test/crypto: add RSA and Mod tests

Test application include test case for :
- RSA encrypt, decrypt, sign and verify
- Modular Inversion and Exponentiation

Test cases uses predefined test vectors.

Signed-off-by: Sunila Sahu <sunila.sahu@caviumnetworks.com>
Signed-off-by: Shally Verma <shally.verma@caviumnetworks.com>
Signed-off-by: Ashish Gupta <ashish.gupta@caviumnetworks.com>
Signed-off-by: Umesh Kartha <umesh.kartha@caviumnetworks.com>
Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
This commit is contained in:
Sunila Sahu 2018-07-10 21:31:30 +05:30 committed by Pablo de Lara
parent b9209dc219
commit 2c6dab9cd9
6 changed files with 1039 additions and 0 deletions

View File

@ -179,6 +179,7 @@ SRCS-$(CONFIG_RTE_LIBRTE_PMD_RING) += test_pmd_ring_perf.c
SRCS-$(CONFIG_RTE_LIBRTE_CRYPTODEV) += test_cryptodev_blockcipher.c
SRCS-$(CONFIG_RTE_LIBRTE_CRYPTODEV) += test_cryptodev.c
SRCS-$(CONFIG_RTE_LIBRTE_CRYPTODEV) += test_cryptodev_asym.c
ifeq ($(CONFIG_RTE_COMPRESSDEV_TEST),y)
SRCS-$(CONFIG_RTE_LIBRTE_COMPRESSDEV) += test_compressdev.c

View File

@ -22,6 +22,7 @@ test_sources = files('commands.c',
'test_cpuflags.c',
'test_crc.c',
'test_cryptodev.c',
'test_cryptodev_asym.c',
'test_cryptodev_blockcipher.c',
'test_cycles.c',
'test_debug.c',
@ -130,6 +131,7 @@ test_names = [
'cryptodev_qat_autotest',
'cryptodev_aesni_mb_autotest',
'cryptodev_openssl_autotest',
'cryptodev_openssl_asym_autotest',
'cryptodev_aesni_gcm_autotest',
'cryptodev_null_autotest',
'cryptodev_sw_snow3g_autotest',

