net/iavf: enable AVX512 for legacy Rx
To enhance the per-core performance, this patch adds some AVX512 instructions to the data path to handle the legacy Rx descriptors. Signed-off-by: Wenzhuo Lu <wenzhuo.lu@intel.com> Signed-off-by: Bruce Richardson <bruce.richardson@intel.com> Signed-off-by: Leyi Rong <leyi.rong@intel.com> Acked-by: Qi Zhang <qi.z.zhang@intel.com>
This commit is contained in:
parent
98a181ed86
commit
31737f2b66
@ -169,6 +169,10 @@ New Features
|
||||
Added the FEC PMD which provides functions for query FEC capabilities and
|
||||
current FEC mode from device. Also, PMD for configuring FEC mode is also provided.
|
||||
|
||||
* **Updated Intel iavf driver.**
|
||||
|
||||
* Added support of AVX512 instructions in Rx path.
|
||||
|
||||
* **Updated Intel ice driver.**
|
||||
|
||||
* Used write combining stores.
|
||||
|
@ -2123,6 +2123,9 @@ iavf_set_rx_function(struct rte_eth_dev *dev)
|
||||
struct iavf_rx_queue *rxq;
|
||||
int i;
|
||||
bool use_avx2 = false;
|
||||
#ifdef CC_AVX512_SUPPORT
|
||||
bool use_avx512 = false;
|
||||
#endif
|
||||
|
||||
if (!iavf_rx_vec_dev_check(dev) &&
|
||||
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
|
||||
@ -2135,6 +2138,12 @@ iavf_set_rx_function(struct rte_eth_dev *dev)
|
||||
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
|
||||
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
|
||||
use_avx2 = true;
|
||||
#ifdef CC_AVX512_SUPPORT
|
||||
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
|
||||
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
|
||||
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512)
|
||||
use_avx512 = true;
|
||||
#endif
|
||||
|
||||
if (dev->data->scattered_rx) {
|
||||
PMD_DRV_LOG(DEBUG,
|
||||
@ -2142,27 +2151,39 @@ iavf_set_rx_function(struct rte_eth_dev *dev)
|
||||
use_avx2 ? "avx2 " : "",
|
||||
dev->data->port_id);
|
||||
if (vf->vf_res->vf_cap_flags &
|
||||
VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
|
||||
VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
|
||||
dev->rx_pkt_burst = use_avx2 ?
|
||||
iavf_recv_scattered_pkts_vec_avx2_flex_rxd :
|
||||
iavf_recv_scattered_pkts_vec_flex_rxd;
|
||||
else
|
||||
} else {
|
||||
dev->rx_pkt_burst = use_avx2 ?
|
||||
iavf_recv_scattered_pkts_vec_avx2 :
|
||||
iavf_recv_scattered_pkts_vec;
|
||||
#ifdef CC_AVX512_SUPPORT
|
||||
if (use_avx512)
|
||||
dev->rx_pkt_burst =
|
||||
iavf_recv_scattered_pkts_vec_avx512;
|
||||
#endif
|
||||
}
|
||||
} else {
|
||||
PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
|
||||
use_avx2 ? "avx2 " : "",
|
||||
dev->data->port_id);
|
||||
if (vf->vf_res->vf_cap_flags &
|
||||
VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
|
||||
VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
|
||||
dev->rx_pkt_burst = use_avx2 ?
|
||||
iavf_recv_pkts_vec_avx2_flex_rxd :
|
||||
iavf_recv_pkts_vec_flex_rxd;
|
||||
else
|
||||
} else {
|
||||
dev->rx_pkt_burst = use_avx2 ?
