common/cpt: support hash

Adding microcode interface for supporting verify and authentication

Signed-off-by: Ankur Dwivedi <ankur.dwivedi@caviumnetworks.com>
Signed-off-by: Anoob Joseph <anoob.joseph@caviumnetworks.com>
Signed-off-by: Murthy NSSR <nidadavolu.murthy@caviumnetworks.com>
Signed-off-by: Nithin Dabilpuram <nithin.dabilpuram@caviumnetworks.com>
Signed-off-by: Ragothaman Jayaraman <rjayaraman@caviumnetworks.com>
Signed-off-by: Srisivasubramanian S <ssrinivasan@caviumnetworks.com>
Signed-off-by: Tejasree Kondoj <kondoj.tejasree@caviumnetworks.com>
This commit is contained in:
Srisivasubramanian S 2018-10-09 14:37:51 +05:30 committed by Akhil Goyal
parent da39e3eccd
commit 351fbee219
3 changed files with 423 additions and 1 deletions

View File

@ -18,6 +18,7 @@
#define CPT_MAJOR_OP_HMAC 0x35
#define CPT_MAJOR_OP_ZUC_SNOW3G 0x37
#define CPT_MAJOR_OP_KASUMI 0x38
#define CPT_MAJOR_OP_MISC 0x01
#define CPT_BYTE_16 16
#define CPT_BYTE_24 24
@ -341,6 +342,12 @@ typedef struct fc_params {
} fc_params_t;
/*
* Parameters for digest
* generate requests
* Only src_iov, op, ctx_buf, mac_buf, prep_req
* meta_buf, auth_data_len are used for digest gen.
*/
typedef struct fc_params digest_params_t;
/* Cipher Algorithms */

View File

@ -74,6 +74,8 @@ cpt_pmd_crypto_operation(struct cpt_instance *instance,
if (likely(cpt_op & CPT_OP_CIPHER_MASK))
prep_req = fill_fc_params(op, sess, &mdata, &ret);
else
prep_req = fill_digest_params(op, sess, &mdata, &ret);
if (unlikely(!prep_req)) {
CPT_LOG_DP_ERR("prep cryto req : op %p, cpt_op 0x%x "

