ring: use custom element for fixed size API

Use rte_ring_xxx_elem_xxx APIs to replace legacy API implementation.
This reduces code duplication and improves code maintenance.

Tests done on Arm, x86 [1] and PPC [2] do not indicate performance
degradation.
[1] https://mails.dpdk.org/archives/dev/2020-July/173780.html
[2] https://mails.dpdk.org/archives/dev/2020-July/173863.html

Signed-off-by: Feifei Wang <feifei.wang2@arm.com>
Reviewed-by: Honnappa Nagarahalli <honnappa.nagarahalli@arm.com>
Reviewed-by: Ruifeng Wang <ruifeng.wang@arm.com>
Tested-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
Tested-by: David Christensen <drc@linux.vnet.ibm.com>
Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
This commit is contained in:
Feifei Wang 2020-07-09 01:12:12 -05:00 committed by David Marchand
parent 019bffab51
commit 2d6ed071a8

View File

@ -191,168 +191,6 @@ void rte_ring_free(struct rte_ring *r);
*/ */
void rte_ring_dump(FILE *f, const struct rte_ring *r); void rte_ring_dump(FILE *f, const struct rte_ring *r);
/* the actual enqueue of pointers on the ring.
* Placed here since identical code needed in both
* single and multi producer enqueue functions */
#define ENQUEUE_PTRS(r, ring_start, prod_head, obj_table, n, obj_type) do { \
unsigned int i; \
const uint32_t size = (r)->size; \
uint32_t idx = prod_head & (r)->mask; \
obj_type *ring = (obj_type *)ring_start; \
if (likely(idx + n < size)) { \
for (i = 0; i < (n & ~0x3); i += 4, idx += 4) { \
ring[idx] = obj_table[i]; \
ring[idx + 1] = obj_table[i + 1]; \
ring[idx + 2] = obj_table[i + 2]; \
ring[idx + 3] = obj_table[i + 3]; \
} \
switch (n & 0x3) { \
case 3: \
ring[idx++] = obj_table[i++]; /* fallthrough */ \
case 2: \
ring[idx++] = obj_table[i++]; /* fallthrough */ \
case 1: \
ring[idx++] = obj_table[i++]; \
} \
} else { \
for (i = 0; idx < size; i++, idx++)\
ring[idx] = obj_table[i]; \
for (idx = 0; i < n; i++, idx++) \
ring[idx] = obj_table[i]; \
} \
} while (0)
/* the actual copy of pointers on the ring to obj_table.
* Placed here since identical code needed in both
* single and multi consumer dequeue functions */
#define DEQUEUE_PTRS(r, ring_start, cons_head, obj_table, n, obj_type) do { \
unsigned int i; \
uint32_t idx = cons_head & (r)->mask; \
const uint32_t size = (r)->size; \
obj_type *ring = (obj_type *)ring_start; \
if (likely(idx + n < size)) { \
for (i = 0; i < (n & ~0x3); i += 4, idx += 4) {\
obj_table[i] = ring[idx]; \
obj_table[i + 1] = ring[idx + 1]; \
obj_table[i + 2] = ring[idx + 2]; \
obj_table[i + 3] = ring[idx + 3]; \
} \
switch (n & 0x3) { \
case 3: \
obj_table[i++] = ring[idx++]; /* fallthrough */ \
case 2: \
obj_table[i++] = ring[idx++]; /* fallthrough */ \
case 1: \
obj_table[i++] = ring[idx++]; \
} \
} else { \
for (i = 0; idx < size; i++, idx++) \
obj_table[i] = ring[idx]; \
for (idx = 0; i < n; i++, idx++) \
obj_table[i] = ring[idx]; \
} \
} while (0)
/* Between load and load. there might be cpu reorder in weak model
* (powerpc/arm).
* There are 2 choices for the users
* 1.use rmb() memory barrier
* 2.use one-direction load_acquire/store_release barrier,defined by
* CONFIG_RTE_USE_C11_MEM_MODEL=y
* It depends on performance test results.
