_pbl);
txq->nb_tx_avail++;
nb_segs--;
}
rte_pktmbuf_free(mbuf);
txq->sw_tx_ring[idx].mbuf = NULL;
return 0;
}
static inline uint16_t
static inline void
qede_process_tx_compl(struct ecore_dev *edev, struct qede_tx_queue *txq)
{
uint16_t tx_compl = 0;
uint16_t hw_bd_cons;
uint16_t sw_tx_cons;
hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr);
rte_compiler_barrier();
while (hw_bd_cons != ecore_chain_get_cons_idx(&txq->tx_pbl)) {
if (qede_free_tx_pkt(edev, txq)) {
PMD_TX_LOG(ERR, txq,
"hw_bd_cons = %u, chain_cons = %u",
hw_bd_cons,
ecore_chain_get_cons_idx(&txq->tx_pbl));
break;
}
txq->sw_tx_cons++; /* Making TXD available */
tx_compl++;
}
PMD_TX_LOG(DEBUG, txq, "Tx compl %u sw_tx_cons %u avail %u",
tx_compl, txq->sw_tx_cons, txq->nb_tx_avail);
return tx_compl;
hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr);
sw_tx_cons = ecore_chain_get_cons_idx(&txq->tx_pbl);
PMD_TX_LOG(DEBUG, txq, "Tx Completions = %u\n",
abs(hw_bd_cons - sw_tx_cons));
while (hw_bd_cons != ecore_chain_get_cons_idx(&txq->tx_pbl))
qede_free_tx_pkt(txq);
}
/* Populate scatter gather buffer descriptor fields */
static inline uint8_t
qede_encode_sg_bd(struct qede_tx_queue *p_txq, struct rte_mbuf *m_seg,
struct eth_tx_1st_bd *bd1)
struct eth_tx_2nd_bd **bd2, struct eth_tx_3rd_bd **bd3)
{
struct qede_tx_queue *txq = p_txq;
struct eth_tx_2nd_bd *bd2 = NULL;
struct eth_tx_3rd_bd *bd3 = NULL;
struct eth_tx_bd *tx_bd = NULL;
dma_addr_t mapping;
uint8_t nb_segs = 1; /* min one segment per packet */
uint8_t nb_segs = 0;
/* Check for scattered buffers */
while (m_seg) {
if (nb_segs == 1) {
bd2 = (struct eth_tx_2nd_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(bd2, 0, sizeof(*bd2));
if (nb_segs == 0) {
if (!*bd2) {
*bd2 = (struct eth_tx_2nd_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(*bd2, 0, sizeof(struct eth_tx_2nd_bd));
nb_segs++;
}
mapping = rte_mbuf_data_dma_addr(m_seg);
QEDE_BD_SET_ADDR_LEN(bd2, mapping, m_seg->data_len);
PMD_TX_LOG(DEBUG, txq, "BD2 len %04x",
m_seg->data_len);
} else if (nb_segs == 2) {
bd3 = (struct eth_tx_3rd_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(bd3, 0, sizeof(*bd3));
QEDE_BD_SET_ADDR_LEN(*bd2, mapping, m_seg->data_len);
PMD_TX_LOG(DEBUG, txq, "BD2 len %04x", m_seg->data_len);
} else if (nb_segs == 1) {
if (!*bd3) {
*bd3 = (struct eth_tx_3rd_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(*bd3, 0, sizeof(struct eth_tx_3rd_bd));
nb_segs++;
}
mapping = rte_mbuf_data_dma_addr(m_seg);
QEDE_BD_SET_ADDR_LEN(bd3, mapping, m_seg->data_len);
PMD_TX_LOG(DEBUG, txq, "BD3 len %04x",
m_seg->data_len);
QEDE_BD_SET_ADDR_LEN(*bd3, mapping, m_seg->data_len);
PMD_TX_LOG(DEBUG, txq, "BD3 len %04x", m_seg->data_len);
} else {
tx_bd = (struct eth_tx_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(tx_bd, 0, sizeof(*tx_bd));
nb_segs++;