View File

@ -4,7 +4,6 @@
#ifndef _CPT_UCODE_H_
#define _CPT_UCODE_H_
#include <stdbool.h>
#include "cpt_common.h"
@ -459,6 +458,214 @@ fill_sg_comp_from_iov(sg_comp_t *list,
return (uint32_t)i;
}
static __rte_always_inline int
cpt_digest_gen_prep(uint32_t flags,
uint64_t d_lens,
digest_params_t *params,
void *op,
void **prep_req)
{
struct cpt_request_info *req;
uint32_t size, i;
int32_t m_size;
uint16_t data_len, mac_len, key_len;
auth_type_t hash_type;
buf_ptr_t *meta_p;
struct cpt_ctx *ctx;
sg_comp_t *gather_comp;
sg_comp_t *scatter_comp;
uint8_t *in_buffer;
uint32_t g_size_bytes, s_size_bytes;
uint64_t dptr_dma, rptr_dma;
vq_cmd_word0_t vq_cmd_w0;
vq_cmd_word3_t vq_cmd_w3;
void *c_vaddr, *m_vaddr;
uint64_t c_dma, m_dma;
opcode_info_t opcode;
if (!params || !params->ctx_buf.vaddr)
return ERR_BAD_INPUT_ARG;
ctx = params->ctx_buf.vaddr;
meta_p = &params->meta_buf;
if (!meta_p->vaddr || !meta_p->dma_addr)
return ERR_BAD_INPUT_ARG;
if (meta_p->size < sizeof(struct cpt_request_info))
return ERR_BAD_INPUT_ARG;
m_vaddr = meta_p->vaddr;
m_dma = meta_p->dma_addr;
m_size = meta_p->size;
/*
* Save initial space that followed app data for completion code &
* alternate completion code to fall in same cache line as app data
*/
m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
m_dma += COMPLETION_CODE_SIZE;
size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
(uint8_t *)m_vaddr;
c_vaddr = (uint8_t *)m_vaddr + size;
c_dma = m_dma + size;
size += sizeof(cpt_res_s_t);
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
m_size -= size;
req = m_vaddr;
size = sizeof(struct cpt_request_info);
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
m_size -= size;
hash_type = ctx->hash_type;
mac_len = ctx->mac_len;
key_len = ctx->auth_key_len;
data_len = AUTH_DLEN(d_lens);
/*GP op header */
vq_cmd_w0.u64 = 0;
vq_cmd_w0.s.param2 = rte_cpu_to_be_16(((uint16_t)hash_type << 8));
if (ctx->hmac) {
opcode.s.major = CPT_MAJOR_OP_HMAC | CPT_DMA_MODE;
vq_cmd_w0.s.param1 = rte_cpu_to_be_16(key_len);
vq_cmd_w0.s.dlen =
rte_cpu_to_be_16((data_len + ROUNDUP8(key_len)));
} else {
opcode.s.major = CPT_MAJOR_OP_HASH | CPT_DMA_MODE;
vq_cmd_w0.s.param1 = 0;
vq_cmd_w0.s.dlen = rte_cpu_to_be_16(data_len);
}
opcode.s.minor = 0;
/* Null auth only case enters the if */
if (unlikely(!hash_type && !ctx->enc_cipher)) {
opcode.s.major = CPT_MAJOR_OP_MISC;
/* Minor op is passthrough */
opcode.s.minor = 0x03;
/* Send out completion code only */
vq_cmd_w0.s.param2 = 0x1;
}
vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
/* DPTR has SG list */
in_buffer = m_vaddr;
dptr_dma = m_dma;
((uint16_t *)in_buffer)[0] = 0;
((uint16_t *)in_buffer)[1] = 0;
/* TODO Add error check if space will be sufficient */
gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
/*
* Input gather list
*/
i = 0;
if (ctx->hmac) {
uint64_t k_dma = params->ctx_buf.dma_addr +
offsetof(struct cpt_ctx, auth_key);
/* Key */
i = fill_sg_comp(gather_comp, i, k_dma, ROUNDUP8(key_len));
}
/* input data */
size = data_len;
if (size) {
i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov,
0, &size, NULL, 0);
if (size) {
CPT_LOG_DP_DEBUG("Insufficient dst IOV size, short"
" by %dB", size);
return ERR_BAD_INPUT_ARG;
}
} else {
/*
* Looks like we need to support zero data
* gather ptr in case of hash & hmac
*/
i++;
}
((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
/*
* Output Gather list
*/
i = 0;
scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
if (flags & VALID_MAC_BUF) {
if (params->mac_buf.size < mac_len)
return ERR_BAD_INPUT_ARG;
size = mac_len;
i = fill_sg_comp_from_buf_min(scatter_comp, i,
&params->mac_buf, &size);
} else {
size = mac_len;
i = fill_sg_comp_from_iov(scatter_comp, i,
params->src_iov, data_len,
&size, NULL, 0);
if (size) {
CPT_LOG_DP_DEBUG("Insufficient dst IOV size, short by"
" %dB", size);
return ERR_BAD_INPUT_ARG;
}
}
((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
/* This is DPTR len incase of SG mode */
vq_cmd_w0.s.dlen = rte_cpu_to_be_16(size);
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
m_size -= size;
/* cpt alternate completion address saved earlier */
req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
rptr_dma = c_dma - 8;
req->ist.ei1 = dptr_dma;
req->ist.ei2 = rptr_dma;
/* First 16-bit swap then 64-bit swap */
/* TODO: HACK: Reverse the vq_cmd and cpt_req bit field definitions
* to eliminate all the swapping
*/
vq_cmd_w0.u64 = rte_cpu_to_be_64(vq_cmd_w0.u64);
/* vq command w3 */
vq_cmd_w3.u64 = 0;
/* 16 byte aligned cpt res address */
req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
*req->completion_addr = COMPLETION_CODE_INIT;
req->comp_baddr = c_dma;
/* Fill microcode part of instruction */
req->ist.ei0 = vq_cmd_w0.u64;
req->ist.ei3 = vq_cmd_w3.u64;
req->op = op;
*prep_req = req;
return 0;
}
static __rte_always_inline int
cpt_enc_hmac_prep(uint32_t flags,
uint64_t d_offs,
@ -2319,6 +2526,9 @@ cpt_fc_enc_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens,
} else if (fc_type == KASUMI) {
ret = cpt_kasumi_enc_prep(flags, d_offs, d_lens,
fc_params, op, &prep_req);
} else if (fc_type == HASH_HMAC) {
ret = cpt_digest_gen_prep(flags, d_lens, fc_params, op,
&prep_req);
} else {
ret = ERR_EIO;
}
@ -3206,4 +3416,207 @@ err:
return -1;
}
static __rte_always_inline void
find_kasumif9_direction_and_length(uint8_t *src,
uint32_t counter_num_bytes,
uint32_t *addr_length_in_bits,
uint8_t *addr_direction)
{
uint8_t found = 0;
while (!found && counter_num_bytes > 0) {
counter_num_bytes--;
if (src[counter_num_bytes] == 0x00)
continue;
if (src[counter_num_bytes] == 0x80) {
*addr_direction = src[counter_num_bytes - 1] & 0x1;
*addr_length_in_bits = counter_num_bytes * 8 - 1;
found = 1;
} else {
int i = 0;
uint8_t last_byte = src[counter_num_bytes];
for (i = 0; i < 8 && found == 0; i++) {
if (last_byte & (1 << i)) {
*addr_direction = (last_byte >> (i+1))
& 0x1;
if (i != 6)
*addr_length_in_bits =
counter_num_bytes * 8
+ (8 - (i + 2));
else
*addr_length_in_bits =
counter_num_bytes * 8;
found = 1;
}
}
}
}
}
/*
* This handles all auth only except AES_GMAC
*/
static __rte_always_inline void *
fill_digest_params(struct rte_crypto_op *cop,
struct cpt_sess_misc *sess,
void **mdata_ptr,
int *op_ret)
{
uint32_t space = 0;
struct rte_crypto_sym_op *sym_op = cop->sym;
void *mdata;
phys_addr_t mphys;
uint64_t *op;
uint32_t auth_range_off;
uint32_t flags = 0;
uint64_t d_offs = 0, d_lens;
void *prep_req = NULL;
struct rte_mbuf *m_src, *m_dst;
uint16_t auth_op = sess->cpt_op & CPT_OP_AUTH_MASK;
uint8_t zsk_flag = sess->zsk_flag;
uint16_t mac_len = sess->mac_len;
fc_params_t params;
char src[SRC_IOV_SIZE];
uint8_t iv_buf[16];
memset(&params, 0, sizeof(fc_params_t));
struct cptvf_meta_info *cpt_m_info =
(struct cptvf_meta_info *)(*mdata_ptr);
m_src = sym_op->m_src;
/* For just digest lets force mempool alloc */
mdata = alloc_op_meta(NULL, &params.meta_buf, cpt_m_info->cptvf_op_mlen,
cpt_m_info->cptvf_meta_pool);
if (mdata == NULL) {
CPT_LOG_DP_ERR("Error allocating meta buffer for request");
*op_ret = -ENOMEM;
return NULL;
}
mphys = params.meta_buf.dma_addr;
op = mdata;
op[0] = (uintptr_t)mdata;
op[1] = (uintptr_t)cop;
op[2] = op[3] = 0; /* Used to indicate auth verify */
space += 4 * sizeof(uint64_t);
auth_range_off = sym_op->auth.data.offset;
flags = VALID_MAC_BUF;
params.src_iov = (void *)src;
if (unlikely(zsk_flag)) {
/*
* Since for Zuc, Kasumi, Snow3g offsets are in bits
* we will send pass through even for auth only case,
* let MC handle it
*/
d_offs = auth_range_off;
auth_range_off = 0;
params.auth_iv_buf = rte_crypto_op_ctod_offset(cop,
uint8_t *, sess->auth_iv_offset);
if (zsk_flag == K_F9) {
uint32_t length_in_bits, num_bytes;
uint8_t *src, direction = 0;
uint32_t counter_num_bytes;
memcpy(iv_buf, rte_pktmbuf_mtod(cop->sym->m_src,
uint8_t *), 8);
/*
* This is kasumi f9, take direction from
* source buffer
*/
length_in_bits = cop->sym->auth.data.length;
num_bytes = (length_in_bits >> 3);
counter_num_bytes = num_bytes;
src = rte_pktmbuf_mtod(cop->sym->m_src, uint8_t *);
find_kasumif9_direction_and_length(src,
counter_num_bytes,
&length_in_bits,
&direction);
length_in_bits -= 64;
cop->sym->auth.data.offset += 64;
d_offs = cop->sym->auth.data.offset;
auth_range_off = d_offs / 8;
cop->sym->auth.data.length = length_in_bits;
/* Store it at end of auth iv */
iv_buf[8] = direction;
params.auth_iv_buf = iv_buf;
}
}
d_lens = sym_op->auth.data.length;
params.ctx_buf.vaddr = SESS_PRIV(sess);
params.ctx_buf.dma_addr = sess->ctx_dma_addr;
if (auth_op == CPT_OP_AUTH_GENERATE) {
if (sym_op->auth.digest.data) {
/*
* Digest to be generated
* in separate buffer
*/
params.mac_buf.size =
sess->mac_len;
params.mac_buf.vaddr =
sym_op->auth.digest.data;
params.mac_buf.dma_addr =
sym_op->auth.digest.phys_addr;
} else {
uint32_t off = sym_op->auth.data.offset +
sym_op->auth.data.length;
int32_t dlen, space;
m_dst = sym_op->m_dst ?
sym_op->m_dst : sym_op->m_src;
dlen = rte_pktmbuf_pkt_len(m_dst);
space = off + mac_len - dlen;
if (space > 0)
if (!rte_pktmbuf_append(m_dst, space)) {
CPT_LOG_DP_ERR("Failed to extend "
"mbuf by %uB", space);
goto err;
}
params.mac_buf.vaddr =
rte_pktmbuf_mtod_offset(m_dst, void *, off);
params.mac_buf.dma_addr =
rte_pktmbuf_mtophys_offset(m_dst, off);
params.mac_buf.size = mac_len;
}
} else {
/* Need space for storing generated mac */
params.mac_buf.vaddr = (uint8_t *)mdata + space;
params.mac_buf.dma_addr = mphys + space;
params.mac_buf.size = mac_len;
space += RTE_ALIGN_CEIL(mac_len, 8);
op[2] = (uintptr_t)params.mac_buf.vaddr;
op[3] = mac_len;
}
params.meta_buf.vaddr = (uint8_t *)mdata + space;
params.meta_buf.dma_addr = mphys + space;
params.meta_buf.size -= space;
/* Out of place processing */
params.src_iov = (void *)src;
/*Store SG I/O in the api for reuse */
if (prepare_iov_from_pkt(m_src, params.src_iov, auth_range_off)) {
CPT_LOG_DP_ERR("Prepare src iov failed");
*op_ret = -1;
goto err;
}
prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens,
&params, op, op_ret);
*mdata_ptr = mdata;
return prep_req;
err:
if (unlikely(!prep_req))
free_op_meta(mdata, cpt_m_info->cptvf_meta_pool);
return NULL;
}
#endif /*_CPT_UCODE_H_ */