View File

@ -0,0 +1,803 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Cavium Networks
*/
#include <rte_bus_vdev.h>
#include <rte_common.h>
#include <rte_hexdump.h>
#include <rte_mbuf.h>
#include <rte_malloc.h>
#include <rte_memcpy.h>
#include <rte_pause.h>
#include <rte_cryptodev.h>
#include <rte_cryptodev_pmd.h>
#include <rte_crypto.h>
#include "test_cryptodev.h"
#include "test_cryptodev_mod_test_vectors.h"
#include "test_cryptodev_rsa_test_vectors.h"
#include "test_cryptodev_asym_util.h"
#include "test.h"
#define TEST_NUM_BUFS 10
#define TEST_NUM_SESSIONS 4
static int gbl_driver_id;
struct crypto_testsuite_params {
struct rte_mempool *op_mpool;
struct rte_mempool *session_mpool;
struct rte_cryptodev_config conf;
struct rte_cryptodev_qp_conf qp_conf;
uint8_t valid_devs[RTE_CRYPTO_MAX_DEVS];
uint8_t valid_dev_count;
};
struct crypto_unittest_params {
struct rte_cryptodev_asym_session *sess;
struct rte_crypto_op *op;
};
static struct crypto_testsuite_params testsuite_params = { NULL };
static int
test_rsa_sign_verify(void)
{
struct crypto_testsuite_params *ts_params = &testsuite_params;
struct rte_mempool *op_mpool = ts_params->op_mpool;
struct rte_mempool *sess_mpool = ts_params->session_mpool;
uint8_t dev_id = ts_params->valid_devs[0];
struct rte_crypto_asym_op *asym_op = NULL;
struct rte_crypto_op *op = NULL, *result_op = NULL;
struct rte_cryptodev_asym_session *sess = NULL;
int status = TEST_SUCCESS;
uint8_t output_buf[TEST_DATA_SIZE] = {0};
uint8_t input_buf[TEST_DATA_SIZE] = {0};
sess = rte_cryptodev_asym_session_create(sess_mpool);
if (!sess) {
RTE_LOG(ERR, USER1, "line %u "
"FAILED: %s", __LINE__,
"Session creation failed");
status = TEST_FAILED;
goto error_exit;
}
if (rte_cryptodev_asym_session_init(dev_id, sess, &rsa_xform,
sess_mpool) < 0) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s",
__LINE__, "unabled to config sym session");
status = TEST_FAILED;
goto error_exit;
}
/* set up crypto op data structure */
op = rte_crypto_op_alloc(op_mpool, RTE_CRYPTO_OP_TYPE_ASYMMETRIC);
if (!op) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s",
__LINE__,
"Failed to allocate asymmetric crypto "
"operation struct");
status = TEST_FAILED;
goto error_exit;
}
asym_op = op->asym;
/* Compute sign on the test vector */
asym_op->rsa.op_type = RTE_CRYPTO_ASYM_OP_SIGN;
memcpy(input_buf, &rsaplaintext.data,
rsaplaintext.len);
asym_op->rsa.message.data = input_buf;
asym_op->rsa.message.length = rsaplaintext.len;
asym_op->rsa.sign.data = output_buf;
asym_op->rsa.pad = RTE_CRYPTO_RSA_PKCS1_V1_5_BT1;
debug_hexdump(stdout, "message", asym_op->rsa.message.data,
asym_op->rsa.message.length);
/* attach asymmetric crypto session to crypto operations */
rte_crypto_op_attach_asym_session(op, sess);
RTE_LOG(DEBUG, USER1, "Process ASYM operation");
/* Process crypto operation */
if (rte_cryptodev_enqueue_burst(dev_id, 0, &op, 1) != 1) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s",
__LINE__, "Error sending packet for operation");
status = TEST_FAILED;
goto error_exit;
}
while (rte_cryptodev_dequeue_burst(dev_id, 0, &result_op, 1) == 0)
rte_pause();
if (result_op == NULL) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s",
__LINE__, "Failed to process asym crypto op");
status = TEST_FAILED;
goto error_exit;
}
debug_hexdump(stdout, "signed message", asym_op->rsa.sign.data,
asym_op->rsa.sign.length);
asym_op = result_op->asym;
/* Verify sign */
asym_op->rsa.op_type = RTE_CRYPTO_ASYM_OP_VERIFY;
asym_op->rsa.pad = RTE_CRYPTO_RSA_PKCS1_V1_5_BT2;
/* Process crypto operation */
if (rte_cryptodev_enqueue_burst(dev_id, 0, &op, 1) != 1) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s",
__LINE__, "Error sending packet for operation");
status = TEST_FAILED;
goto error_exit;
}
while (rte_cryptodev_dequeue_burst(dev_id, 0, &result_op, 1) == 0)
rte_pause();
if (result_op == NULL) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s",
__LINE__, "Failed to process asym crypto op");
status = TEST_FAILED;
goto error_exit;
}
status = TEST_SUCCESS;
int ret = 0;
ret = rsa_verify(&rsaplaintext, result_op);
if (ret)