mapping = rte_mbuf_data_dma_addr(m_seg);
QEDE_BD_SET_ADDR_LEN(tx_bd, mapping, m_seg->data_len);
PMD_TX_LOG(DEBUG, txq, "BD len %04x",
m_seg->data_len);
PMD_TX_LOG(DEBUG, txq, "BD len %04x", m_seg->data_len);
}
nb_segs++;
m_seg = m_seg->next;
}
@ -1164,59 +1326,209 @@ qede_encode_sg_bd(struct qede_tx_queue *p_txq, struct rte_mbuf *m_seg,
return nb_segs;
}
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
static inline void
print_tx_bd_info(struct qede_tx_queue *txq,
struct eth_tx_1st_bd *bd1,
struct eth_tx_2nd_bd *bd2,
struct eth_tx_3rd_bd *bd3,
uint64_t tx_ol_flags)
{
char ol_buf[256] = { 0 }; /* for verbose prints */
if (bd1)
PMD_TX_LOG(INFO, txq,
"BD1: nbytes=%u nbds=%u bd_flags=04%x bf=%04x",
rte_cpu_to_le_16(bd1->nbytes), bd1->data.nbds,
bd1->data.bd_flags.bitfields,
rte_cpu_to_le_16(bd1->data.bitfields));
if (bd2)
PMD_TX_LOG(INFO, txq,
"BD2: nbytes=%u bf=%04x\n",
rte_cpu_to_le_16(bd2->nbytes), bd2->data.bitfields1);
if (bd3)
PMD_TX_LOG(INFO, txq,
"BD3: nbytes=%u bf=%04x mss=%u\n",
rte_cpu_to_le_16(bd3->nbytes),
rte_cpu_to_le_16(bd3->data.bitfields),
rte_cpu_to_le_16(bd3->data.lso_mss));
rte_get_tx_ol_flag_list(tx_ol_flags, ol_buf, sizeof(ol_buf));
PMD_TX_LOG(INFO, txq, "TX offloads = %s\n", ol_buf);
}
#endif
/* TX prepare to check packets meets TX conditions */
uint16_t
qede_xmit_prep_pkts(void *p_txq, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct qede_tx_queue *txq = p_txq;
uint64_t ol_flags;
struct rte_mbuf *m;
uint16_t i;
int ret;
for (i = 0; i < nb_pkts; i++) {
m = tx_pkts[i];
ol_flags = m->ol_flags;
if (ol_flags & PKT_TX_TCP_SEG) {
if (m->nb_segs >= ETH_TX_MAX_BDS_PER_LSO_PACKET) {
rte_errno = -EINVAL;
break;
}
/* TBD: confirm its ~9700B for both ? */
if (m->tso_segsz > ETH_TX_MAX_NON_LSO_PKT_LEN) {
rte_errno = -EINVAL;
break;
}
} else {
if (m->nb_segs >= ETH_TX_MAX_BDS_PER_NON_LSO_PACKET) {
rte_errno = -EINVAL;
break;
}
}
if (ol_flags & QEDE_TX_OFFLOAD_NOTSUP_MASK) {
rte_errno = -ENOTSUP;
break;
}
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
ret = rte_validate_tx_offload(m);
if (ret != 0) {
rte_errno = ret;
break;
}
#endif
/* TBD: pseudo csum calcuation required iff
* ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE not set?
*/
ret = rte_net_intel_cksum_prepare(m);
if (ret != 0) {
rte_errno = ret;
break;
}
}
if (unlikely(i != nb_pkts))
PMD_TX_LOG(ERR, txq, "TX prepare failed for %u\n",
nb_pkts - i);
return i;
}
uint16_t
qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct qede_tx_queue *txq = p_txq;
struct qede_dev *qdev = txq->qdev;
struct ecore_dev *edev = &qdev->edev;
struct qede_fastpath *fp;
struct eth_tx_1st_bd *bd1;
struct rte_mbuf *mbuf;
struct rte_mbuf *m_seg = NULL;
uint16_t nb_tx_pkts;
uint16_t bd_prod;
uint16_t idx;
uint16_t tx_count;
uint16_t nb_frags;
uint16_t nb_pkt_sent = 0;