* By default, move common functions to rte_ring_generic.h
*/
#ifdef RTE_USE_C11_MEM_MODEL
#include "rte_ring_c11_mem.h"
#else
#include "rte_ring_generic.h"
#endif
/**
* @internal Enqueue several objects on the ring
*
* @param r
* A pointer to the ring structure.
* @param obj_table
* A pointer to a table of void * pointers (objects).
* @param n
* The number of objects to add in the ring from the obj_table.
* @param behavior
* RTE_RING_QUEUE_FIXED: Enqueue a fixed number of items from a ring
* RTE_RING_QUEUE_VARIABLE: Enqueue as many items as possible from ring
* @param is_sp
* Indicates whether to use single producer or multi-producer head update
* @param free_space
* returns the amount of space after the enqueue operation has finished
* @return
* Actual number of objects enqueued.
* If behavior == RTE_RING_QUEUE_FIXED, this will be 0 or n only.
*/
static __rte_always_inline unsigned int
__rte_ring_do_enqueue(struct rte_ring *r, void * const *obj_table,
unsigned int n, enum rte_ring_queue_behavior behavior,
unsigned int is_sp, unsigned int *free_space)
{
uint32_t prod_head, prod_next;
uint32_t free_entries;
n = __rte_ring_move_prod_head(r, is_sp, n, behavior,
&prod_head, &prod_next, &free_entries);
if (n == 0)
goto end;
ENQUEUE_PTRS(r, &r[1], prod_head, obj_table, n, void *);
update_tail(&r->prod, prod_head, prod_next, is_sp, 1);
end:
if (free_space != NULL)
*free_space = free_entries - n;
return n;
}
/**
* @internal Dequeue several objects from the ring
*
* @param r
* A pointer to the ring structure.
* @param obj_table
* A pointer to a table of void * pointers (objects).
* @param n
* The number of objects to pull from the ring.
* @param behavior
* RTE_RING_QUEUE_FIXED: Dequeue a fixed number of items from a ring
* RTE_RING_QUEUE_VARIABLE: Dequeue as many items as possible from ring
* @param is_sc
* Indicates whether to use single consumer or multi-consumer head update
* @param available
* returns the number of remaining ring entries after the dequeue has finished
* @return
* - Actual number of objects dequeued.
* If behavior == RTE_RING_QUEUE_FIXED, this will be 0 or n only.
*/
static __rte_always_inline unsigned int
__rte_ring_do_dequeue(struct rte_ring *r, void **obj_table,
unsigned int n, enum rte_ring_queue_behavior behavior,
unsigned int is_sc, unsigned int *available)
{
uint32_t cons_head, cons_next;
uint32_t entries;
n = __rte_ring_move_cons_head(r, (int)is_sc, n, behavior,
&cons_head, &cons_next, &entries);
if (n == 0)
goto end;
DEQUEUE_PTRS(r, &r[1], cons_head, obj_table, n, void *);
update_tail(&r->cons, cons_head, cons_next, is_sc, 0);
end:
if (available != NULL)
*available = entries - n;
return n;
}
/** /**
* Enqueue several objects on the ring (multi-producers safe). * Enqueue several objects on the ring (multi-producers safe).