status = TEST_FAILED;
error_exit:
if (sess) {
rte_cryptodev_asym_session_clear(dev_id, sess);
rte_cryptodev_asym_session_free(sess);
}
if (op)
rte_crypto_op_free(op);
TEST_ASSERT_EQUAL(status, 0, "Test failed");
return status;
}
static int
test_rsa_enc_dec(void)
{
struct crypto_testsuite_params *ts_params = &testsuite_params;
struct rte_mempool *op_mpool = ts_params->op_mpool;
struct rte_mempool *sess_mpool = ts_params->session_mpool;
uint8_t dev_id = ts_params->valid_devs[0];
struct rte_crypto_asym_op *asym_op = NULL;
struct rte_crypto_op *op = NULL, *result_op = NULL;
struct rte_cryptodev_asym_session *sess = NULL;
int status = TEST_SUCCESS;
uint8_t input_buf[TEST_DATA_SIZE] = {0};
sess = rte_cryptodev_asym_session_create(sess_mpool);
if (!sess) {
RTE_LOG(ERR, USER1, "line %u "
"FAILED: %s", __LINE__,
"Session creation failed");
status = TEST_FAILED;
goto error_exit;
}
if (rte_cryptodev_asym_session_init(dev_id, sess, &rsa_xform,
sess_mpool) < 0) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s",
__LINE__, "unabled to config sym session");
status = TEST_FAILED;
goto error_exit;
}
/* set up crypto op data structure */
op = rte_crypto_op_alloc(op_mpool, RTE_CRYPTO_OP_TYPE_ASYMMETRIC);
if (!op) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s",
__LINE__,
"Failed to allocate asymmetric crypto "
"operation struct");
status = TEST_FAILED;
goto error_exit;
}
asym_op = op->asym;
/*Compute encryption on the test vector */
asym_op->rsa.op_type = RTE_CRYPTO_ASYM_OP_ENCRYPT;
memcpy(input_buf, rsaplaintext.data,
rsaplaintext.len);
asym_op->rsa.message.data = input_buf;
asym_op->rsa.message.length = rsaplaintext.len;
asym_op->rsa.pad = RTE_CRYPTO_RSA_PKCS1_V1_5_BT2;
debug_hexdump(stdout, "message", asym_op->rsa.message.data,
asym_op->rsa.message.length);
/* attach asymmetric crypto session to crypto operations */
rte_crypto_op_attach_asym_session(op, sess);
RTE_LOG(DEBUG, USER1, "Process ASYM operation");
/* Process crypto operation */
if (rte_cryptodev_enqueue_burst(dev_id, 0, &op, 1) != 1) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s",
__LINE__, "Error sending packet for operation");
status = TEST_FAILED;
goto error_exit;
}
while (rte_cryptodev_dequeue_burst(dev_id, 0, &result_op, 1) == 0)
rte_pause();
if (result_op == NULL) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s",
__LINE__, "Failed to process asym crypto op");
status = TEST_FAILED;
goto error_exit;
}
debug_hexdump(stdout, "encrypted message", asym_op->rsa.message.data,
asym_op->rsa.message.length);
/* Use the resulted output as decryption Input vector*/
asym_op = result_op->asym;
asym_op->rsa.op_type = RTE_CRYPTO_ASYM_OP_DECRYPT;
asym_op->rsa.pad = RTE_CRYPTO_RSA_PKCS1_V1_5_BT1;
/* Process crypto operation */
if (rte_cryptodev_enqueue_burst(dev_id, 0, &op, 1) != 1) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s",
__LINE__, "Error sending packet for operation");
status = TEST_FAILED;
goto error_exit;
}
while (rte_cryptodev_dequeue_burst(dev_id, 0, &result_op, 1) == 0)
rte_pause();
if (result_op == NULL) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s",
__LINE__, "Failed to process asym crypto op");
status = TEST_FAILED;
goto error_exit;
}
status = TEST_SUCCESS;
int ret = 0;
ret = rsa_verify(&rsaplaintext, result_op);
if (ret)
status = TEST_FAILED;
error_exit:
if (sess) {
rte_cryptodev_asym_session_clear(dev_id, sess);
rte_cryptodev_asym_session_free(sess);
}
if (op)
rte_crypto_op_free(op);
TEST_ASSERT_EQUAL(status, 0, "Test failed");
return status;
}
static int
testsuite_setup(void)
{
struct crypto_testsuite_params *ts_params = &testsuite_params;
struct rte_cryptodev_info info;
uint32_t i = 0, nb_devs, dev_id;
int ret;
uint16_t qp_id;
memset(ts_params, 0, sizeof(*ts_params));
ts_params->op_mpool = rte_crypto_op_pool_create(
"CRYPTO_ASYM_OP_POOL",
RTE_CRYPTO_OP_TYPE_ASYMMETRIC,
TEST_NUM_BUFS, 0,
0,
rte_socket_id());
if (ts_params->op_mpool == NULL) {
RTE_LOG(ERR, USER1, "Can't create ASYM_CRYPTO_OP_POOL\n");
return TEST_FAILED;
}
/* Create an OPENSSL device if required */
if (gbl_driver_id == rte_cryptodev_driver_id_get(