fp = &qdev->fp_array[QEDE_RSS_COUNT(qdev) + txq->queue_id];
uint8_t nbds;
bool ipv6_ext_flg;
bool lso_flg;
bool tunn_flg;
struct eth_tx_1st_bd *bd1;
struct eth_tx_2nd_bd *bd2;
struct eth_tx_3rd_bd *bd3;
uint64_t tx_ol_flags;
uint16_t hdr_size;
if (unlikely(txq->nb_tx_avail < txq->tx_free_thresh)) {
PMD_TX_LOG(DEBUG, txq, "send=%u avail=%u free_thresh=%u",
nb_pkts, txq->nb_tx_avail, txq->tx_free_thresh);
(void)qede_process_tx_compl(edev, txq);
qede_process_tx_compl(edev, txq);
}
nb_tx_pkts = RTE_MIN(nb_pkts, (txq->nb_tx_avail /
ETH_TX_MAX_BDS_PER_NON_LSO_PACKET));
if (unlikely(nb_tx_pkts == 0)) {
PMD_TX_LOG(DEBUG, txq, "Out of BDs nb_pkts=%u avail=%u",
nb_pkts, txq->nb_tx_avail);
return 0;
}
tx_count = nb_tx_pkts;
nb_tx_pkts = nb_pkts;
bd_prod = rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
while (nb_tx_pkts--) {
/* Init flags/values */
ipv6_ext_flg = false;
tunn_flg = false;
lso_flg = false;
nbds = 0;
bd1 = NULL;
bd2 = NULL;
bd3 = NULL;
hdr_size = 0;
mbuf = *tx_pkts;
assert(mbuf);
/* Check minimum TX BDS availability against available BDs */
if (unlikely(txq->nb_tx_avail < mbuf->nb_segs))
break;
tx_ol_flags = mbuf->ol_flags;
#define RTE_ETH_IS_IPV6_HDR_EXT(ptype) ((ptype) & RTE_PTYPE_L3_IPV6_EXT)
if (RTE_ETH_IS_IPV6_HDR_EXT(mbuf->packet_type))
ipv6_ext_flg = true;
if (RTE_ETH_IS_TUNNEL_PKT(mbuf->packet_type))
tunn_flg = true;
if (tx_ol_flags & PKT_TX_TCP_SEG)
lso_flg = true;
if (lso_flg) {
if (unlikely(txq->nb_tx_avail <
ETH_TX_MIN_BDS_PER_LSO_PKT))
break;
} else {
if (unlikely(txq->nb_tx_avail <
ETH_TX_MIN_BDS_PER_NON_LSO_PKT))
break;
}
if (tunn_flg && ipv6_ext_flg) {
if (unlikely(txq->nb_tx_avail <
ETH_TX_MIN_BDS_PER_TUNN_IPV6_WITH_EXT_PKT))
break;
}
if (ipv6_ext_flg) {
if (unlikely(txq->nb_tx_avail <
ETH_TX_MIN_BDS_PER_IPV6_WITH_EXT_PKT))
break;
}
/* Fill the entry in the SW ring and the BDs in the FW ring */
idx = TX_PROD(txq);
mbuf = *tx_pkts++;
*tx_pkts++;
txq->sw_tx_ring[idx].mbuf = mbuf;
/* BD1 */
bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
bd1->data.bd_flags.bitfields =
memset(bd1, 0, sizeof(struct eth_tx_1st_bd));
nbds++;
bd1->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
/* FW 8.10.x specific change */
bd1->data.bitfields =
if (!lso_flg) {
bd1->data.bitfields |=
(mbuf->pkt_len & ETH_TX_DATA_1ST_BD_PKT_LEN_MASK)
<< ETH_TX_DATA_1ST_BD_PKT_LEN_SHIFT;
/* Map MBUF linear data for DMA and set in the first BD */
QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_dma_addr(mbuf),
mbuf->data_len);
PMD_TX_LOG(INFO, txq, "BD1 len %04x", mbuf->data_len);
/* Map MBUF linear data for DMA and set in the BD1 */
QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_dma_addr(mbuf),
mbuf->data_len);
} else {
/* For LSO, packet header and payload must reside on
* buffers pointed by different BDs. Using BD1 for HDR
* and BD2 onwards for data.