* *
@ -375,8 +213,8 @@ static __rte_always_inline unsigned int
rte_ring_mp_enqueue_bulk(struct rte_ring *r, void * const *obj_table, rte_ring_mp_enqueue_bulk(struct rte_ring *r, void * const *obj_table,
unsigned int n, unsigned int *free_space) unsigned int n, unsigned int *free_space)
{ {
return __rte_ring_do_enqueue(r, obj_table, n, RTE_RING_QUEUE_FIXED, return rte_ring_mp_enqueue_bulk_elem(r, obj_table, sizeof(void *),
RTE_RING_SYNC_MT, free_space); n, free_space);
} }
/** /**
@ -398,8 +236,8 @@ static __rte_always_inline unsigned int
rte_ring_sp_enqueue_bulk(struct rte_ring *r, void * const *obj_table, rte_ring_sp_enqueue_bulk(struct rte_ring *r, void * const *obj_table,
unsigned int n, unsigned int *free_space) unsigned int n, unsigned int *free_space)
{ {
return __rte_ring_do_enqueue(r, obj_table, n, RTE_RING_QUEUE_FIXED, return rte_ring_sp_enqueue_bulk_elem(r, obj_table, sizeof(void *),
RTE_RING_SYNC_ST, free_space); n, free_space);
} }
/** /**
@ -425,24 +263,8 @@ static __rte_always_inline unsigned int
rte_ring_enqueue_bulk(struct rte_ring *r, void * const *obj_table, rte_ring_enqueue_bulk(struct rte_ring *r, void * const *obj_table,
unsigned int n, unsigned int *free_space) unsigned int n, unsigned int *free_space)
{ {
switch (r->prod.sync_type) { return rte_ring_enqueue_bulk_elem(r, obj_table, sizeof(void *),
case RTE_RING_SYNC_MT: n, free_space);
return rte_ring_mp_enqueue_bulk(r, obj_table, n, free_space);
case RTE_RING_SYNC_ST:
return rte_ring_sp_enqueue_bulk(r, obj_table, n, free_space);
#ifdef ALLOW_EXPERIMENTAL_API
case RTE_RING_SYNC_MT_RTS:
return rte_ring_mp_rts_enqueue_bulk(r, obj_table, n,
free_space);
case RTE_RING_SYNC_MT_HTS:
return rte_ring_mp_hts_enqueue_bulk(r, obj_table, n,
free_space);
#endif
}
/* valid ring should never reach this point */
RTE_ASSERT(0);
return 0;
} }
/** /**
@ -462,7 +284,7 @@ rte_ring_enqueue_bulk(struct rte_ring *r, void * const *obj_table,
static __rte_always_inline int static __rte_always_inline int
rte_ring_mp_enqueue(struct rte_ring *r, void *obj) rte_ring_mp_enqueue(struct rte_ring *r, void *obj)
{ {
return rte_ring_mp_enqueue_bulk(r, &obj, 1, NULL) ? 0 : -ENOBUFS; return rte_ring_mp_enqueue_elem(r, &obj, sizeof(void *));
} }
/** /**
@ -479,7 +301,7 @@ rte_ring_mp_enqueue(struct rte_ring *r, void *obj)
static __rte_always_inline int static __rte_always_inline int
rte_ring_sp_enqueue(struct rte_ring *r, void *obj) rte_ring_sp_enqueue(struct rte_ring *r, void *obj)
{ {
return rte_ring_sp_enqueue_bulk(r, &obj, 1, NULL) ? 0 : -ENOBUFS; return rte_ring_sp_enqueue_elem(r, &obj, sizeof(void *));
} }
/** /**
@ -500,7 +322,7 @@ rte_ring_sp_enqueue(struct rte_ring *r, void *obj)
static __rte_always_inline int static __rte_always_inline int
rte_ring_enqueue(struct rte_ring *r, void *obj) rte_ring_enqueue(struct rte_ring *r, void *obj)
{ {
return rte_ring_enqueue_bulk(r, &obj, 1, NULL) ? 0 : -ENOBUFS; return rte_ring_enqueue_elem(r, &obj, sizeof(void *));
} }
/** /**
@ -525,8 +347,8 @@ static __rte_always_inline unsigned int
rte_ring_mc_dequeue_bulk(struct rte_ring *r, void **obj_table, rte_ring_mc_dequeue_bulk(struct rte_ring *r, void **obj_table,
unsigned int n, unsigned int *available) unsigned int n, unsigned int *available)