|
||||
iavf_recv_pkts_vec_avx2 :
|
||||
iavf_recv_pkts_vec;
|
||||
#ifdef CC_AVX512_SUPPORT
|
||||
if (use_avx512)
|
||||
dev->rx_pkt_burst =
|
||||
iavf_recv_pkts_vec_avx512;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
|
@ -438,6 +438,11 @@ int iavf_rx_vec_dev_check(struct rte_eth_dev *dev);
|
||||
int iavf_tx_vec_dev_check(struct rte_eth_dev *dev);
|
||||
int iavf_rxq_vec_setup(struct iavf_rx_queue *rxq);
|
||||
int iavf_txq_vec_setup(struct iavf_tx_queue *txq);
|
||||
uint16_t iavf_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts);
|
||||
uint16_t iavf_recv_scattered_pkts_vec_avx512(void *rx_queue,
|
||||
struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts);
|
||||
|
||||
const uint32_t *iavf_get_default_ptype_table(void);
|
||||
|
||||
|
691
drivers/net/iavf/iavf_rxtx_vec_avx512.c
Normal file
691
drivers/net/iavf/iavf_rxtx_vec_avx512.c
Normal file
@ -0,0 +1,691 @@
|
||||
/* SPDX-License-Identifier: BSD-3-Clause
|
||||
* Copyright(c) 2020 Intel Corporation
|
||||
*/
|
||||
|
||||
#include "iavf_rxtx_vec_common.h"
|
||||
|
||||
#include <x86intrin.h>
|
||||
|
||||
#ifndef __INTEL_COMPILER
|
||||
#pragma GCC diagnostic ignored "-Wcast-qual"
|
||||
#endif
|
||||
|
||||
#define IAVF_DESCS_PER_LOOP_AVX 8
|
||||
#define PKTLEN_SHIFT 10
|
||||
|
||||
static inline void
|
||||
iavf_rxq_rearm(struct iavf_rx_queue *rxq)
|
||||
{
|
||||
int i;
|
||||
uint16_t rx_id;
|
||||
volatile union iavf_rx_desc *rxdp;
|
||||
struct rte_mempool_cache *cache =
|
||||
rte_mempool_default_cache(rxq->mp, rte_lcore_id());
|
||||
struct rte_mbuf **rxp = &rxq->sw_ring[rxq->rxrearm_start];
|
||||
|
||||
rxdp = rxq->rx_ring + rxq->rxrearm_start;
|
||||
|
||||
/* We need to pull 'n' more MBUFs into the software ring from mempool
|
||||
* We inline the mempool function here, so we can vectorize the copy
|
||||
* from the cache into the shadow ring.
|
||||
*/
|
||||
|
||||
/* Can this be satisfied from the cache? */
|
||||
if (cache->len < IAVF_RXQ_REARM_THRESH) {
|
||||
/* No. Backfill the cache first, and then fill from it */
|
||||
uint32_t req = IAVF_RXQ_REARM_THRESH + (cache->size -
|
||||
cache->len);
|
||||
|
||||
/* How many do we require i.e. number to fill the cache + the request */
|
||||
int ret = rte_mempool_ops_dequeue_bulk
|
||||
(rxq->mp, &cache->objs[cache->len], req);
|
||||
if (ret == 0) {
|
||||
cache->len += req;
|
||||
} else {
|
||||
if (rxq->rxrearm_nb + IAVF_RXQ_REARM_THRESH >=
|
||||
rxq->nb_rx_desc) {
|
||||
__m128i dma_addr0;
|
||||
|
||||
dma_addr0 = _mm_setzero_si128();
|
||||
for (i = 0; i < IAVF_VPMD_DESCS_PER_LOOP; i++) {
|
||||
rxp[i] = &rxq->fake_mbuf;
|
||||
_mm_storeu_si128((__m128i *)&rxdp[i].read,
|
||||
dma_addr0);
|
||||
}
|
||||
}
|
||||
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
|
||||
IAVF_RXQ_REARM_THRESH;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
const __m512i iova_offsets = _mm512_set1_epi64(offsetof
|
||||
(struct rte_mbuf, buf_iova));
|
||||
const __m512i headroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
|
||||
|
||||
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
|
||||
/* to shuffle the addresses to correct slots. Values 4-7 will contain
|
||||
* zeros, so use 7 for a zero-value.
|
||||
*/
|
||||
const __m512i permute_idx = _mm512_set_epi64(7, 7, 3, 1, 7, 7, 2, 0);
|
||||
#else
|
||||
const __m512i permute_idx = _mm512_set_epi64(7, 3, 6, 2, 5, 1, 4, 0);
|
||||
#endif
|
||||
|
||||
/* Initialize the mbufs in vector, process 8 mbufs in one loop, taking
|
||||
* from mempool cache and populating both shadow and HW rings
|
||||
*/
|
||||
for (i = 0; i < IAVF_RXQ_REARM_THRESH / IAVF_DESCS_PER_LOOP_AVX; i++) {
|
||||
const __m512i mbuf_ptrs = _mm512_loadu_si512
|
||||
(&cache->objs[cache->len - IAVF_DESCS_PER_LOOP_AVX]);
|
||||
_mm512_storeu_si512(rxp, mbuf_ptrs);
|
||||
|
||||
const __m512i iova_base_addrs = _mm512_i64gather_epi64
|
||||
(_mm512_add_epi64(mbuf_ptrs, iova_offsets),
|
||||
0, /* base */
|
||||
1 /* scale */);
|
||||
const __m512i iova_addrs = _mm512_add_epi64(iova_base_addrs,
|
||||
headroom);
|
||||
#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC
|
||||
const __m512i iovas0 = _mm512_castsi256_si512
|
||||
(_mm512_extracti64x4_epi64(iova_addrs, 0));
|
||||
const __m512i iovas1 = _mm512_castsi256_si512
|
||||
(_mm512_extracti64x4_epi64(iova_addrs, 1));
|
||||
|
||||
/* permute leaves desc 2-3 addresses in header address slots 0-1
|
||||
* but these are ignored by driver since header split not
|
||||
* enabled. Similarly for desc 6 & 7.