RTE_STR(CRYPTODEV_NAME_OPENSSL_PMD))) {
nb_devs = rte_cryptodev_device_count_by_driver(
rte_cryptodev_driver_id_get(
RTE_STR(CRYPTODEV_NAME_OPENSSL_PMD)));
if (nb_devs < 1) {
ret = rte_vdev_init(
RTE_STR(CRYPTODEV_NAME_OPENSSL_PMD),
NULL);
TEST_ASSERT(ret == 0, "Failed to create "
"instance of pmd : %s",
RTE_STR(CRYPTODEV_NAME_OPENSSL_PMD));
}
}
nb_devs = rte_cryptodev_count();
if (nb_devs < 1) {
RTE_LOG(ERR, USER1, "No crypto devices found?\n");
return TEST_FAILED;
}
/* Create list of valid crypto devs */
for (i = 0; i < nb_devs; i++) {
rte_cryptodev_info_get(i, &info);
if (info.driver_id == gbl_driver_id)
ts_params->valid_devs[ts_params->valid_dev_count++] = i;
}
if (ts_params->valid_dev_count < 1)
return TEST_FAILED;
/* Set up all the qps on the first of the valid devices found */
dev_id = ts_params->valid_devs[0];
rte_cryptodev_info_get(dev_id, &info);
/* check if device support asymmetric, skip if not */
if (!(info.feature_flags &
RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)) {
RTE_LOG(ERR, USER1, "Device doesn't support asymmetric. "
"Test Skipped.\n");
return TEST_FAILED;
}
/* configure device with num qp */
ts_params->conf.nb_queue_pairs = info.max_nb_queue_pairs;
ts_params->conf.socket_id = SOCKET_ID_ANY;
TEST_ASSERT_SUCCESS(rte_cryptodev_configure(dev_id,
&ts_params->conf),
"Failed to configure cryptodev %u with %u qps",
dev_id, ts_params->conf.nb_queue_pairs);
/* configure qp */
ts_params->qp_conf.nb_descriptors = DEFAULT_NUM_OPS_INFLIGHT;
for (qp_id = 0; qp_id < info.max_nb_queue_pairs; qp_id++) {
TEST_ASSERT_SUCCESS(rte_cryptodev_queue_pair_setup(
dev_id, qp_id, &ts_params->qp_conf,
rte_cryptodev_socket_id(dev_id),
ts_params->session_mpool),
"Failed to setup queue pair %u on cryptodev %u ASYM",
qp_id, dev_id);
}
/* setup asym session pool */
unsigned int session_size =
rte_cryptodev_asym_get_private_session_size(dev_id);
/*
* Create mempool with TEST_NUM_SESSIONS * 2,
* to include the session headers
*/
ts_params->session_mpool = rte_mempool_create(
"test_asym_sess_mp",
TEST_NUM_SESSIONS * 2,
session_size,
0, 0, NULL, NULL, NULL,
NULL, SOCKET_ID_ANY,
0);
TEST_ASSERT_NOT_NULL(ts_params->session_mpool,
"session mempool allocation failed");
return TEST_SUCCESS;
}
static void
testsuite_teardown(void)
{
struct crypto_testsuite_params *ts_params = &testsuite_params;
if (ts_params->op_mpool != NULL) {
RTE_LOG(DEBUG, USER1, "CRYPTO_OP_POOL count %u\n",
rte_mempool_avail_count(ts_params->op_mpool));
}
/* Free session mempools */
if (ts_params->session_mpool != NULL) {
rte_mempool_free(ts_params->session_mpool);
ts_params->session_mpool = NULL;
}
}
static int
ut_setup(void)
{
struct crypto_testsuite_params *ts_params = &testsuite_params;
uint16_t qp_id;
/* Reconfigure device to default parameters */
ts_params->conf.socket_id = SOCKET_ID_ANY;
TEST_ASSERT_SUCCESS(rte_cryptodev_configure(ts_params->valid_devs[0],
&ts_params->conf),
"Failed to configure cryptodev %u",
ts_params->valid_devs[0]);
for (qp_id = 0; qp_id < ts_params->conf.nb_queue_pairs ; qp_id++) {
TEST_ASSERT_SUCCESS(rte_cryptodev_queue_pair_setup(
ts_params->valid_devs[0], qp_id,
&ts_params->qp_conf,
rte_cryptodev_socket_id(ts_params->valid_devs[0]),
ts_params->session_mpool),
"Failed to setup queue pair %u on cryptodev %u",
qp_id, ts_params->valid_devs[0]);
}
rte_cryptodev_stats_reset(ts_params->valid_devs[0]);
/* Start the device */
TEST_ASSERT_SUCCESS(rte_cryptodev_start(ts_params->valid_devs[0]),
"Failed to start cryptodev %u",
ts_params->valid_devs[0]);
return TEST_SUCCESS;
}
static void
ut_teardown(void)
{
struct crypto_testsuite_params *ts_params = &testsuite_params;
struct rte_cryptodev_stats stats;
rte_cryptodev_stats_get(ts_params->valid_devs[0], &stats);
/* Stop the device */
rte_cryptodev_stop(ts_params->valid_devs[0]);
}
static inline void print_asym_capa(
const struct rte_cryptodev_asymmetric_xform_capability *capa)
{
int i = 0;
printf("\nxform type: %s\n===================\n",
rte_crypto_asym_xform_strings[capa->xform_type]);
printf("operation supported -");
for (i = 0; i < RTE_CRYPTO_ASYM_OP_LIST_END; i++) {
/* check supported operations */
