raw/ioat: add fill operation

Add fill operation enqueue support for IOAT and IDXD. The fill enqueue is
similar to the copy enqueue, but takes a 'pattern' rather than a source
address to transfer to the destination address. This patch also includes an
additional test case for the new operation type.

Signed-off-by: Kevin Laatz <kevin.laatz@intel.com>
Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
Acked-by: Radu Nicolau <radu.nicolau@intel.com>
This commit is contained in:
Kevin Laatz 2020-10-08 10:51:33 +01:00 committed by Thomas Monjalon
parent 3a377b10c2
commit 2ae23f5647
5 changed files with 161 additions and 5 deletions

View File

@ -285,6 +285,16 @@ is correct before freeing the data buffers using the returned handles:
}
Filling an Area of Memory
~~~~~~~~~~~~~~~~~~~~~~~~~~
The IOAT driver also has support for the ``fill`` operation, where an area
of memory is overwritten, or filled, with a short pattern of data.
Fill operations can be performed in much the same was as copy operations
described above, just using the ``rte_ioat_enqueue_fill()`` function rather
than the ``rte_ioat_enqueue_copy()`` function.
Querying Device Statistics
~~~~~~~~~~~~~~~~~~~~~~~~~~~

View File

@ -111,6 +111,8 @@ New Features
* Added support for Intel\ |reg| Data Streaming Accelerator hardware.
For more information, see https://01.org/blogs/2019/introducing-intel-data-streaming-accelerator
* Added support for the fill operation via the API ``rte_ioat_enqueue_fill()``,
where the hardware fills an area of memory with a repeating pattern.
* Added a per-device configuration flag to disable management
of user-provided completion handles.
* Renamed the ``rte_ioat_do_copies()`` API to ``rte_ioat_perform_ops()``,

View File

@ -155,6 +155,52 @@ test_enqueue_copies(int dev_id)
return 0;
}
static int
test_enqueue_fill(int dev_id)
{
const unsigned int length[] = {8, 64, 1024, 50, 100, 89};
struct rte_mbuf *dst = rte_pktmbuf_alloc(pool);
char *dst_data = rte_pktmbuf_mtod(dst, char *);
struct rte_mbuf *completed[2] = {0};
uint64_t pattern = 0xfedcba9876543210;
unsigned int i, j;
for (i = 0; i < RTE_DIM(length); i++) {
/* reset dst_data */
memset(dst_data, 0, length[i]);
/* perform the fill operation */
if (rte_ioat_enqueue_fill(dev_id, pattern,
dst->buf_iova + dst->data_off, length[i],
(uintptr_t)dst) != 1) {
PRINT_ERR("Error with rte_ioat_enqueue_fill\n");
return -1;
}
rte_ioat_perform_ops(dev_id);
usleep(100);
if (rte_ioat_completed_ops(dev_id, 1, (void *)&completed[0],
(void *)&completed[1]) != 1) {
PRINT_ERR("Error with completed ops\n");
return -1;
}
/* check the result */
for (j = 0; j < length[i]; j++) {
char pat_byte = ((char *)&pattern)[j % 8];
if (dst_data[j] != pat_byte) {
PRINT_ERR("Error with fill operation (length = %u): got (%x), not (%x)\n",
length[i], dst_data[j],
pat_byte);
return -1;
}
}
}
rte_pktmbuf_free(dst);
return 0;
}
int
ioat_rawdev_test(uint16_t dev_id)
{
@ -234,6 +280,7 @@ ioat_rawdev_test(uint16_t dev_id)
}
/* run the test cases */
printf("Running Copy Tests\n");
for (i = 0; i < 100; i++) {
unsigned int j;
@ -247,6 +294,21 @@ ioat_rawdev_test(uint16_t dev_id)
}
printf("\n");
/* test enqueue fill operation */
printf("Running Fill Tests\n");
for (i = 0; i < 100; i++) {
unsigned int j;
if (test_enqueue_fill(dev_id) != 0)
goto err;
rte_rawdev_xstats_get(dev_id, ids, stats, nb_xstats);
for (j = 0; j < nb_xstats; j++)
printf("%s: %"PRIu64" ", snames[j].name, stats[j]);
printf("\r");
}
printf("\n");
rte_rawdev_stop(dev_id);
if (rte_rawdev_xstats_reset(dev_id, NULL, 0) != 0) {
PRINT_ERR("Error resetting xstat values\n");

View File

@ -37,6 +37,33 @@ struct rte_ioat_rawdev_config {
bool hdls_disable; /**< if set, ignore user-supplied handle params */
};
/**
* Enqueue a fill operation onto the ioat device
*
* This queues up a fill operation to be performed by hardware, but does not
* trigger hardware to begin that operation.
*
* @param dev_id
* The rawdev device id of the ioat instance
* @param pattern
* The pattern to populate the destination buffer with
* @param dst
* The physical address of the destination buffer
* @param length
* The length of the destination buffer
* @param dst_hdl
* An opaque handle for the destination data, to be returned when this
* operation has been completed and the user polls for the completion details.
* NOTE: If hdls_disable configuration option for the device is set, this
* parameter is ignored.
* @return
* Number of operations enqueued, either 0 or 1
*/
static inline int
__rte_experimental
rte_ioat_enqueue_fill(int dev_id, uint64_t pattern, phys_addr_t dst,
unsigned int length, uintptr_t dst_hdl);
/**
* Enqueue a copy operation onto the ioat device
*

View File

@ -115,6 +115,13 @@ enum rte_idxd_ops {
#define IDXD_FLAG_REQUEST_COMPLETION (1 << 3)
#define IDXD_FLAG_CACHE_CONTROL (1 << 8)
#define IOAT_COMP_UPDATE_SHIFT 3
#define IOAT_CMD_OP_SHIFT 24
enum rte_ioat_ops {
ioat_op_copy = 0, /* Standard DMA Operation */
ioat_op_fill /* Block Fill */
};
/**
* Hardware descriptor used by DSA hardware, for both bursts and
* for individual operations.
@ -203,11 +210,8 @@ struct rte_idxd_rawdev {
struct rte_idxd_desc_batch *batch_ring;
};
/*
* Enqueue a copy operation onto the ioat device
*/
static __rte_always_inline int
__ioat_enqueue_copy(int dev_id, phys_addr_t src, phys_addr_t dst,
__ioat_write_desc(int dev_id, uint32_t op, uint64_t src, phys_addr_t dst,
unsigned int length, uintptr_t src_hdl, uintptr_t dst_hdl)
{
struct rte_ioat_rawdev *ioat =
@ -229,7 +233,8 @@ __ioat_enqueue_copy(int dev_id, phys_addr_t src, phys_addr_t dst,
desc = &ioat->desc_ring[write];
desc->size = length;
/* set descriptor write-back every 16th descriptor */
desc->u.control_raw = (uint32_t)((!(write & 0xF)) << 3);
desc->u.control_raw = (uint32_t)((op << IOAT_CMD_OP_SHIFT) |
(!(write & 0xF) << IOAT_COMP_UPDATE_SHIFT));
desc->src_addr = src;
desc->dest_addr = dst;
@ -242,6 +247,27 @@ __ioat_enqueue_copy(int dev_id, phys_addr_t src, phys_addr_t dst,
return 1;
}
static __rte_always_inline int
__ioat_enqueue_fill(int dev_id, uint64_t pattern, phys_addr_t dst,
unsigned int length, uintptr_t dst_hdl)
{
static const uintptr_t null_hdl;
return __ioat_write_desc(dev_id, ioat_op_fill, pattern, dst, length,
null_hdl, dst_hdl);
}
/*
* Enqueue a copy operation onto the ioat device
*/
static __rte_always_inline int
__ioat_enqueue_copy(int dev_id, phys_addr_t src, phys_addr_t dst,
unsigned int length, uintptr_t src_hdl, uintptr_t dst_hdl)
{
return __ioat_write_desc(dev_id, ioat_op_copy, src, dst, length,
src_hdl, dst_hdl);
}
/* add fence to last written descriptor */
static __rte_always_inline int
__ioat_fence(int dev_id)
@ -380,6 +406,23 @@ failed:
return 0;
}
static __rte_always_inline int
__idxd_enqueue_fill(int dev_id, uint64_t pattern, rte_iova_t dst,
unsigned int length, uintptr_t dst_hdl)
{
const struct rte_idxd_hw_desc desc = {
.op_flags = (idxd_op_fill << IDXD_CMD_OP_SHIFT) |
IDXD_FLAG_CACHE_CONTROL,
.src = pattern,
.dst = dst,
.size = length
};
const struct rte_idxd_user_hdl hdl = {
.dst = dst_hdl
};
return __idxd_write_desc(dev_id, &desc, &hdl);
}
static __rte_always_inline int
__idxd_enqueue_copy(int dev_id, rte_iova_t src, rte_iova_t dst,
unsigned int length, uintptr_t src_hdl, uintptr_t dst_hdl)
@ -475,6 +518,18 @@ __idxd_completed_ops(int dev_id, uint8_t max_ops,
return n;
}
static inline int
rte_ioat_enqueue_fill(int dev_id, uint64_t pattern, phys_addr_t dst,
unsigned int len, uintptr_t dst_hdl)
{
enum rte_ioat_dev_type *type =
(enum rte_ioat_dev_type *)rte_rawdevs[dev_id].dev_private;
if (*type == RTE_IDXD_DEV)
return __idxd_enqueue_fill(dev_id, pattern, dst, len, dst_hdl);
else
return __ioat_enqueue_fill(dev_id, pattern, dst, len, dst_hdl);
}
static inline int
rte_ioat_enqueue_copy(int dev_id, phys_addr_t src, phys_addr_t dst,
unsigned int length, uintptr_t src_hdl, uintptr_t dst_hdl)