|
||||
*/
|
||||
const __m512i desc0_1 = _mm512_permutexvar_epi64
|
||||
(permute_idx,
|
||||
iovas0);
|
||||
const __m512i desc2_3 = _mm512_bsrli_epi128(desc0_1, 8);
|
||||
|
||||
const __m512i desc4_5 = _mm512_permutexvar_epi64
|
||||
(permute_idx,
|
||||
iovas1);
|
||||
const __m512i desc6_7 = _mm512_bsrli_epi128(desc4_5, 8);
|
||||
|
||||
_mm512_storeu_si512((void *)rxdp, desc0_1);
|
||||
_mm512_storeu_si512((void *)(rxdp + 2), desc2_3);
|
||||
_mm512_storeu_si512((void *)(rxdp + 4), desc4_5);
|
||||
_mm512_storeu_si512((void *)(rxdp + 6), desc6_7);
|
||||
#else
|
||||
/* permute leaves desc 4-7 addresses in header address slots 0-3
|
||||
* but these are ignored by driver since header split not
|
||||
* enabled.
|
||||
*/
|
||||
const __m512i desc0_3 = _mm512_permutexvar_epi64(permute_idx,
|
||||
iova_addrs);
|
||||
const __m512i desc4_7 = _mm512_bsrli_epi128(desc0_3, 8);
|
||||
|
||||
_mm512_storeu_si512((void *)rxdp, desc0_3);
|
||||
_mm512_storeu_si512((void *)(rxdp + 4), desc4_7);
|
||||
#endif
|
||||
rxp += IAVF_DESCS_PER_LOOP_AVX;
|
||||
rxdp += IAVF_DESCS_PER_LOOP_AVX;
|
||||
cache->len -= IAVF_DESCS_PER_LOOP_AVX;
|
||||
}
|
||||
|
||||
rxq->rxrearm_start += IAVF_RXQ_REARM_THRESH;
|
||||
if (rxq->rxrearm_start >= rxq->nb_rx_desc)
|
||||
rxq->rxrearm_start = 0;
|
||||
|
||||
rxq->rxrearm_nb -= IAVF_RXQ_REARM_THRESH;
|
||||
|
||||
rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
|
||||
(rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
|
||||
|
||||
/* Update the tail pointer on the NIC */
|
||||
IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
|
||||
}
|
||||
|
||||
#define IAVF_RX_LEN_MASK 0x80808080
|
||||
static inline uint16_t
|
||||
_iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq,
|
||||
struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts, uint8_t *split_packet)
|
||||
{
|
||||
const uint32_t *type_table = rxq->vsi->adapter->ptype_tbl;
|
||||
|
||||
const __m256i mbuf_init = _mm256_set_epi64x(0, 0, 0,
|
||||
rxq->mbuf_initializer);
|
||||
struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
|
||||
volatile union iavf_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
|
||||
|
||||
rte_prefetch0(rxdp);
|
||||
|
||||
/* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */
|
||||
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX);
|
||||
|
||||
/* See if we need to rearm the RX queue - gives the prefetch a bit
|
||||
* of time to act
|
||||
*/
|
||||
if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
|
||||
iavf_rxq_rearm(rxq);
|
||||
|
||||
/* Before we start moving massive data around, check to see if
|
||||
* there is actually a packet available
|
||||
*/
|
||||
if (!(rxdp->wb.qword1.status_error_len &
|
||||
rte_cpu_to_le_32(1 << IAVF_RX_DESC_STATUS_DD_SHIFT)))
|
||||
return 0;
|
||||
|
||||
/* constants used in processing loop */
|
||||
const __m512i crc_adjust =
|
||||
_mm512_set_epi32
|
||||
(/* 1st descriptor */
|
||||
0, /* ignore non-length fields */
|
||||
-rxq->crc_len, /* sub crc on data_len */
|
||||
-rxq->crc_len, /* sub crc on pkt_len */
|
||||
0, /* ignore pkt_type field */
|
||||
/* 2nd descriptor */
|
||||
0, /* ignore non-length fields */
|
||||
-rxq->crc_len, /* sub crc on data_len */
|
||||
-rxq->crc_len, /* sub crc on pkt_len */
|
||||
0, /* ignore pkt_type field */
|
||||
/* 3rd descriptor */
|
||||
0, /* ignore non-length fields */
|
||||
-rxq->crc_len, /* sub crc on data_len */
|
||||
-rxq->crc_len, /* sub crc on pkt_len */
|
||||
0, /* ignore pkt_type field */
|
||||
/* 4th descriptor */
|
||||
0, /* ignore non-length fields */
|
||||
-rxq->crc_len, /* sub crc on data_len */
|
||||
-rxq->crc_len, /* sub crc on pkt_len */
|
||||
0 /* ignore pkt_type field */
|
||||
);
|
||||
|
||||