if (rte_cryptodev_asym_xform_capability_check_optype(capa, i))
printf(" %s",
rte_crypto_asym_op_strings[i]);
}
switch (capa->xform_type) {
case RTE_CRYPTO_ASYM_XFORM_RSA:
case RTE_CRYPTO_ASYM_XFORM_MODINV:
case RTE_CRYPTO_ASYM_XFORM_MODEX:
case RTE_CRYPTO_ASYM_XFORM_DH:
case RTE_CRYPTO_ASYM_XFORM_DSA:
printf(" modlen: min %d max %d increment %d\n",
capa->modlen.min,
capa->modlen.max,
capa->modlen.increment);
break;
default:
break;
}
}
static int
test_capability(void)
{
struct crypto_testsuite_params *ts_params = &testsuite_params;
uint8_t dev_id = ts_params->valid_devs[0];
struct rte_cryptodev_info dev_info;
const struct rte_cryptodev_capabilities *dev_capa;
int i = 0;
struct rte_cryptodev_asym_capability_idx idx;
const struct rte_cryptodev_asymmetric_xform_capability *capa;
rte_cryptodev_info_get(dev_id, &dev_info);
if (!(dev_info.feature_flags &
RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)) {
RTE_LOG(INFO, USER1,
"Device doesn't support asymmetric. Test Skipped\n");
return TEST_SUCCESS;
}
/* print xform capability */
for (i = 0;
dev_info.capabilities[i].op != RTE_CRYPTO_OP_TYPE_UNDEFINED;
i++) {
dev_capa = &(dev_info.capabilities[i]);
if (dev_info.capabilities[i].op ==
RTE_CRYPTO_OP_TYPE_ASYMMETRIC) {
idx.type = dev_capa->asym.xform_capa.xform_type;
capa = rte_cryptodev_asym_capability_get(dev_id,
(const struct
rte_cryptodev_asym_capability_idx *) &idx);
print_asym_capa(capa);
}
}
return TEST_SUCCESS;
}
static int
test_mod_inv(void)
{
struct crypto_testsuite_params *ts_params = &testsuite_params;
struct rte_mempool *op_mpool = ts_params->op_mpool;
struct rte_mempool *sess_mpool = ts_params->session_mpool;
uint8_t dev_id = ts_params->valid_devs[0];
struct rte_crypto_asym_op *asym_op = NULL;
struct rte_crypto_op *op = NULL, *result_op = NULL;
struct rte_cryptodev_asym_session *sess = NULL;
int status = TEST_SUCCESS;
struct rte_cryptodev_asym_capability_idx cap_idx;
const struct rte_cryptodev_asymmetric_xform_capability *capability;
uint8_t input[TEST_DATA_SIZE] = {0};
int ret = 0;
if (rte_cryptodev_asym_get_xform_enum(
&modinv_xform.xform_type, "modinv") < 0) {
RTE_LOG(ERR, USER1,
"Invalid ASYNC algorithm specified\n");
return -1;
}
cap_idx.type = modinv_xform.xform_type;
capability = rte_cryptodev_asym_capability_get(dev_id,
&cap_idx);
if (rte_cryptodev_asym_xform_capability_check_modlen(
capability,
modinv_xform.modinv.modulus.length)) {
RTE_LOG(ERR, USER1,
"Invalid MODULOUS length specified\n");
return -1;
}
sess = rte_cryptodev_asym_session_create(sess_mpool);
if (!sess) {
RTE_LOG(ERR, USER1, "line %u "
"FAILED: %s", __LINE__,
"Session creation failed");
status = TEST_FAILED;
goto error_exit;
}
if (rte_cryptodev_asym_session_init(dev_id, sess, &modinv_xform,
sess_mpool) < 0) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s",
__LINE__, "unabled to config sym session");
status = TEST_FAILED;
goto error_exit;
}
/* generate crypto op data structure */
op = rte_crypto_op_alloc(op_mpool, RTE_CRYPTO_OP_TYPE_ASYMMETRIC);
if (!op) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s",
__LINE__, "Failed to allocate asymmetric crypto "
"operation struct");
status = TEST_FAILED;
goto error_exit;
}
asym_op = op->asym;
memcpy(input, base, sizeof(base));
asym_op->modinv.base.data = input;
asym_op->modinv.base.length = sizeof(base);
/* attach asymmetric crypto session to crypto operations */
rte_crypto_op_attach_asym_session(op, sess);
RTE_LOG(DEBUG, USER1, "Process ASYM operation");
/* Process crypto operation */
if (rte_cryptodev_enqueue_burst(dev_id, 0, &op, 1) != 1) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s",
__LINE__, "Error sending packet for operation");
status = TEST_FAILED;
goto error_exit;
}
while (rte_cryptodev_dequeue_burst(dev_id, 0, &result_op, 1) == 0)
rte_pause();
if (result_op == NULL) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s",
__LINE__, "Failed to process asym crypto op");
status = TEST_FAILED;
goto error_exit;
}
ret = verify_modinv(mod_inv, result_op);
if (ret) {
RTE_LOG(ERR, USER1,
"operation verification failed\n");
status = TEST_FAILED;
}