{ {
return __rte_ring_do_dequeue(r, obj_table, n, RTE_RING_QUEUE_FIXED, return rte_ring_mc_dequeue_bulk_elem(r, obj_table, sizeof(void *),
RTE_RING_SYNC_MT, available); n, available);
} }
/** /**
@ -549,8 +371,8 @@ static __rte_always_inline unsigned int
rte_ring_sc_dequeue_bulk(struct rte_ring *r, void **obj_table, rte_ring_sc_dequeue_bulk(struct rte_ring *r, void **obj_table,
unsigned int n, unsigned int *available) unsigned int n, unsigned int *available)
{ {
return __rte_ring_do_dequeue(r, obj_table, n, RTE_RING_QUEUE_FIXED, return rte_ring_sc_dequeue_bulk_elem(r, obj_table, sizeof(void *),
RTE_RING_SYNC_ST, available); n, available);
} }
/** /**
@ -576,22 +398,8 @@ static __rte_always_inline unsigned int
rte_ring_dequeue_bulk(struct rte_ring *r, void **obj_table, unsigned int n, rte_ring_dequeue_bulk(struct rte_ring *r, void **obj_table, unsigned int n,
unsigned int *available) unsigned int *available)
{ {
switch (r->cons.sync_type) { return rte_ring_dequeue_bulk_elem(r, obj_table, sizeof(void *),
case RTE_RING_SYNC_MT: n, available);
return rte_ring_mc_dequeue_bulk(r, obj_table, n, available);
case RTE_RING_SYNC_ST:
return rte_ring_sc_dequeue_bulk(r, obj_table, n, available);
#ifdef ALLOW_EXPERIMENTAL_API
case RTE_RING_SYNC_MT_RTS:
return rte_ring_mc_rts_dequeue_bulk(r, obj_table, n, available);
case RTE_RING_SYNC_MT_HTS:
return rte_ring_mc_hts_dequeue_bulk(r, obj_table, n, available);
#endif
}
/* valid ring should never reach this point */
RTE_ASSERT(0);
return 0;
} }
/** /**
@ -612,7 +420,7 @@ rte_ring_dequeue_bulk(struct rte_ring *r, void **obj_table, unsigned int n,
static __rte_always_inline int static __rte_always_inline int
rte_ring_mc_dequeue(struct rte_ring *r, void **obj_p) rte_ring_mc_dequeue(struct rte_ring *r, void **obj_p)
{ {
return rte_ring_mc_dequeue_bulk(r, obj_p, 1, NULL) ? 0 : -ENOENT; return rte_ring_mc_dequeue_elem(r, obj_p, sizeof(void *));
} }
/** /**
@ -630,7 +438,7 @@ rte_ring_mc_dequeue(struct rte_ring *r, void **obj_p)
static __rte_always_inline int static __rte_always_inline int
rte_ring_sc_dequeue(struct rte_ring *r, void **obj_p) rte_ring_sc_dequeue(struct rte_ring *r, void **obj_p)
{ {
return rte_ring_sc_dequeue_bulk(r, obj_p, 1, NULL) ? 0 : -ENOENT; return rte_ring_sc_dequeue_elem(r, obj_p, sizeof(void *));
} }
/** /**
@ -652,7 +460,7 @@ rte_ring_sc_dequeue(struct rte_ring *r, void **obj_p)
static __rte_always_inline int static __rte_always_inline int
rte_ring_dequeue(struct rte_ring *r, void **obj_p) rte_ring_dequeue(struct rte_ring *r, void **obj_p)
{ {
return rte_ring_dequeue_bulk(r, obj_p, 1, NULL) ? 0 : -ENOENT; return rte_ring_dequeue_elem(r, obj_p, sizeof(void *));
} }
/** /**
@ -860,8 +668,8 @@ static __rte_always_inline unsigned int
rte_ring_mp_enqueue_burst(struct rte_ring *r, void * const *obj_table, rte_ring_mp_enqueue_burst(struct rte_ring *r, void * const *obj_table,
unsigned int n, unsigned int *free_space) unsigned int n, unsigned int *free_space)
{ {
return __rte_ring_do_enqueue(r, obj_table, n, return rte_ring_mp_enqueue_burst_elem(r, obj_table, sizeof(void *),
RTE_RING_QUEUE_VARIABLE, RTE_RING_SYNC_MT, free_space); n, free_space);
} }
/** /**