/* 8 packets DD mask, LSB in each 32-bit value */
|
||||
const __m256i dd_check = _mm256_set1_epi32(1);
|
||||
|
||||
/* 8 packets EOP mask, second-LSB in each 32-bit value */
|
||||
const __m256i eop_check = _mm256_slli_epi32(dd_check,
|
||||
IAVF_RX_DESC_STATUS_EOF_SHIFT);
|
||||
|
||||
/* mask to shuffle from desc. to mbuf (4 descriptors)*/
|
||||
const __m512i shuf_msk =
|
||||
_mm512_set_epi32
|
||||
(/* 1st descriptor */
|
||||
0x07060504, /* octet 4~7, 32bits rss */
|
||||
0x03020F0E, /* octet 2~3, low 16 bits vlan_macip */
|
||||
/* octet 15~14, 16 bits data_len */
|
||||
0xFFFF0F0E, /* skip high 16 bits pkt_len, zero out */
|
||||
/* octet 15~14, low 16 bits pkt_len */
|
||||
0xFFFFFFFF, /* pkt_type set as unknown */
|
||||
/* 2nd descriptor */
|
||||
0x07060504, /* octet 4~7, 32bits rss */
|
||||
0x03020F0E, /* octet 2~3, low 16 bits vlan_macip */
|
||||
/* octet 15~14, 16 bits data_len */
|
||||
0xFFFF0F0E, /* skip high 16 bits pkt_len, zero out */
|
||||
/* octet 15~14, low 16 bits pkt_len */
|
||||
0xFFFFFFFF, /* pkt_type set as unknown */
|
||||
/* 3rd descriptor */
|
||||
0x07060504, /* octet 4~7, 32bits rss */
|
||||
0x03020F0E, /* octet 2~3, low 16 bits vlan_macip */
|
||||
/* octet 15~14, 16 bits data_len */
|
||||
0xFFFF0F0E, /* skip high 16 bits pkt_len, zero out */
|
||||
/* octet 15~14, low 16 bits pkt_len */
|
||||
0xFFFFFFFF, /* pkt_type set as unknown */
|
||||
/* 4th descriptor */
|
||||
0x07060504, /* octet 4~7, 32bits rss */
|
||||
0x03020F0E, /* octet 2~3, low 16 bits vlan_macip */
|
||||
/* octet 15~14, 16 bits data_len */
|
||||
0xFFFF0F0E, /* skip high 16 bits pkt_len, zero out */
|
||||
/* octet 15~14, low 16 bits pkt_len */
|
||||
0xFFFFFFFF /* pkt_type set as unknown */
|
||||
);
|
||||
/**
|
||||
* compile-time check the above crc and shuffle layout is correct.
|
||||
* NOTE: the first field (lowest address) is given last in set_epi
|
||||
* calls above.
|
||||
*/
|
||||
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
|
||||
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
|
||||
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
|
||||
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
|
||||
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
|
||||
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
|
||||
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
|
||||
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
|
||||
|
||||
/* Status/Error flag masks */
|
||||
/**
|
||||
* mask everything except RSS, flow director and VLAN flags
|
||||
* bit2 is for VLAN tag, bit11 for flow director indication
|
||||
* bit13:12 for RSS indication. Bits 3-5 of error
|
||||
* field (bits 22-24) are for IP/L4 checksum errors
|
||||
*/
|
||||
const __m256i flags_mask =
|
||||
_mm256_set1_epi32((1 << 2) | (1 << 11) |
|
||||
(3 << 12) | (7 << 22));
|
||||
/**
|
||||
* data to be shuffled by result of flag mask. If VLAN bit is set,
|
||||
* (bit 2), then position 4 in this array will be used in the
|
||||
* destination
|
||||
*/
|
||||
const __m256i vlan_flags_shuf =
|
||||
_mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
|
||||
0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
|
||||
/**
|
||||
* data to be shuffled by result of flag mask, shifted down 11.
|
||||
* If RSS/FDIR bits are set, shuffle moves appropriate flags in
|
||||
* place.
|
||||
*/
|
||||
const __m256i rss_flags_shuf =
|
||||
_mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
|
||||
PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
|
||||
0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
|
||||
0, 0, 0, 0, PKT_RX_FDIR, 0);
|
||||
|
||||
/**
|
||||
* data to be shuffled by the result of the flags mask shifted by 22
|
||||
* bits. This gives use the l3_l4 flags.