error_exit:
if (sess) {
rte_cryptodev_asym_session_clear(dev_id, sess);
rte_cryptodev_asym_session_free(sess);
}
if (op)
rte_crypto_op_free(op);
TEST_ASSERT_EQUAL(status, 0, "Test failed");
return status;
}
static int
test_mod_exp(void)
{
struct crypto_testsuite_params *ts_params = &testsuite_params;
struct rte_mempool *op_mpool = ts_params->op_mpool;
struct rte_mempool *sess_mpool = ts_params->session_mpool;
uint8_t dev_id = ts_params->valid_devs[0];
struct rte_crypto_asym_op *asym_op = NULL;
struct rte_crypto_op *op = NULL, *result_op = NULL;
struct rte_cryptodev_asym_session *sess = NULL;
int status = TEST_SUCCESS;
struct rte_cryptodev_asym_capability_idx cap_idx;
const struct rte_cryptodev_asymmetric_xform_capability *capability;
uint8_t input[TEST_DATA_SIZE] = {0};
int ret = 0;
if (rte_cryptodev_asym_get_xform_enum(&modex_xform.xform_type,
"modexp")
< 0) {
RTE_LOG(ERR, USER1,
"Invalid ASYNC algorithm specified\n");
return -1;
}
/* check for modlen capability */
cap_idx.type = modex_xform.xform_type;
capability = rte_cryptodev_asym_capability_get(dev_id, &cap_idx);
if (rte_cryptodev_asym_xform_capability_check_modlen(
capability, modex_xform.modex.modulus.length)) {
RTE_LOG(ERR, USER1,
"Invalid MODULOUS length specified\n");
return -1;
}
/* generate crypto op data structure */
op = rte_crypto_op_alloc(op_mpool, RTE_CRYPTO_OP_TYPE_ASYMMETRIC);
if (!op) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s",
__LINE__, "Failed to allocate asymmetric crypto "
"operation struct");
status = TEST_FAILED;
goto error_exit;
}
sess = rte_cryptodev_asym_session_create(sess_mpool);
if (!sess) {
RTE_LOG(ERR, USER1,
"line %u "
"FAILED: %s", __LINE__,
"Session creation failed");
status = TEST_FAILED;
goto error_exit;
}
if (rte_cryptodev_asym_session_init(dev_id, sess, &modex_xform,
sess_mpool) < 0) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s",
__LINE__, "unabled to config sym session");
status = TEST_FAILED;
goto error_exit;
}
asym_op = op->asym;
memcpy(input, base, sizeof(base));
asym_op->modex.base.data = input;
asym_op->modex.base.length = sizeof(base);
/* attach asymmetric crypto session to crypto operations */
rte_crypto_op_attach_asym_session(op, sess);
RTE_LOG(DEBUG, USER1, "Process ASYM operation");
/* Process crypto operation */
if (rte_cryptodev_enqueue_burst(dev_id, 0, &op, 1) != 1) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s",
__LINE__, "Error sending packet for operation");
status = TEST_FAILED;
goto error_exit;
}
while (rte_cryptodev_dequeue_burst(dev_id, 0, &result_op, 1) == 0)
rte_pause();
if (result_op == NULL) {
RTE_LOG(ERR, USER1,
"line %u FAILED: %s",
__LINE__, "Failed to process asym crypto op");
status = TEST_FAILED;
goto error_exit;
}
ret = verify_modexp(mod_exp, result_op);
if (ret) {
RTE_LOG(ERR, USER1,
"operation verification failed\n");
status = TEST_FAILED;
}
error_exit:
if (sess != NULL) {
rte_cryptodev_asym_session_clear(dev_id, sess);
rte_cryptodev_asym_session_free(sess);
}
if (op != NULL)
rte_crypto_op_free(op);
TEST_ASSERT_EQUAL(status, 0, "Test failed");
return status;
}
static struct unit_test_suite cryptodev_openssl_asym_testsuite = {
.suite_name = "Crypto Device OPENSSL ASYM Unit Test Suite",
.setup = testsuite_setup,
.teardown = testsuite_teardown,
.unit_test_cases = {
TEST_CASE_ST(ut_setup, ut_teardown, test_capability),
TEST_CASE_ST(ut_setup, ut_teardown, test_rsa_enc_dec),
TEST_CASE_ST(ut_setup, ut_teardown, test_rsa_sign_verify),
TEST_CASE_ST(ut_setup, ut_teardown, test_mod_inv),
TEST_CASE_ST(ut_setup, ut_teardown, test_mod_exp),
TEST_CASES_END() /**< NULL terminate unit test array */
}
};
static int
test_cryptodev_openssl_asym(void)
{
gbl_driver_id = rte_cryptodev_driver_id_get(
RTE_STR(CRYPTODEV_NAME_OPENSSL_PMD));
if (gbl_driver_id == -1) {
RTE_LOG(ERR, USER1, "OPENSSL PMD must be loaded. Check if "
"CONFIG_RTE_LIBRTE_PMD_OPENSSL is enabled "
"in config file to run this testsuite.\n");
return TEST_FAILED;
}
return unit_test_suite_runner(&cryptodev_openssl_asym_testsuite);
}
REGISTER_TEST_COMMAND(cryptodev_openssl_asym_autotest,
test_cryptodev_openssl_asym);