*/
hdr_size = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_dma_addr(mbuf),
hdr_size);
}
if (RTE_ETH_IS_TUNNEL_PKT(mbuf->packet_type)) {
PMD_TX_LOG(INFO, txq, "Tx tunnel packet");
if (tunn_flg) {
/* First indicate its a tunnel pkt */
bd1->data.bd_flags.bitfields |=
ETH_TX_DATA_1ST_BD_TUNN_FLAG_MASK <<
@ -1231,8 +1543,7 @@ qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1 << ETH_TX_DATA_1ST_BD_TUNN_FLAG_SHIFT;
/* Outer IP checksum offload */
if (mbuf->ol_flags & PKT_TX_OUTER_IP_CKSUM) {
PMD_TX_LOG(INFO, txq, "OuterIP csum offload");
if (tx_ol_flags & PKT_TX_OUTER_IP_CKSUM) {
bd1->data.bd_flags.bitfields |=
ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_MASK <<
ETH_TX_1ST_BD_FLAGS_TUNN_IP_CSUM_SHIFT;
@ -1245,43 +1556,79 @@ qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
}
/* Descriptor based VLAN insertion */
if (mbuf->ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
PMD_TX_LOG(INFO, txq, "Insert VLAN 0x%x",
mbuf->vlan_tci);
if (tx_ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
bd1->data.vlan = rte_cpu_to_le_16(mbuf->vlan_tci);
bd1->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
}
if (lso_flg)
bd1->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT;
/* Offload the IP checksum in the hardware */
if (mbuf->ol_flags & PKT_TX_IP_CKSUM) {
PMD_TX_LOG(INFO, txq, "IP csum offload");
if ((lso_flg) || (tx_ol_flags & PKT_TX_IP_CKSUM))
bd1->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
}
/* L4 checksum offload (tcp or udp) */
if (mbuf->ol_flags & (PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
PMD_TX_LOG(INFO, txq, "L4 csum offload");
if ((lso_flg) || (tx_ol_flags & (PKT_TX_TCP_CKSUM |
PKT_TX_UDP_CKSUM)))
/* PKT_TX_TCP_SEG implies PKT_TX_TCP_CKSUM */
bd1->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
/* IPv6 + extn. -> later */
/* BD2 */
if (lso_flg || ipv6_ext_flg) {
bd2 = (struct eth_tx_2nd_bd *)ecore_chain_produce
(&txq->tx_pbl);
memset(bd2, 0, sizeof(struct eth_tx_2nd_bd));
nbds++;
QEDE_BD_SET_ADDR_LEN(bd2,
(hdr_size +
rte_mbuf_data_dma_addr(mbuf)),
mbuf->data_len - hdr_size);
/* TBD: check pseudo csum iff tx_prepare not called? */
if (ipv6_ext_flg) {
bd2->data.bitfields1 |=
ETH_L4_PSEUDO_CSUM_ZERO_LENGTH <<
ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT;
}
}
/* BD3 */
if (lso_flg || ipv6_ext_flg) {
bd3 = (struct eth_tx_3rd_bd *)ecore_chain_produce
(&txq->tx_pbl);
memset(bd3, 0, sizeof(struct eth_tx_3rd_bd));
nbds++;
if (lso_flg) {
bd3->data.lso_mss =
rte_cpu_to_le_16(mbuf->tso_segsz);
/* Using one header BD */
bd3->data.bitfields |=
rte_cpu_to_le_16(1 <<
ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT);
}
}
/* Handle fragmented MBUF */
m_seg = mbuf->next;
/* Encode scatter gather buffer descriptors if required */
nb_frags = qede_encode_sg_bd(txq, m_seg, bd1);
bd1->data.nbds = nb_frags;
txq->nb_tx_avail -= nb_frags;
nb_frags = qede_encode_sg_bd(txq, m_seg, &bd2, &bd3);
bd1->data.nbds = nbds + nb_frags;
txq->nb_tx_avail -= bd1->data.nbds;
txq->sw_tx_prod++;
rte_prefetch0(txq->sw_tx_ring[TX_PROD(txq)].mbuf);
bd_prod =
rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
#ifdef RTE_LIBRTE_QEDE_DEBUG_TX
print_tx_bd_info(txq, bd1, bd2, bd3, tx_ol_flags);
PMD_TX_LOG(INFO, txq, "lso=%d tunn=%d ipv6_ext=%d\n",
lso_flg, tunn_flg, ipv6_ext_flg);
#endif
nb_pkt_sent++;
txq->xmit_pkts++;
PMD_TX_LOG(INFO, txq, "nbds = %d pkt_len = %04x",