|
||||
*/
|
||||
const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
|
||||
/* shift right 1 bit to make sure it not exceed 255 */
|
||||
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
|
||||
PKT_RX_IP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
|
||||
PKT_RX_L4_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
|
||||
PKT_RX_IP_CKSUM_BAD >> 1,
|
||||
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
|
||||
/* second 128-bits */
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
|
||||
PKT_RX_IP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
|
||||
PKT_RX_L4_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
|
||||
PKT_RX_IP_CKSUM_BAD >> 1,
|
||||
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
|
||||
|
||||
const __m256i cksum_mask =
|
||||
_mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
|
||||
PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
|
||||
PKT_RX_EIP_CKSUM_BAD);
|
||||
|
||||
uint16_t i, received;
|
||||
|
||||
for (i = 0, received = 0; i < nb_pkts;
|
||||
i += IAVF_DESCS_PER_LOOP_AVX,
|
||||
rxdp += IAVF_DESCS_PER_LOOP_AVX) {
|
||||
/* step 1, copy over 8 mbuf pointers to rx_pkts array */
|
||||
_mm256_storeu_si256((void *)&rx_pkts[i],
|
||||
_mm256_loadu_si256((void *)&sw_ring[i]));
|
||||
#ifdef RTE_ARCH_X86_64
|
||||
_mm256_storeu_si256
|
||||
((void *)&rx_pkts[i + 4],
|
||||
_mm256_loadu_si256((void *)&sw_ring[i + 4]));
|
||||
#endif
|
||||
|
||||
__m512i raw_desc0_3, raw_desc4_7;
|
||||
const __m128i raw_desc7 =
|
||||
_mm_load_si128((void *)(rxdp + 7));
|
||||
rte_compiler_barrier();
|
||||
const __m128i raw_desc6 =
|
||||
_mm_load_si128((void *)(rxdp + 6));
|
||||
rte_compiler_barrier();
|
||||
const __m128i raw_desc5 =
|
||||
_mm_load_si128((void *)(rxdp + 5));
|
||||
rte_compiler_barrier();
|
||||
const __m128i raw_desc4 =
|
||||
_mm_load_si128((void *)(rxdp + 4));
|
||||
rte_compiler_barrier();
|
||||
const __m128i raw_desc3 =
|
||||
_mm_load_si128((void *)(rxdp + 3));
|
||||
rte_compiler_barrier();
|
||||
const __m128i raw_desc2 =
|
||||
_mm_load_si128((void *)(rxdp + 2));
|
||||
rte_compiler_barrier();
|
||||
const __m128i raw_desc1 =
|
||||
_mm_load_si128((void *)(rxdp + 1));
|
||||
rte_compiler_barrier();
|
||||
const __m128i raw_desc0 =
|
||||
_mm_load_si128((void *)(rxdp + 0));
|
||||
|
||||
raw_desc4_7 = _mm512_broadcast_i32x4(raw_desc4);
|
||||
raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc5, 1);
|
||||
raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc6, 2);
|
||||
raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc7, 3);
|
||||
raw_desc0_3 = _mm512_broadcast_i32x4(raw_desc0);
|
||||
raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc1, 1);
|
||||
raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc2, 2);
|
||||
raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc3, 3);
|
||||
|
||||
if (split_packet) {
|
||||
int j;
|
||||
|
||||
for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++)
|
||||
rte_mbuf_prefetch_part2(rx_pkts[i + j]);
|
||||
}
|
||||
|
||||
/**
|
||||
* convert descriptors 4-7 into mbufs, adjusting length and
|
||||
* re-arranging fields. Then write into the mbuf
|
||||
*/
|
||||
const __m512i len4_7 = _mm512_slli_epi32(raw_desc4_7,
|
||||
PKTLEN_SHIFT);
|
||||
const __m512i desc4_7 = _mm512_mask_blend_epi16(IAVF_RX_LEN_MASK,
|
||||
raw_desc4_7,
|
||||
len4_7);
|
||||
__m512i mb4_7 = _mm512_shuffle_epi8(desc4_7, shuf_msk);
|
||||
|
||||
mb4_7 = _mm512_add_epi16(mb4_7, crc_adjust);
|
||||
/**
|
||||
* to get packet types, shift 64-bit values down 30 bits
|
||||
* and so ptype is in lower 8-bits in each
|
||||
*/
|
||||
const __m512i ptypes4_7 = _mm512_srli_epi64(desc4_7, 30);
|
||||
const __m256i ptypes6_7 = _mm512_extracti64x4_epi64(ptypes4_7, 1);
|
||||
const __m256i ptypes4_5 = _mm512_extracti64x4_epi64(ptypes4_7, 0);
|
||||
const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
|
||||
const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
|
||||
const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
|
||||
const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
|
||||
|
||||
const __m512i ptype4_7 = _mm512_set_epi32
|
||||
(0, 0, 0, type_table[ptype7],
|
||||
0, 0, 0, type_table[ptype6],
|
||||
0, 0, 0, type_table[ptype5],
|
||||
0, 0, 0, type_table[ptype4]);
|
||||
mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
|
||||
|
||||
/**
|
||||
* convert descriptors 0-3 into mbufs, adjusting length and
|
||||
* re-arranging fields. Then write into the mbuf
|
||||
*/
|
||||
const __m512i len0_3 = _mm512_slli_epi32(raw_desc0_3,
|
||||
PKTLEN_SHIFT);
|
||||
const __m512i desc0_3 = _mm512_mask_blend_epi16(IAVF_RX_LEN_MASK,
|
||||
raw_desc0_3,
|
||||
len0_3);
|
||||
__m512i mb0_3 = _mm512_shuffle_epi8(desc0_3, shuf_msk);
|
||||
|
||||
mb0_3 = _mm512_add_epi16(mb0_3, crc_adjust);
|
||||
/* get the packet types */
|
||||
const __m512i ptypes0_3 = _mm512_srli_epi64(desc0_3, 30);
|
||||
const __m256i ptypes2_3 = _mm512_extracti64x4_epi64(ptypes0_3, 1);
|
||||
const __m256i ptypes0_1 = _mm512_extracti64x4_epi64(ptypes0_3, 0);
|
||||
const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
|
||||
const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
|
||||
const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
|
||||
const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
|
||||
|
||||
const __m512i ptype0_3 = _mm512_set_epi32
|
||||
(0, 0, 0, type_table[ptype3],
|
||||
0, 0, 0, type_table[ptype2],
|
||||
0, 0, 0, type_table[ptype1],
|
||||
0, 0, 0, type_table[ptype0]);
|
||||
mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
|
||||
|
||||
/**
|
||||
* use permute/extract to get status content
|
||||
* After the operations, the packets status flags are in the
|
||||
* order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
|
||||
*/
|
||||
/* merge the status bits into one register */
|
||||
const __m512i status_permute_msk = _mm512_set_epi32
|
||||
(0, 0, 0, 0,
|
||||
0, 0, 0, 0,
|
||||
22, 30, 6, 14,
|
||||
18, 26, 2, 10);
|
||||
const __m512i raw_status0_7 = _mm512_permutex2var_epi32
|
||||
(raw_desc4_7, status_permute_msk, raw_desc0_3);
|
||||
__m256i status0_7 = _mm512_extracti64x4_epi64
|
||||
(raw_status0_7, 0);
|
||||
|
||||
/* now do flag manipulation */
|
||||
|
||||
/* get only flag/error bits we want */
|
||||
const __m256i flag_bits =
|
||||
_mm256_and_si256(status0_7, flags_mask);
|
||||
/* set vlan and rss flags */
|
||||
const __m256i vlan_flags =
|
||||
_mm256_shuffle_epi8(vlan_flags_shuf, flag_bits);
|
||||
const __m256i rss_flags =
|
||||
_mm256_shuffle_epi8(rss_flags_shuf,
|
||||
_mm256_srli_epi32(flag_bits, 11));
|
||||
/**
|
||||
* l3_l4_error flags, shuffle, then shift to correct adjustment
|
||||
* of flags in flags_shuf, and finally mask out extra bits
|
||||
*/
|
||||
__m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
|
||||
_mm256_srli_epi32(flag_bits, 22));
|
||||
l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
|
||||
l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
|
||||
|
||||
/* merge flags */
|
||||
const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
|
||||
_mm256_or_si256(rss_flags, vlan_flags));
|
||||
/**
|
||||
* At this point, we have the 8 sets of flags in the low 16-bits
|
||||
* of each 32-bit value in vlan0.
|
||||
* We want to extract these, and merge them with the mbuf init
|
||||
* data so we can do a single write to the mbuf to set the flags
|
||||
* and all the other initialization fields. Extracting the
|
||||
* appropriate flags means that we have to do a shift and blend
|
||||
* for each mbuf before we do the write. However, we can also
|
||||
* add in the previously computed rx_descriptor fields to
|
||||
* make a single 256-bit write per mbuf
|
||||
*/
|
||||
/* check the structure matches expectations */
|
||||
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
|
||||
offsetof(struct rte_mbuf, rearm_data) + 8);
|
||||
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
|
||||
RTE_ALIGN(offsetof(struct rte_mbuf,
|
||||
rearm_data),
|
||||
16));
|
||||
/* build up data and do writes */
|
||||
__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
|
||||
rearm6, rearm7;
|
||||
const __m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
|
||||
const __m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
|
||||
const __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
|
||||
const __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
|
||||
|
||||
rearm6 = _mm256_blend_epi32(mbuf_init,
|
||||
_mm256_slli_si256(mbuf_flags, 8),
|
||||
0x04);
|
||||
rearm4 = _mm256_blend_epi32(mbuf_init,
|
||||
_mm256_slli_si256(mbuf_flags, 4),
|
||||
0x04);
|
||||
rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
|
||||
rearm0 = _mm256_blend_epi32(mbuf_init,
|
||||
_mm256_srli_si256(mbuf_flags, 4),
|
||||
0x04);
|
||||
/* permute to add in the rx_descriptor e.g. rss fields */
|
||||
rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
|
||||
rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
|
||||
rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
|
||||
rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
|
||||
/* write to mbuf */
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
|
||||
rearm6);
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
|
||||
rearm4);
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
|
||||
rearm2);
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
|
||||
rearm0);
|
||||
|
||||
/* repeat for the odd mbufs */
|
||||
const __m256i odd_flags =
|
||||
_mm256_castsi128_si256
|
||||
(_mm256_extracti128_si256(mbuf_flags, 1));
|
||||
rearm7 = _mm256_blend_epi32(mbuf_init,
|
||||
_mm256_slli_si256(odd_flags, 8),
|
||||
0x04);
|
||||
rearm5 = _mm256_blend_epi32(mbuf_init,
|
||||
_mm256_slli_si256(odd_flags, 4),
|
||||
0x04);
|
||||
rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
|
||||
rearm1 = _mm256_blend_epi32(mbuf_init,
|
||||
_mm256_srli_si256(odd_flags, 4),
|
||||
0x04);
|
||||
/* since odd mbufs are already in hi 128-bits use blend */
|
||||
rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
|
||||
rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
|
||||
rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
|
||||
rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
|
||||
/* again write to mbufs */
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
|
||||
rearm7);
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
|
||||
rearm5);
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
|
||||
rearm3);
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
|
||||
rearm1);
|
||||
|
||||
/* extract and record EOP bit */
|
||||
if (split_packet) {
|
||||
const __m128i eop_mask =
|
||||
_mm_set1_epi16(1 << IAVF_RX_DESC_STATUS_EOF_SHIFT);
|
||||
const __m256i eop_bits256 = _mm256_and_si256(status0_7,
|
||||
eop_check);
|
||||
/* pack status bits into a single 128-bit register */
|
||||
const __m128i eop_bits =
|
||||
_mm_packus_epi32
|
||||
(_mm256_castsi256_si128(eop_bits256),
|
||||
_mm256_extractf128_si256(eop_bits256,
|
||||
1));
|
||||
/**
|
||||
* flip bits, and mask out the EOP bit, which is now
|
||||
* a split-packet bit i.e. !EOP, rather than EOP one.
|
||||
*/
|
||||
__m128i split_bits = _mm_andnot_si128(eop_bits,
|
||||
eop_mask);
|
||||
/**
|
||||
* eop bits are out of order, so we need to shuffle them
|
||||
* back into order again. In doing so, only use low 8
|
||||
* bits, which acts like another pack instruction
|
||||
* The original order is (hi->lo): 1,3,5,7,0,2,4,6
|
||||
* [Since we use epi8, the 16-bit positions are
|
||||
* multiplied by 2 in the eop_shuffle value.]
|
||||
*/
|
||||
__m128i eop_shuffle =
|
||||
_mm_set_epi8(/* zero hi 64b */
|
||||
0xFF, 0xFF, 0xFF, 0xFF,
|
||||
0xFF, 0xFF, 0xFF, 0xFF,
|
||||
/* move values to lo 64b */
|
||||
8, 0, 10, 2,
|
||||
12, 4, 14, 6);
|
||||
split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
|
||||
*(uint64_t *)split_packet =
|
||||
_mm_cvtsi128_si64(split_bits);
|
||||
split_packet += IAVF_DESCS_PER_LOOP_AVX;
|
||||
}
|
||||
|
||||
/* perform dd_check */
|
||||
status0_7 = _mm256_and_si256(status0_7, dd_check);
|
||||
status0_7 = _mm256_packs_epi32(status0_7,
|
||||
_mm256_setzero_si256());
|
||||
|
||||
uint64_t burst = __builtin_popcountll
|
||||
(_mm_cvtsi128_si64
|
||||
(_mm256_extracti128_si256
|
||||
(status0_7, 1)));
|
||||
burst += __builtin_popcountll
|
||||
(_mm_cvtsi128_si64
|
||||
(_mm256_castsi256_si128(status0_7)));
|
||||
received += burst;
|
||||
if (burst != IAVF_DESCS_PER_LOOP_AVX)
|
||||
break;
|
||||
}
|
||||
|
||||
/* update tail pointers */
|
||||
rxq->rx_tail += received;
|
||||
rxq->rx_tail &= (rxq->nb_rx_desc - 1);
|
||||
if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep aligned */
|
||||
rxq->rx_tail--;
|
||||
received--;
|
||||
}
|
||||
rxq->rxrearm_nb += received;
|
||||
return received;
|
||||
}
|
||||
|
||||
/**
|
||||
* Notice:
|
||||
* - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
|
||||
*/
|
||||
uint16_t
|
||||
iavf_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts)
|
||||
{
|
||||
return _iavf_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts, NULL);
|
||||
}
|
||||
|
||||
/**
|
||||
* vPMD receive routine that reassembles single burst of 32 scattered packets
|
||||
* Notice:
|
||||
* - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
|
||||
*/
|
||||
static uint16_t
|
||||
iavf_recv_scattered_burst_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts)
|
||||
{
|
||||
struct iavf_rx_queue *rxq = rx_queue;
|
||||
uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
|
||||
|
||||
/* get some new buffers */
|
||||
uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts,
|
||||
split_flags);
|
||||
if (nb_bufs == 0)
|
||||
return 0;
|
||||
|
||||
/* happy day case, full burst + no packets to be joined */
|
||||
const uint64_t *split_fl64 = (uint64_t *)split_flags;
|
||||
|
||||
if (!rxq->pkt_first_seg &&
|
||||
split_fl64[0] == 0 && split_fl64[1] == 0 &&
|
||||
split_fl64[2] == 0 && split_fl64[3] == 0)
|
||||
return nb_bufs;
|
||||
|
||||
/* reassemble any packets that need reassembly*/
|
||||
unsigned int i = 0;
|
||||
|
||||
if (!rxq->pkt_first_seg) {
|
||||
/* find the first split flag, and only reassemble then*/
|
||||
while (i < nb_bufs && !split_flags[i])
|
||||
i++;
|
||||
if (i == nb_bufs)
|
||||
return nb_bufs;
|
||||
rxq->pkt_first_seg = rx_pkts[i];
|
||||
}
|
||||
return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
|
||||
&split_flags[i]);
|
||||
}
|
||||
|
||||
/**
|
||||
* vPMD receive routine that reassembles scattered packets.
|
||||
* Main receive routine that can handle arbitrary burst sizes
|
||||
* Notice:
|
||||
* - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
|
||||
*/
|
||||
uint16_t
|
||||
iavf_recv_scattered_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts)
|
||||
{
|
||||
uint16_t retval = 0;
|
||||
|
||||
while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
|
||||
uint16_t burst = iavf_recv_scattered_burst_vec_avx512(rx_queue,
|
||||
rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST);
|
||||
retval += burst;
|
||||
nb_pkts -= burst;
|
||||
if (burst < IAVF_VPMD_RX_MAX_BURST)
|
||||
return retval;
|
||||
}
|
||||
return retval + iavf_recv_scattered_burst_vec_avx512(rx_queue,
|
||||
rx_pkts + retval, nb_pkts);
|
||||
}
|
@ -34,4 +34,28 @@ if arch_subdir == 'x86'
|
||||
c_args: [cflags, '-mavx2'])
|
||||
objs += iavf_avx2_lib.extract_objects('iavf_rxtx_vec_avx2.c')
|
||||
endif
|
||||
|
||||
iavf_avx512_cpu_support = (
|
||||
cc.get_define('__AVX512F__', args: machine_args) != '' and
|
||||
cc.get_define('__AVX512BW__', args: machine_args) != '')
|
||||
|
||||
iavf_avx512_cc_support = (
|
||||
not machine_args.contains('-mno-avx512f') and
|
||||
cc.has_argument('-mavx512f') and
|
||||
cc.has_argument('-mavx512bw'))
|
||||
|
||||
if iavf_avx512_cpu_support == true or iavf_avx512_cc_support == true
|
||||
cflags += ['-DCC_AVX512_SUPPORT']
|
||||
avx512_args = [cflags, '-mavx512f', '-mavx512bw']
|
||||
if cc.has_argument('-march=skylake-avx512')
|
||||
avx512_args += '-march=skylake-avx512'
|
||||
endif
|
||||
iavf_avx512_lib = static_library('iavf_avx512_lib',
|
||||
'iavf_rxtx_vec_avx512.c',
|
||||
dependencies: [static_rte_ethdev,
|
||||
static_rte_kvargs, static_rte_hash],
|
||||
include_directories: includes,
|
||||
c_args: avx512_args)
|
||||
objs += iavf_avx512_lib.extract_objects('iavf_rxtx_vec_avx512.c')
|
||||
endif
|
||||
endif
|
||||
|
Loading…
Reference in New Issue
Block a user