View File

@ -0,0 +1,42 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Cavium Networks
*/
#ifndef TEST_CRYPTODEV_ASYM_TEST_UTIL_H__
#define TEST_CRYPTODEV_ASYM_TEST_UTIL_H__
/* Below Apis compare resulted buffer to original test vector */
static inline int rsa_verify(struct rsa_test_data *rsa_param,
struct rte_crypto_op *result_op)
{
if (memcmp(rsa_param->data,
result_op->asym->rsa.message.data,
result_op->asym->rsa.message.length))
return -1;
return 0;
}
static inline int verify_modinv(uint8_t *mod_inv,
struct rte_crypto_op *result_op)
{
if (memcmp(mod_inv, result_op->asym->modinv.base.data,
result_op->asym->modinv.base.length))
return -1;
return 0;
}
static inline int verify_modexp(uint8_t *mod_exp,
struct rte_crypto_op *result_op)
{
if (memcmp(mod_exp, result_op->asym->modex.base.data,
result_op->asym->modex.base.length))
return -1;
return 0;
}
#endif /* TEST_CRYPTODEV_ASYM_TEST_UTIL_H__ */

View File

@ -0,0 +1,103 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Cavium Networks
*/
#ifndef TEST_CRYPTODEV_MOD_TEST_VECTORS_H_
#define TEST_CRYPTODEV_MOD_TEST_VECTORS_H_
/* modular operation test data */
uint8_t base[] = {
0xF8, 0xBA, 0x1A, 0x55, 0xD0, 0x2F, 0x85,
0xAE, 0x96, 0x7B, 0xB6, 0x2F, 0xB6, 0xCD,
0xA8, 0xEB, 0x7E, 0x78, 0xA0, 0x50
};
uint8_t mod_p[] = {
0x00, 0xb3, 0xa1, 0xaf, 0xb7, 0x13, 0x08, 0x00,
0x0a, 0x35, 0xdc, 0x2b, 0x20, 0x8d, 0xa1, 0xb5,
0xce, 0x47, 0x8a, 0xc3, 0x80, 0xf4, 0x7d, 0x4a,
0xa2, 0x62, 0xfd, 0x61, 0x7f, 0xb5, 0xa8, 0xde,
0x0a, 0x17, 0x97, 0xa0, 0xbf, 0xdf, 0x56, 0x5a,
0x3d, 0x51, 0x56, 0x4f, 0x70, 0x70, 0x3f, 0x63,
0x6a, 0x44, 0x5b, 0xad, 0x84, 0x0d, 0x3f, 0x27,
0x6e, 0x3b, 0x34, 0x91, 0x60, 0x14, 0xb9, 0xaa,
0x72, 0xfd, 0xa3, 0x64, 0xd2, 0x03, 0xa7, 0x53,
0x87, 0x9e, 0x88, 0x0b, 0xc1, 0x14, 0x93, 0x1a,
0x62, 0xff, 0xb1, 0x5d, 0x74, 0xcd, 0x59, 0x63,
0x18, 0x11, 0x3d, 0x4f, 0xba, 0x75, 0xd4, 0x33,
0x4e, 0x23, 0x6b, 0x7b, 0x57, 0x44, 0xe1, 0xd3,
0x03, 0x13, 0xa6, 0xf0, 0x8b, 0x60, 0xb0, 0x9e,
0xee, 0x75, 0x08, 0x9d, 0x71, 0x63, 0x13, 0xcb,
0xa6, 0x81, 0x92, 0x14, 0x03, 0x22, 0x2d, 0xde,
0x55
};
uint8_t mod_e[] = {0x01, 0x00, 0x01};
/* Precomputed modular exponentiation for verification */
uint8_t mod_exp[] = {
0x2C, 0x60, 0x75, 0x45, 0x98, 0x9D, 0xE0, 0x72,
0xA0, 0x9D, 0x3A, 0x9E, 0x03, 0x38, 0x73, 0x3C,
0x31, 0x83, 0x04, 0xFE, 0x75, 0x43, 0xE6, 0x17,
0x5C, 0x01, 0x29, 0x51, 0x69, 0x33, 0x62, 0x2D,
0x78, 0xBE, 0xAE, 0xC4, 0xBC, 0xDE, 0x7E, 0x2C,
0x77, 0x84, 0xF2, 0xC5, 0x14, 0xB5, 0x2F, 0xF7,
0xC5, 0x94, 0xEF, 0x86, 0x75, 0x75, 0xB5, 0x11,
0xE5, 0x0E, 0x0A, 0x29, 0x76, 0xE2, 0xEA, 0x32,
0x0E, 0x43, 0x77, 0x7E, 0x2C, 0x27, 0xAC, 0x3B,
0x86, 0xA5, 0xDB, 0xC9, 0x48, 0x40, 0xE8, 0x99,
0x9A, 0x0A, 0x3D, 0xD6, 0x74, 0xFA, 0x2E, 0x2E,
0x5B, 0xAF, 0x8C, 0x99, 0x44, 0x2A, 0x67, 0x38,
0x27, 0x41, 0x59, 0x9D, 0xB8, 0x51, 0xC9, 0xF7,
0x43, 0x61, 0x31, 0x6E, 0xF1, 0x25, 0x38, 0x7F,
0xAE, 0xC6, 0xD0, 0xBB, 0x29, 0x76, 0x3F, 0x46,
0x2E, 0x1B, 0xE4, 0x67, 0x71, 0xE3, 0x87, 0x5A
};
/* Precomputed modular inverse for verification */
uint8_t mod_inv[] = {
0x52, 0xb1, 0xa3, 0x8c, 0xc5, 0x8a, 0xb9, 0x1f,
0xb6, 0x82, 0xf5, 0x6a, 0x9a, 0xde, 0x8d, 0x2e,
0x62, 0x4b, 0xac, 0x49, 0x21, 0x1d, 0x30, 0x4d,
0x32, 0xac, 0x1f, 0x40, 0x6d, 0x52, 0xc7, 0x9b,
0x6c, 0x0a, 0x82, 0x3a, 0x2c, 0xaf, 0x6b, 0x6d,
0x17, 0xbe, 0x43, 0xed, 0x97, 0x78, 0xeb, 0x4c,
0x92, 0x6f, 0xcf, 0xed, 0xb1, 0x09, 0xcb, 0x27,
0xc2, 0xde, 0x62, 0xfd, 0x21, 0xe6, 0xbd, 0x4f,
0xfe, 0x7a, 0x1b, 0x50, 0xfe, 0x10, 0x4a, 0xb0,
0xb7, 0xcf, 0xdb, 0x7d, 0xca, 0xc2, 0xf0, 0x1c,
0x39, 0x48, 0x6a, 0xb5, 0x4d, 0x8c, 0xfe, 0x63,
0x91, 0x9c, 0x21, 0xc3, 0x0e, 0x76, 0xad, 0x44,
0x8d, 0x54, 0x33, 0x99, 0xe1, 0x80, 0x19, 0xba,
0xb5, 0xac, 0x7d, 0x9c, 0xce, 0x91, 0x2a, 0xd9,
0x2c, 0xe1, 0x16, 0xd6, 0xd7, 0xcf, 0x9d, 0x05,
0x9a, 0x66, 0x9a, 0x3a, 0xc1, 0xb8, 0x4b, 0xc3
};
struct rte_crypto_asym_xform modex_xform = {
.next = NULL,
.xform_type = RTE_CRYPTO_ASYM_XFORM_MODEX,
.modex = {
.modulus = {
.data = mod_p,
.length = sizeof(mod_p)
},
.exponent = {
.data = mod_e,
.length = sizeof(mod_e)
}
}
};
struct rte_crypto_asym_xform modinv_xform = {
.next = NULL,
.xform_type = RTE_CRYPTO_ASYM_XFORM_MODINV,
.modinv = {
.modulus = {
.data = mod_p,
.length = sizeof(mod_p)
}
}
};
#endif /* TEST_CRYPTODEV_MOD_TEST_VECTORS_H__ */

View File

@ -0,0 +1,88 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Cavium Networks
*/
#ifndef TEST_CRYPTODEV_RSA_TEST_VECTORS_H__
#define TEST_CRYPTODEV_RSA_TEST_VECTORS_H__
#include "rte_crypto_asym.h"
#define TEST_DATA_SIZE 4096
struct rsa_test_data {
uint8_t data[TEST_DATA_SIZE];
unsigned int len;
};
struct rsa_test_data rsaplaintext = {
.data = {
0xf8, 0xba, 0x1a, 0x55, 0xd0, 0x2f, 0x85, 0xae,
0x96, 0x7b, 0xb6, 0x2f, 0xb6, 0xcd, 0xa8, 0xeb,
0x7e, 0x78, 0xa0, 0x50
},
.len = 20
};
uint8_t rsa_n[] = {
0xb3, 0xa1, 0xaf, 0xb7, 0x13, 0x08, 0x00,
0x0a, 0x35, 0xdc, 0x2b, 0x20, 0x8d, 0xa1, 0xb5,
0xce, 0x47, 0x8a, 0xc3, 0x80, 0xf4, 0x7d, 0x4a,
0xa2, 0x62, 0xfd, 0x61, 0x7f, 0xb5, 0xa8, 0xde,
0x0a, 0x17, 0x97, 0xa0, 0xbf, 0xdf, 0x56, 0x5a,
0x3d, 0x51, 0x56, 0x4f, 0x70, 0x70, 0x3f, 0x63,
0x6a, 0x44, 0x5b, 0xad, 0x84, 0x0d, 0x3f, 0x27,
0x6e, 0x3b, 0x34, 0x91, 0x60, 0x14, 0xb9, 0xaa,
0x72, 0xfd, 0xa3, 0x64, 0xd2, 0x03, 0xa7, 0x53,
0x87, 0x9e, 0x88, 0x0b, 0xc1, 0x14, 0x93, 0x1a,
0x62, 0xff, 0xb1, 0x5d, 0x74, 0xcd, 0x59, 0x63,
0x18, 0x11, 0x3d, 0x4f, 0xba, 0x75, 0xd4, 0x33,
0x4e, 0x23, 0x6b, 0x7b, 0x57, 0x44, 0xe1, 0xd3,
0x03, 0x13, 0xa6, 0xf0, 0x8b, 0x60, 0xb0, 0x9e,
0xee, 0x75, 0x08, 0x9d, 0x71, 0x63, 0x13, 0xcb,
0xa6, 0x81, 0x92, 0x14, 0x03, 0x22, 0x2d, 0xde,
0x55
};
uint8_t rsa_d[] = {
0x24, 0xd7, 0xea, 0xf4, 0x7f, 0xe0, 0xca, 0x31,
0x4d, 0xee, 0xc4, 0xa1, 0xbe, 0xab, 0x06, 0x61,
0x32, 0xe7, 0x51, 0x46, 0x27, 0xdf, 0x72, 0xe9,
0x6f, 0xa8, 0x4c, 0xd1, 0x26, 0xef, 0x65, 0xeb,
0x67, 0xff, 0x5f, 0xa7, 0x3b, 0x25, 0xb9, 0x08,
0x8e, 0xa0, 0x47, 0x56, 0xe6, 0x8e, 0xf9, 0xd3,
0x18, 0x06, 0x3d, 0xc6, 0xb1, 0xf8, 0xdc, 0x1b,
0x8d, 0xe5, 0x30, 0x54, 0x26, 0xac, 0x16, 0x3b,
0x7b, 0xad, 0x46, 0x9e, 0x21, 0x6a, 0x57, 0xe6,
0x81, 0x56, 0x1d, 0x2a, 0xc4, 0x39, 0x63, 0x67,
0x81, 0x2c, 0xca, 0xcc, 0xf8, 0x42, 0x04, 0xbe,
0xcf, 0x8f, 0x6c, 0x5b, 0x81, 0x46, 0xb9, 0xc7,
0x62, 0x90, 0x87, 0x35, 0x03, 0x9b, 0x89, 0xcb,
0x37, 0xbd, 0xf1, 0x1b, 0x99, 0xa1, 0x9a, 0x78,
0xd5, 0x4c, 0xdd, 0x3f, 0x41, 0x0c, 0xb7, 0x1a,
0xd9, 0x7b, 0x87, 0x5f, 0xbe, 0xb1, 0x83, 0x41
};
uint8_t rsa_e[] = {0x01, 0x00, 0x01};
/** rsa xform using exponent key */
struct rte_crypto_asym_xform rsa_xform = {
.next = NULL,
.xform_type = RTE_CRYPTO_ASYM_XFORM_RSA,
.rsa = {
.n = {
.data = rsa_n,
.length = sizeof(rsa_n)
},
.e = {
.data = rsa_e,
.length = sizeof(rsa_e)
},
.key_type = RTE_RSA_KEY_TYPE_EXP,
.d = {
.data = rsa_d,
.length = sizeof(rsa_d)
}
}
};
#endif /* TEST_CRYPTODEV_RSA_TEST_VECTORS_H__ */