@ -883,8 +691,8 @@ static __rte_always_inline unsigned int
rte_ring_sp_enqueue_burst(struct rte_ring *r, void * const *obj_table, rte_ring_sp_enqueue_burst(struct rte_ring *r, void * const *obj_table,
unsigned int n, unsigned int *free_space) unsigned int n, unsigned int *free_space)
{ {
return __rte_ring_do_enqueue(r, obj_table, n, return rte_ring_sp_enqueue_burst_elem(r, obj_table, sizeof(void *),
RTE_RING_QUEUE_VARIABLE, RTE_RING_SYNC_ST, free_space); n, free_space);
} }
/** /**
@ -910,24 +718,8 @@ static __rte_always_inline unsigned int
rte_ring_enqueue_burst(struct rte_ring *r, void * const *obj_table, rte_ring_enqueue_burst(struct rte_ring *r, void * const *obj_table,
unsigned int n, unsigned int *free_space) unsigned int n, unsigned int *free_space)
{ {
switch (r->prod.sync_type) { return rte_ring_enqueue_burst_elem(r, obj_table, sizeof(void *),
case RTE_RING_SYNC_MT: n, free_space);
return rte_ring_mp_enqueue_burst(r, obj_table, n, free_space);
case RTE_RING_SYNC_ST:
return rte_ring_sp_enqueue_burst(r, obj_table, n, free_space);
#ifdef ALLOW_EXPERIMENTAL_API
case RTE_RING_SYNC_MT_RTS:
return rte_ring_mp_rts_enqueue_burst(r, obj_table, n,
free_space);
case RTE_RING_SYNC_MT_HTS:
return rte_ring_mp_hts_enqueue_burst(r, obj_table, n,
free_space);
#endif
}
/* valid ring should never reach this point */
RTE_ASSERT(0);
return 0;
} }
/** /**
@ -954,8 +746,8 @@ static __rte_always_inline unsigned int
rte_ring_mc_dequeue_burst(struct rte_ring *r, void **obj_table, rte_ring_mc_dequeue_burst(struct rte_ring *r, void **obj_table,
unsigned int n, unsigned int *available) unsigned int n, unsigned int *available)
{ {
return __rte_ring_do_dequeue(r, obj_table, n, return rte_ring_mc_dequeue_burst_elem(r, obj_table, sizeof(void *),
RTE_RING_QUEUE_VARIABLE, RTE_RING_SYNC_MT, available); n, available);
} }
/** /**
@ -979,8 +771,8 @@ static __rte_always_inline unsigned int
rte_ring_sc_dequeue_burst(struct rte_ring *r, void **obj_table, rte_ring_sc_dequeue_burst(struct rte_ring *r, void **obj_table,
unsigned int n, unsigned int *available) unsigned int n, unsigned int *available)
{ {
return __rte_ring_do_dequeue(r, obj_table, n, return rte_ring_sc_dequeue_burst_elem(r, obj_table, sizeof(void *),
RTE_RING_QUEUE_VARIABLE, RTE_RING_SYNC_ST, available); n, available);
} }
/** /**
@ -1006,24 +798,8 @@ static __rte_always_inline unsigned int
rte_ring_dequeue_burst(struct rte_ring *r, void **obj_table, rte_ring_dequeue_burst(struct rte_ring *r, void **obj_table,
unsigned int n, unsigned int *available) unsigned int n, unsigned int *available)
{ {
switch (r->cons.sync_type) { return rte_ring_dequeue_burst_elem(r, obj_table, sizeof(void *),
case RTE_RING_SYNC_MT: n, available);
return rte_ring_mc_dequeue_burst(r, obj_table, n, available);
case RTE_RING_SYNC_ST:
return rte_ring_sc_dequeue_burst(r, obj_table, n, available);
#ifdef ALLOW_EXPERIMENTAL_API
case RTE_RING_SYNC_MT_RTS:
return rte_ring_mc_rts_dequeue_burst(r, obj_table, n,
available);
case RTE_RING_SYNC_MT_HTS:
return rte_ring_mc_hts_dequeue_burst(r, obj_table, n,
available);
#endif
}
/* valid ring should never reach this point */
RTE_ASSERT(0);
return 0;
} }
#ifdef __cplusplus #ifdef __cplusplus