bd1->data.nbds, mbuf->pkt_len);
}
/* Write value of prod idx into bd_prod */
@ -1292,10 +1639,10 @@ qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
rte_wmb();
/* Check again for Tx completions */
(void)qede_process_tx_compl(edev, txq);
qede_process_tx_compl(edev, txq);
PMD_TX_LOG(DEBUG, txq, "to_send=%u can_send=%u sent=%u core=%d",
nb_pkts, tx_count, nb_pkt_sent, rte_lcore_id());
PMD_TX_LOG(DEBUG, txq, "to_send=%u sent=%u bd_prod=%u core=%d",
nb_pkts, nb_pkt_sent, TX_PROD(txq), rte_lcore_id());
return nb_pkt_sent;
}
@ -1380,8 +1727,7 @@ static int qede_drain_txq(struct qede_dev *qdev,
qede_process_tx_compl(edev, txq);
if (!cnt) {
if (allow_drain) {
DP_NOTICE(edev, false,
"Tx queue[%u] is stuck,"
DP_ERR(edev, "Tx queue[%u] is stuck,"
"requesting MCP to drain\n",
txq->queue_id);
rc = qdev->ops->common->drain(edev);
@ -1389,13 +1735,11 @@ static int qede_drain_txq(struct qede_dev *qdev,
return rc;
return qede_drain_txq(qdev, txq, false);
}
DP_NOTICE(edev, false,
"Timeout waiting for tx queue[%d]:"
DP_ERR(edev, "Timeout waiting for tx queue[%d]:"
"PROD=%d, CONS=%d\n",
txq->queue_id, txq->sw_tx_prod,
txq->sw_tx_cons);
return -ENODEV;
return -1;
}
cnt--;
DELAY(1000);
@ -1412,6 +1756,7 @@ static int qede_stop_queues(struct qede_dev *qdev)
{
struct qed_update_vport_params vport_update_params;
struct ecore_dev *edev = &qdev->edev;
struct ecore_sge_tpa_params tpa_params;
struct qede_fastpath *fp;
int rc, tc, i;
@ -1421,9 +1766,15 @@ static int qede_stop_queues(struct qede_dev *qdev)
vport_update_params.update_vport_active_flg = 1;
vport_update_params.vport_active_flg = 0;
vport_update_params.update_rss_flg = 0;
/* Disable TPA */
if (qdev->enable_lro) {
DP_INFO(edev, "Disabling LRO\n");
memset(&tpa_params, 0, sizeof(struct ecore_sge_tpa_params));
qede_update_sge_tpa_params(&tpa_params, qdev->mtu, false);
vport_update_params.sge_tpa_params = &tpa_params;
}
DP_INFO(edev, "Deactivate vport\n");
rc = qdev->ops->vport_update(edev, &vport_update_params);
if (rc) {
DP_ERR(edev, "Failed to update vport\n");

View File

@ -126,6 +126,19 @@
#define QEDE_PKT_TYPE_TUNN_MAX_TYPE 0x20 /* 2^5 */
#define QEDE_TX_CSUM_OFFLOAD_MASK (PKT_TX_IP_CKSUM | \
PKT_TX_TCP_CKSUM | \
PKT_TX_UDP_CKSUM | \
PKT_TX_OUTER_IP_CKSUM | \
PKT_TX_TCP_SEG)
#define QEDE_TX_OFFLOAD_MASK (QEDE_TX_CSUM_OFFLOAD_MASK | \
PKT_TX_QINQ_PKT | \
PKT_TX_VLAN_PKT)
#define QEDE_TX_OFFLOAD_NOTSUP_MASK \
(PKT_TX_OFFLOAD_MASK ^ QEDE_TX_OFFLOAD_MASK)
/*
* RX BD descriptor ring
*/
@ -135,6 +148,19 @@ struct qede_rx_entry {
/* allows expansion .. */
};
/* TPA related structures */
enum qede_agg_state {
QEDE_AGG_STATE_NONE = 0,
QEDE_AGG_STATE_START = 1,
QEDE_AGG_STATE_ERROR = 2
};
struct qede_agg_info {
struct rte_mbuf *mbuf;
uint16_t start_cqe_bd_len;
uint8_t state; /* for sanity check */
};
/*
* Structure associated with each RX queue.
*/
@ -155,6 +181,7 @@ struct qede_rx_queue {
uint64_t rx_segs;
uint64_t rx_hw_errors;
uint64_t rx_alloc_errors;
struct qede_agg_info tpa_info[ETH_TPA_MAX_AGGS_NUM];
struct qede_dev *qdev;
void *handle;
};
@ -232,6 +259,9 @@ void qede_free_mem_load(struct rte_eth_dev *eth_dev);
uint16_t qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
uint16_t qede_xmit_prep_pkts(void *p_txq, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
uint16_t qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts);