doc: use corelist instead of coremask

The coremask option in DPDK is difficult to use and we should be
promoting the use of the corelist (-l) option. The patch
adjusts the docs to use -l EAL option instead of the -c option.

The patch only changes the docs and not the code as the -c option
will continue to exist unless it is removed in the future. The -c
option should be kept to maintain backward compatibility.

Signed-off-by: Keith Wiles <keith.wiles@intel.com>
Acked-by: John McNamara <john.mcnamara@intel.com>
This commit is contained in:
Keith Wiles 2017-02-27 11:13:40 -08:00 committed by Thomas Monjalon
parent 048ed1d828
commit 35b09d76f8
68 changed files with 159 additions and 151 deletions

View File

@ -457,7 +457,7 @@ Code and Literal block sections
For long literal lines that exceed that limit try to wrap the text at sensible locations.
For example a long command line could be documented like this and still work if copied directly from the docs::
build/app/testpmd -c7 -n3 --vdev=net_pcap0,iface=eth0 \
build/app/testpmd -l 0-2 -n3 --vdev=net_pcap0,iface=eth0 \
--vdev=net_pcap1,iface=eth1 \
-- -i --nb-cores=2 --nb-ports=2 \
--total-num-mbufs=2048

View File

@ -84,7 +84,7 @@ Example:
.. code-block:: console
./l2fwd-crypto -c 40 -n 4 --vdev="crypto_aesni_gcm,socket_id=1,max_nb_sessions=128"
./l2fwd-crypto -l 6 -n 4 --vdev="crypto_aesni_gcm,socket_id=1,max_nb_sessions=128"
Limitations
-----------

View File

@ -111,4 +111,4 @@ Example:
.. code-block:: console
./l2fwd-crypto -c 40 -n 4 --vdev="crypto_aesni_mb,socket_id=1,max_nb_sessions=128"
./l2fwd-crypto -l 6 -n 4 --vdev="crypto_aesni_mb,socket_id=1,max_nb_sessions=128"

View File

@ -107,4 +107,4 @@ Example:
.. code-block:: console
./l2fwd-crypto -c 40 -n 4 --vdev="crypto_kasumi,socket_id=1,max_nb_sessions=128"
./l2fwd-crypto -l 6 -n 4 --vdev="crypto_kasumi,socket_id=1,max_nb_sessions=128"

View File

@ -93,4 +93,4 @@ Example:
.. code-block:: console
./l2fwd-crypto -c 40 -n 4 --vdev="crypto_null,socket_id=1,max_nb_sessions=128"
./l2fwd-crypto -l 6 -n 4 --vdev="crypto_null,socket_id=1,max_nb_sessions=128"

View File

@ -98,7 +98,7 @@ To verify real traffic l2fwd-crypto example can be used with this command:
.. code-block:: console
sudo ./build/l2fwd-crypto -c 0x3 -n 4 --vdev "crypto_openssl"
sudo ./build/l2fwd-crypto -l 0-1 -n 4 --vdev "crypto_openssl"
--vdev "crypto_openssl"-- -p 0x3 --chain CIPHER_HASH
--cipher_op ENCRYPT --cipher_algo AES_CBC
--cipher_key 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f

View File

@ -100,4 +100,4 @@ Example:
.. code-block:: console
./l2fwd-crypto -c 40 -n 4 --vdev="crypto_snow3g,socket_id=1,max_nb_sessions=128"
./l2fwd-crypto -l 6 -n 4 --vdev="crypto_snow3g,socket_id=1,max_nb_sessions=128"

View File

@ -108,4 +108,4 @@ Example:
.. code-block:: console
./l2fwd-crypto -c 40 -n 4 --vdev="crypto_zuc,socket_id=1,max_nb_sessions=128"
./l2fwd-crypto -l 6 -n 4 --vdev="crypto_zuc,socket_id=1,max_nb_sessions=128"

View File

@ -54,8 +54,8 @@ If you need to change the number of pages, it is easier to first remove the page
See the "Quick Start Setup Script" section in the :ref:`DPDK Getting Started Guide <linux_gsg>` for more information.
If I execute "l2fwd -c f -m 64 -n 3 -- -p 3", I get the following output, indicating that there are no socket 0 hugepages to allocate the mbuf and ring structures to?
----------------------------------------------------------------------------------------------------------------------------------------------------------------------
If I execute "l2fwd -l 0-3 -m 64 -n 3 -- -p 3", I get the following output, indicating that there are no socket 0 hugepages to allocate the mbuf and ring structures to?
------------------------------------------------------------------------------------------------------------------------------------------------------------------------
I have set up a total of 1024 Hugepages (that is, allocated 512 2M pages to each NUMA node).
@ -78,7 +78,9 @@ affinitizing the application to a would-be master core.
For example, if your EAL coremask is 0xff0, the master core will usually be the first core in the coremask (0x10); this is what you have to supply to taskset::
taskset 0x10 ./l2fwd -c 0xff0 -n 2
taskset 0x10 ./l2fwd -l 4-11 -n 2
.. Note: Instead of '-c 0xff0' use the '-l 4-11' as a cleaner way to define lcores.
In this way, the hugepages have a greater chance of being allocated to the correct socket.
Additionally, a ``--socket-mem`` option could be used to ensure the availability of memory for each socket, so that if hugepages were allocated on

View File

@ -119,7 +119,7 @@ The following is the list of options that can be given to the EAL:
.. code-block:: console
./rte-app -c COREMASK [-n NUM] [-b <domain:bus:devid.func>] \
./rte-app -l CORELIST [-n NUM] [-b <domain:bus:devid.func>] \
[-r NUM] [-v] [--proc-type <primary|secondary|auto>]
.. note::
@ -130,9 +130,10 @@ The following is the list of options that can be given to the EAL:
The EAL options for FreeBSD are as follows:
* ``-c COREMASK``:
* ``-c COREMASK`` or ``-l CORELIST``:
A hexadecimal bit mask of the cores to run on. Note that core numbering
can change between platforms and should be determined beforehand.
can change between platforms and should be determined beforehand. The corelist
is a list of cores to use instead of a core mask.
* ``-n NUM``:
Number of memory channels per processor socket.
@ -169,13 +170,13 @@ Other options, specific to Linux and are not supported under FreeBSD are as foll
Memory to allocate from hugepages, regardless of processor socket.
It is recommended that ``--socket-mem`` be used instead of this option.
The ``-c`` option is mandatory; the others are optional.
The ``-c`` or ``-l`` option is mandatory; the others are optional.
Copy the DPDK application binary to your target, then run the application
as follows (assuming the platform has four memory channels, and that cores 0-3
are present and are to be used for running the application)::
./helloworld -c f -n 4
./helloworld -l 0-3 -n 4
.. note::

View File

@ -111,7 +111,7 @@ compiled and run as below:
INSTALL-APP helloworld
INSTALL-MAP helloworld.map
sudo ./build/helloworld -c F -n 2
sudo ./build/helloworld -l 0-3 -n 2
EAL: Contigmem driver has 2 buffers, each of size 1GB
EAL: Sysctl reports 8 cpus

View File

@ -126,7 +126,7 @@ The typical procedure to achieve this is as follows:
.. code-block:: console
testpmd -c 0xff -n 4 -- -i -w 01:10.0 -w 01:10.1 --forward-mode=mac
testpmd -l 0-7 -n 4 -- -i -w 01:10.0 -w 01:10.1 --forward-mode=mac
In this example, traffic matching the rules will go through the VF by matching
the filter rule. All other traffic, not matching the rules, will go through
@ -286,7 +286,7 @@ The typical procedure to achieve this is as follows:
.. code-block:: console
testpmd -c 0xff -n 4 -- -i -w 01:10.0 -w 01:10.1 --forward-mode=mac
testpmd -l 0-7 -n 4 -- -i -w 01:10.0 -w 01:10.1 --forward-mode=mac
.. note::

View File

@ -641,7 +641,7 @@ Run testpmd in the Virtual Machine.
# use for bonding of virtio and vf tests in VM
/root/dpdk/x86_64-default-linuxapp-gcc/app/testpmd \
-c f -n 4 --socket-mem 350 -- --i --port-topology=chained
-l 0-3 -n 4 --socket-mem 350 -- --i --port-topology=chained
.. _lm_bond_virtio_sriov_switch_conf:

View File

@ -466,4 +466,4 @@ run_testpmd_in_vm.sh
# test system has 8 cpus (0-7), use cpus 2-7 for VM
/root/dpdk/x86_64-default-linuxapp-gcc/app/testpmd \
-c 3f -n 4 --socket-mem 350 -- --burst=64 --i --disable-hw-vlan-filter
-l 0-5 -n 4 --socket-mem 350 -- --burst=64 --i --disable-hw-vlan-filter

View File

@ -82,7 +82,7 @@ compiling the kernel and those kernel modules should be inserted.
.. code-block:: console
$(testpmd) -c 0xc -n 4 \
$(testpmd) -l 2-3 -n 4 \
--vdev=virtio_user0,path=/dev/vhost-net,queue_size=1024 \
-- -i --txqflags=0x0 --disable-hw-vlan --enable-lro --crc-strip
--enable-rx-cksum --rxd=1024 --txd=1024
@ -111,7 +111,7 @@ compiling the kernel and those kernel modules should be inserted.
.. code-block:: console
$(testpmd) -c 0xc -n 4 \
$(testpmd) -l 2-3 -n 4 \
--vdev=virtio_user0,path=/dev/vhost-net,queues=2,queue_size=1024 \
-- -i --txqflags=0x0 --disable-hw-vlan --enable-lro \
--crc-strip --enable-rx-cksum --txq=2 --rxq=2 --rxd=1024 \

View File

@ -110,7 +110,7 @@ some minor changes.
.. code-block:: console
$(testpmd) -c 0x3 -n 4 --socket-mem 1024,1024 \
$(testpmd) -l 0-1 -n 4 --socket-mem 1024,1024 \
--vdev 'eth_vhost0,iface=/tmp/sock0' --no-pci -- -i
#. Start a container instance with a virtio-user port.
@ -119,7 +119,7 @@ some minor changes.
docker run -i -t -v /tmp/sock0:/var/run/usvhost \
-v /dev/hugepages:/dev/hugepages \
dpdk-app-testpmd testpmd -c 0xc -n 4 -m 1024 --no-pci \
dpdk-app-testpmd testpmd -l 6-7 -n 4 -m 1024 --no-pci \
--vdev=virtio_user0,path=/var/run/usvhost \
-- -i --txqflags=0xf00 --disable-hw-vlan

View File

@ -112,15 +112,16 @@ The following is the list of options that can be given to the EAL:
.. code-block:: console
./rte-app -c COREMASK [-n NUM] [-b <domain:bus:devid.func>] \
./rte-app [-c COREMASK | -l CORELIST] [-n NUM] [-b <domain:bus:devid.func>] \
[--socket-mem=MB,...] [-m MB] [-r NUM] [-v] [--file-prefix] \
[--proc-type <primary|secondary|auto>] [-- xen-dom0]
The EAL options are as follows:
* ``-c COREMASK``:
* ``-c COREMASK`` or ``-l CORELIST``:
An hexadecimal bit mask of the cores to run on. Note that core numbering can
change between platforms and should be determined beforehand.
change between platforms and should be determined beforehand. The corelist is
a set of core numbers instead of a bitmap core mask.
* ``-n NUM``:
Number of memory channels per processor socket.
@ -167,13 +168,13 @@ The EAL options are as follows:
* ``--vfio-intr``:
Specify interrupt type to be used by VFIO (has no effect if VFIO is not used).
The ``-c`` and option is mandatory; the others are optional.
The ``-c`` or ``-l`` and option is mandatory; the others are optional.
Copy the DPDK application binary to your target, then run the application as follows
(assuming the platform has four memory channels per processor socket,
and that cores 0-3 are present and are to be used for running the application)::
./helloworld -c f -n 4
./helloworld -l 0-3 -n 4
.. note::
@ -185,10 +186,10 @@ and that cores 0-3 are present and are to be used for running the application)::
Logical Core Use by Applications
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The coremask parameter is always mandatory for DPDK applications.
Each bit of the mask corresponds to the equivalent logical core number as reported by Linux.
The coremask (-c 0x0f) or corelist (-l 0-3) parameter is always mandatory for DPDK applications.
Each bit of the mask corresponds to the equivalent logical core number as reported by Linux. The preferred corelist option is a cleaner method to define cores to be used.
Since these logical core numbers, and their mapping to specific cores on specific NUMA sockets, can vary from platform to platform,
it is recommended that the core layout for each platform be considered when choosing the coremask to use in each case.
it is recommended that the core layout for each platform be considered when choosing the coremask/corelist to use in each case.
On initialization of the EAL layer by an DPDK application, the logical cores to be used and their socket location are displayed.
This information can also be determined for all cores on the system by examining the ``/proc/cpuinfo`` file, for example, by running cat ``/proc/cpuinfo``.
@ -205,7 +206,7 @@ This can be useful when using other processors to understand the mapping of the
.. warning::
The logical core layout can change between different board layouts and should be checked before selecting an application coremask.
The logical core layout can change between different board layouts and should be checked before selecting an application coremask/corelist.
Hugepage Memory Use by Applications
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

View File

@ -246,7 +246,7 @@ See :numref:`figure_intel_perf_test_setup` for the performance test setup.
7. The command line of running l3fwd would be something like the followings::
./l3fwd -c 0x3c0000 -n 4 -w 82:00.0 -w 85:00.0 \
./l3fwd -l 18-21 -n 4 -w 82:00.0 -w 85:00.0 \
-- -p 0x3 --config '(0,0,18),(0,1,19),(1,0,20),(1,1,21)'
This means that the application uses core 18 for port 0, queue pair 0 forwarding, core 19 for port 0, queue pair 1 forwarding,

View File

@ -282,7 +282,7 @@ the logical core layout of the platform should be determined when selecting a co
INSTALL-APP helloworld
INSTALL-MAP helloworld.map
sudo ./build/app/helloworld -c 0xf -n 3
sudo ./build/app/helloworld -l 0-3 -n 3
[sudo] password for rte:
EAL: coremask set to f

View File

@ -225,7 +225,7 @@ devices managed by ``librte_pmd_bnx2x`` in Linux operating system.
.. code-block:: console
./x86_64-native-linuxapp-gcc/app/testpmd -c 0xf -n 4 -- -i
./x86_64-native-linuxapp-gcc/app/testpmd -l 0-3 -n 4 -- -i
Example output:

View File

@ -307,7 +307,7 @@ devices managed by librte_pmd_cxgbe in Linux operating system.
.. code-block:: console
./x86_64-native-linuxapp-gcc/app/testpmd -c 0xf -n 4 -w 0000:02:00.4 -- -i
./x86_64-native-linuxapp-gcc/app/testpmd -l 0-3 -n 4 -w 0000:02:00.4 -- -i
Example output:
@ -509,7 +509,7 @@ devices managed by librte_pmd_cxgbe in FreeBSD operating system.
.. code-block:: console
./x86_64-native-bsdapp-clang/app/testpmd -c 0xf -n 4 -w 0000:02:00.4 -- -i
./x86_64-native-bsdapp-clang/app/testpmd -l 0-3 -n 4 -w 0000:02:00.4 -- -i
Example output:

View File

@ -231,7 +231,7 @@ devices managed by librte_pmd_ena.
.. code-block:: console
./x86_64-native-linuxapp-gcc/app/testpmd -c 0xf -n 4 -- -i
./x86_64-native-linuxapp-gcc/app/testpmd -l 0-3 -n 4 -- -i
Example output:

View File

@ -177,7 +177,7 @@ devices managed by ``librte_pmd_i40e`` in the Linux operating system.
.. code-block:: console
./x86_64-native-linuxapp-gcc/app/testpmd -c 0xf -n 4 -w 83:00.0 -- -i
./x86_64-native-linuxapp-gcc/app/testpmd -l 0-3 -n 4 -w 83:00.0 -- -i
Example output:
@ -268,7 +268,7 @@ To start ``testpmd``, and add vlan 10 to port 0:
.. code-block:: console
./app/testpmd -c ffff -n 4 -- -i --forward-mode=mac
./app/testpmd -l 0-15 -n 4 -- -i --forward-mode=mac
...
testpmd> set promisc 0 off
@ -303,7 +303,7 @@ Start ``testpmd`` with ``--disable-rss`` and ``--pkt-filter-mode=perfect``:
.. code-block:: console
./app/testpmd -c ffff -n 4 -- -i --disable-rss --pkt-filter-mode=perfect \
./app/testpmd -l 0-15 -n 4 -- -i --disable-rss --pkt-filter-mode=perfect \
--rxq=8 --txq=8 --nb-cores=8 --nb-ports=1
Add a rule to direct ``ipv4-udp`` packet whose ``dst_ip=2.2.2.5, src_ip=2.2.2.3, src_port=32, dst_port=32`` to queue 1:

View File

@ -187,7 +187,10 @@ For example,
.. code-block:: console
testpmd -c 0xffff -n 4 -- --coremask=<core-mask> --rxq=4 --txq=4 -i
testpmd -l 0-15 -n 4 -- --coremask=<core-mask> --rxq=4 --txq=4 -i
.. Note: The preferred option is -c XX or -l n-n,n instead of a coremask value. The --coremask option
is a feature of the application and not DPDK EAL options.
The limitation for VF RSS on Intel® 82599 10 Gigabit Ethernet Controller is:
The hash and key are shared among PF and all VF, the RETA table with 128 entries is also shared
@ -513,7 +516,7 @@ The setup procedure is as follows:
.. code-block:: console
make install T=x86_64-native-linuxapp-gcc
./x86_64-native-linuxapp-gcc/app/testpmd -c f -n 4 -- -i
./x86_64-native-linuxapp-gcc/app/testpmd -l 0-3 -n 4 -- -i
#. Finally, access the Guest OS using vncviewer with the localhost:5900 port and check the lspci command output in the Guest OS.
The virtual functions will be listed as available for use.

View File

@ -163,13 +163,13 @@ By default, using CONFIG_RTE_IXGBE_RX_OLFLAGS_ENABLE=y:
.. code-block:: console
./x86_64-native-linuxapp-gcc/app/testpmd -c 300 -n 4 -- -i --burst=32 --rxfreet=32 --mbcache=250 --txpt=32 --rxht=8 --rxwt=0 --txfreet=32 --txrst=32 --txqflags=0xf01
./x86_64-native-linuxapp-gcc/app/testpmd -l 8-9 -n 4 -- -i --burst=32 --rxfreet=32 --mbcache=250 --txpt=32 --rxht=8 --rxwt=0 --txfreet=32 --txrst=32 --txqflags=0xf01
When CONFIG_RTE_IXGBE_RX_OLFLAGS_ENABLE=n, better performance can be achieved:
.. code-block:: console
./x86_64-native-linuxapp-gcc/app/testpmd -c 300 -n 4 -- -i --burst=32 --rxfreet=32 --mbcache=250 --txpt=32 --rxht=8 --rxwt=0 --txfreet=32 --txrst=32 --txqflags=0xf01 --disable-hw-vlan
./x86_64-native-linuxapp-gcc/app/testpmd -l 8-9 -n 4 -- -i --burst=32 --rxfreet=32 --mbcache=250 --txpt=32 --rxht=8 --rxwt=0 --txfreet=32 --txrst=32 --txqflags=0xf01 --disable-hw-vlan
l3fwd
~~~~~

View File

@ -343,7 +343,7 @@ devices managed by librte_pmd_mlx4.
.. code-block:: console
testpmd -c 0xff00 -n 4 -w 0000:83:00.0 -w 0000:84:00.0 -- --rxq=2 --txq=2 -i
testpmd -l 8-15 -n 4 -w 0000:83:00.0 -w 0000:84:00.0 -- --rxq=2 --txq=2 -i
Example output:

View File

@ -382,7 +382,7 @@ ConnectX-4/ConnectX-5 devices managed by librte_pmd_mlx5.
.. code-block:: console
testpmd -c 0xff00 -n 4 -w 05:00.0 -w 05:00.1 -w 06:00.0 -w 06:00.1 -- --rxq=2 --txq=2 -i
testpmd -l 8-15 -n 4 -w 05:00.0 -w 05:00.1 -w 06:00.0 -w 06:00.1 -- --rxq=2 --txq=2 -i
Example output:

View File

@ -69,7 +69,7 @@ Device name and stream options must be separated by commas as shown below:
.. code-block:: console
$RTE_TARGET/app/testpmd -c f -n 4 \
$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,stream_opt0=..,stream_opt1=..' \
--vdev='net_pcap1,stream_opt0=..'
@ -122,7 +122,7 @@ Read packets from one pcap file and write them to another:
.. code-block:: console
$RTE_TARGET/app/testpmd -c '0xf' -n 4 \
$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,rx_pcap=file_rx.pcap,tx_pcap=file_tx.pcap' \
-- --port-topology=chained
@ -130,7 +130,7 @@ Read packets from a network interface and write them to a pcap file:
.. code-block:: console
$RTE_TARGET/app/testpmd -c '0xf' -n 4 \
$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,rx_iface=eth0,tx_pcap=file_tx.pcap' \
-- --port-topology=chained
@ -138,7 +138,7 @@ Read packets from a pcap file and write them to a network interface:
.. code-block:: console
$RTE_TARGET/app/testpmd -c '0xf' -n 4 \
$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,rx_pcap=file_rx.pcap,tx_iface=eth1' \
-- --port-topology=chained
@ -146,7 +146,7 @@ Forward packets through two network interfaces:
.. code-block:: console
$RTE_TARGET/app/testpmd -c '0xf' -n 4 \
$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,iface=eth0' --vdev='net_pcap1;iface=eth1'
Using libpcap-based PMD with the testpmd Application
@ -171,7 +171,7 @@ Otherwise, the first 512 packets from the input pcap file will be discarded by t
.. code-block:: console
$RTE_TARGET/app/testpmd -c '0xf' -n 4 \
$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,rx_pcap=file_rx.pcap,tx_pcap=file_tx.pcap' \
-- --port-topology=chained --no-flush-rx
@ -185,7 +185,7 @@ Multiple devices may be specified, separated by commas.
.. code-block:: console
./testpmd -c E -n 4 --vdev=net_ring0 --vdev=net_ring1 -- -i
./testpmd -l 1-3 -n 4 --vdev=net_ring0 --vdev=net_ring1 -- -i
EAL: Detected lcore 1 as core 1 on socket 0
...

View File

@ -184,7 +184,7 @@ devices managed by ``librte_pmd_qede`` in Linux operating system.
.. code-block:: console
testpmd -c 0xff1 -n 4 -- -i --nb-cores=8 --portmask=0xf --rxd=4096 \
testpmd -l 0,4-11 -n 4 -- -i --nb-cores=8 --portmask=0xf --rxd=4096 \
--txd=4096 --txfreet=4068 --enable-rx-cksum --rxq=4 --txq=4 \
--rss-ip --rss-udp

View File

@ -117,7 +117,7 @@ transmit channel:
.. code-block:: console
$RTE_TARGET/app/testpmd -c 0xf -n 2 \
$RTE_TARGET/app/testpmd -l 0-3 -n 2 \
-- --port-topology=chained --rxq=2 --txq=2 --nb-cores=2 -i -a
Example output:

View File

@ -155,7 +155,7 @@ managed by ``librte_pmd_thunderx_nicvf`` in the Linux operating system.
.. code-block:: console
./arm64-thunderx-linuxapp-gcc/app/testpmd -c 0xf -n 4 -w 0002:01:00.2 \
./arm64-thunderx-linuxapp-gcc/app/testpmd -l 0-3 -n 4 -w 0002:01:00.2 \
-- -i --disable-hw-vlan-filter --crc-strip --no-flush-rx \
--port-topology=loop

View File

@ -92,7 +92,7 @@ This section demonstrates vhost PMD with testpmd DPDK sample application.
.. code-block:: console
./testpmd -c f -n 4 --vdev 'net_vhost0,iface=/tmp/sock0,queues=1' -- -i
./testpmd -l 0-3 -n 4 --vdev 'net_vhost0,iface=/tmp/sock0,queues=1' -- -i
Other basic DPDK preparations like hugepage enabling here.
Please refer to the *DPDK Getting Started Guide* for detailed instructions.

View File

@ -130,7 +130,7 @@ Host2VM communication example
.. code-block:: console
examples/kni/build/app/kni -c 0xf -n 4 -- -p 0x1 -P --config="(0,1,3)"
examples/kni/build/app/kni -l 0-3 -n 4 -- -p 0x1 -P --config="(0,1,3)"
This command generates one network device vEth0 for physical port.
If specify more physical ports, the generated network device will be vEth1, vEth2, and so on.
@ -275,7 +275,7 @@ The corresponding callbacks are:
Example of using the vector version of the virtio poll mode driver in
``testpmd``::
testpmd -c 0x7 -n 4 -- -i --txqflags=0xF01 --rxq=1 --txq=1 --nb-cores=1
testpmd -l 0-2 -n 4 -- -i --txqflags=0xF01 --rxq=1 --txq=1 --nb-cores=1
Interrupt mode
@ -332,5 +332,5 @@ Here we use l3fwd-power as an example to show how to get started.
.. code-block:: console
$ l3fwd-power -c 0x3 -- -p 1 -P --config="(0,0,1)" \
$ l3fwd-power -l 0-1 -- -p 1 -P --config="(0,0,1)" \
--no-numa --parse-ptype

View File

@ -365,7 +365,7 @@ Device names and bonding options must be separated by commas as shown below:
.. code-block:: console
$RTE_TARGET/app/testpmd -c f -n 4 --vdev 'net_bond0,bond_opt0=..,bond opt1=..'--vdev 'net_bond1,bond _opt0=..,bond_opt1=..'
$RTE_TARGET/app/testpmd -l 0-3 -n 4 --vdev 'net_bond0,bond_opt0=..,bond opt1=..'--vdev 'net_bond1,bond _opt0=..,bond_opt1=..'
Link Bonding EAL Options
^^^^^^^^^^^^^^^^^^^^^^^^
@ -465,22 +465,22 @@ Create a bonded device in round robin mode with two slaves specified by their PC
.. code-block:: console
$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'net_bond0,mode=0, slave=0000:00a:00.01,slave=0000:004:00.00' -- --port-topology=chained
$RTE_TARGET/app/testpmd -l 0-3 -n 4 --vdev 'net_bond0,mode=0, slave=0000:00a:00.01,slave=0000:004:00.00' -- --port-topology=chained
Create a bonded device in round robin mode with two slaves specified by their PCI address and an overriding MAC address:
.. code-block:: console
$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'net_bond0,mode=0, slave=0000:00a:00.01,slave=0000:004:00.00,mac=00:1e:67:1d:fd:1d' -- --port-topology=chained
$RTE_TARGET/app/testpmd -l 0-3 -n 4 --vdev 'net_bond0,mode=0, slave=0000:00a:00.01,slave=0000:004:00.00,mac=00:1e:67:1d:fd:1d' -- --port-topology=chained
Create a bonded device in active backup mode with two slaves specified, and a primary slave specified by their PCI addresses:
.. code-block:: console
$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'net_bond0,mode=1, slave=0000:00a:00.01,slave=0000:004:00.00,primary=0000:00a:00.01' -- --port-topology=chained
$RTE_TARGET/app/testpmd -l 0-3 -n 4 --vdev 'net_bond0,mode=1, slave=0000:00a:00.01,slave=0000:004:00.00,primary=0000:00a:00.01' -- --port-topology=chained
Create a bonded device in balance mode with two slaves specified by their PCI addresses, and a transmission policy of layer 3 + 4 forwarding:
.. code-block:: console
$RTE_TARGET/app/testpmd -c '0xf' -n 4 --vdev 'net_bond0,mode=2, slave=0000:00a:00.01,slave=0000:004:00.00,xmit_policy=l34' -- --port-topology=chained
$RTE_TARGET/app/testpmd -l 0-3 -n 4 --vdev 'net_bond0,mode=2, slave=0000:00a:00.01,slave=0000:004:00.00,xmit_policy=l34' -- --port-topology=chained

View File

@ -173,7 +173,7 @@ Some of these are documented below:
so it is recommended that it be disabled only when absolutely necessary,
and only when the implications of this change have been understood.
* All DPDK processes running as a single application and using shared memory must have distinct coremask arguments.
* All DPDK processes running as a single application and using shared memory must have distinct coremask/corelist arguments.
It is not possible to have a primary and secondary instance, or two secondary instances,
using any of the same logical cores.
Attempting to do so can cause corruption of memory pool caches, among other issues.

View File

@ -96,7 +96,7 @@ To run the application in linuxapp environment, issue the following command:
.. code-block:: console
$ ./build/cmdline -c f -n 4
$ ./build/cmdline -l 0-3 -n 4
Refer to the *DPDK Getting Started Guide* for general information on running applications
and the Environment Abstraction Layer (EAL) options.

View File

@ -96,7 +96,7 @@ Running the Application
.. code-block:: console
$ ./build/distributor_app -c 0x4003fe -n 4 -- -p f
$ ./build/distributor_app -l 1-9,22 -n 4 -- -p f
#. Refer to the DPDK Getting Started Guide for general information on running
applications and the Environment Abstraction Layer (EAL) options.

View File

@ -102,7 +102,7 @@ Refer to the *DPDK Getting Started Guide* for general information on running app
and the Environment Abstraction Layer (EAL) options.
The number of bits set in each bitmask must be the same.
The coremask -c parameter of the EAL options should include IN_CORES and OUT_CORES.
The coremask -c or the corelist -l parameter of the EAL options should include IN_CORES and OUT_CORES.
The same bit must not be set in IN_CORES and OUT_CORES.
The affinities between ports and cores are set beginning with the least significant bit of each mask, that is,
the port represented by the lowest bit in PORTMASK is read from by the core represented by the lowest bit in IN_CORES,
@ -112,7 +112,7 @@ For example to run the application with two ports and four cores:
.. code-block:: console
./build/exception_path -c f -n 4 -- -p 3 -i 3 -o c
./build/exception_path -l 0-3 -n 4 -- -p 3 -i 3 -o c
Getting Statistics
~~~~~~~~~~~~~~~~~~

View File

@ -65,7 +65,7 @@ To run the example in a linuxapp environment:
.. code-block:: console
$ ./build/helloworld -c f -n 4
$ ./build/helloworld -l 0-3 -n 4
Refer to *DPDK Getting Started Guide* for general information on running applications
and the Environment Abstraction Layer (EAL) options.

View File

@ -215,7 +215,7 @@ performing AES-CBC-128 encryption with AES-XCBC-MAC-96 hash, the following setti
.. code-block:: console
./build/dpdk_qat -c 0xff -n 2 -- -p 0x3 --config '(0,0,1),(1,0,2)'
./build/dpdk_qat -l 0-7 -n 2 -- -p 0x3 --config '(0,0,1),(1,0,2)'
Refer to the *DPDK Test Report* for more examples of traffic generator setup and the application startup command lines.
If no errors are generated in response to the startup commands, the application is running correctly.

View File

@ -111,7 +111,7 @@ To run the example in linuxapp environment with 2 lcores (2,4) over 2 ports(0,2)
.. code-block:: console
./build/ip_fragmentation -c 0x14 -n 3 -- -p 5
./build/ip_fragmentation -l 2,4 -n 3 -- -p 5
EAL: coremask set to 14
EAL: Detected lcore 0 on socket 0
EAL: Detected lcore 1 on socket 1
@ -140,7 +140,7 @@ To run the example in linuxapp environment with 1 lcore (4) over 2 ports(0,2) wi
.. code-block:: console
./build/ip_fragmentation -c 0x10 -n 3 -- -p 5 -q 2
./build/ip_fragmentation -l 4 -n 3 -- -p 5 -q 2
To test the application, flows should be set up in the flow generator that match the values in the
l3fwd_ipv4_route_array and/or l3fwd_ipv6_route_array table.

View File

@ -102,7 +102,7 @@ To run the example in linuxapp environment with 2 lcores (2,4) over 2 ports(0,2)
.. code-block:: console
./build/ip_reassembly -c 0x14 -n 3 -- -p 5
./build/ip_reassembly -l 2,4 -n 3 -- -p 5
EAL: coremask set to 14
EAL: Detected lcore 0 on socket 0
EAL: Detected lcore 1 on socket 1
@ -133,7 +133,7 @@ To run the example in linuxapp environment with 1 lcore (4) over 2 ports(0,2) wi
.. code-block:: console
./build/ip_reassembly -c 0x10 -n 3 -- -p 5 -q 2
./build/ip_reassembly -l 4 -n 3 -- -p 5 -q 2
To test the application, flows should be set up in the flow generator that match the values in the
l3fwd_ipv4_route_array and/or l3fwd_ipv6_route_array table.

View File

@ -113,7 +113,7 @@ Typically, to run the IPv4 Multicast sample application, issue the following com
.. code-block:: console
./build/ipv4_multicast -c 0x00f -n 3 -- -p 0x3 -q 1
./build/ipv4_multicast -l 0-3 -n 3 -- -p 0x3 -q 1
In this command:

View File

@ -114,7 +114,7 @@ To run the application in linuxapp environment with 4 lcores, 16 ports
.. code-block:: console
./build/l2fwd-keepalive -c f -n 4 -- -q 8 -p ffff -K 10
./build/l2fwd-keepalive -l 0-3 -n 4 -- -q 8 -p ffff -K 10
Refer to the *DPDK Getting Started Guide* for general information on
running applications and the Environment Abstraction Layer (EAL)

View File

@ -180,7 +180,7 @@ Where:
Refer to *DPDK Getting Started Guide* for general information on running applications and the Environment Abstraction Layer (EAL) options.
The -c coremask parameter of the EAL options should include the lcores indicated by the lcore_rx and lcore_tx,
The -c coremask or -l corelist parameter of the EAL options should include the lcores indicated by the lcore_rx and lcore_tx,
but does not need to include lcores indicated by lcore_kthread as they are used to pin the kernel thread on.
The -p PORTMASK parameter should include the ports indicated by the port in --config, neither more nor less.
@ -199,7 +199,7 @@ and one lcore of kernel thread for each port:
.. code-block:: console
./build/kni -c 0xf0 -n 4 -- -P -p 0x3 -config="(0,4,6,8),(1,5,7,9)"
./build/kni -l 4-7 -n 4 -- -P -p 0x3 -config="(0,4,6,8),(1,5,7,9)"
KNI Operations
--------------

View File

@ -108,13 +108,13 @@ To run the example in a ``linuxapp`` environment and enable CAT on cpus 0-2:
.. code-block:: console
./build/l2fwd-cat -c 2 -n 4 -- --l3ca="0x3@(0-2)"
./build/l2fwd-cat -l 1 -n 4 -- --l3ca="0x3@(0-2)"
or to enable CAT and CDP on cpus 1,3:
.. code-block:: console
./build/l2fwd-cat -c 2 -n 4 -- --l3ca="(0x00C00,0x00300)@(1,3)"
./build/l2fwd-cat -l 1 -n 4 -- --l3ca="(0x00C00,0x00300)@(1,3)"
If CDP is not supported it will fail with following error message:
@ -242,4 +242,4 @@ relevant CPUs via ``pqos_l3ca_assoc_set(...)`` calls.
``atexit(...)`` is used to register ``cat_exit(...)`` to be called on
a clean exit. ``cat_exit(...)`` performs a simple CAT clean-up, by associating
COS 0 to all involved CPUs via ``pqos_l3ca_assoc_set(...)`` calls.
COS 0 to all involved CPUs via ``pqos_l3ca_assoc_set(...)`` calls.

View File

@ -167,7 +167,7 @@ To run the application in linuxapp environment with 2 lcores, 2 ports and 2 cryp
.. code-block:: console
$ ./build/l2fwd-crypto -c 0x3 -n 4 --vdev "cryptodev_aesni_mb_pmd" \
$ ./build/l2fwd-crypto -l 0-1 -n 4 --vdev "cryptodev_aesni_mb_pmd" \
--vdev "cryptodev_aesni_mb_pmd" -- -p 0x3 --chain CIPHER_HASH \
--cipher_op ENCRYPT --cipher_algo AES_CBC \
--cipher_key 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f \

View File

@ -140,7 +140,7 @@ thousands separator printing, issue the command:
.. code-block:: console
$ ./build/l2fwd-jobstats -c f -n 4 -- -q 8 -p ffff -l
$ ./build/l2fwd-jobstats -l 0-3 -n 4 -- -q 8 -p ffff -l
Refer to the *DPDK Getting Started Guide* for general information on running applications
and the Environment Abstraction Layer (EAL) options.

View File

@ -150,7 +150,7 @@ updating enabled, issue the command:
.. code-block:: console
$ ./build/l2fwd -c f -n 4 -- -q 8 -p ffff
$ ./build/l2fwd -l 0-3 -n 4 -- -q 8 -p ffff
Refer to the *DPDK Getting Started Guide* for general information on running applications
and the Environment Abstraction Layer (EAL) options.

View File

@ -318,7 +318,7 @@ To enable L3 forwarding between two ports, assuming that both ports are in the s
In this command:
* The -c option enables cores 1, 2
* The -l option enables cores 1, 2
* The -p option enables ports 0 and 1

View File

@ -104,7 +104,7 @@ issue the command:
.. code-block:: console
$ ./build/link_status_interrupt -c f -n 4-- -q 8 -p ffff
$ ./build/link_status_interrupt -l 0-3 -n 4-- -q 8 -p ffff
Refer to the *DPDK Getting Started Guide* for general information on running applications
and the Environment Abstraction Layer (EAL) options.

View File

@ -178,7 +178,7 @@ Example:
.. code-block:: console
./load_balancer -c 0xf8 -n 4 -- --rx "(0,0,3),(1,0,3)" --tx "(0,3),(1,3)" --w "4,5,6,7" --lpm "1.0.0.0/24=>0; 1.0.1.0/24=>1;" --pos-lb 29
./load_balancer -l 3-7 -n 4 -- --rx "(0,0,3),(1,0,3)" --tx "(0,3),(1,3)" --w "4,5,6,7" --lpm "1.0.0.0/24=>0; 1.0.1.0/24=>1;" --pos-lb 29
There is a single I/O lcore (lcore 3) that handles RX and TX for two NIC ports (ports 0 and 1) that
handles packets to/from four worker lcores (lcores 4, 5, 6 and 7) that

View File

@ -82,11 +82,11 @@ Running the Application
^^^^^^^^^^^^^^^^^^^^^^^
To run the application, start one copy of the simple_mp binary in one terminal,
passing at least two cores in the coremask, as follows:
passing at least two cores in the coremask/corelist, as follows:
.. code-block:: console
./build/simple_mp -c 3 -n 4 --proc-type=primary
./build/simple_mp -l 0-1 -n 4 --proc-type=primary
For the first DPDK process run, the proc-type flag can be omitted or set to auto,
since all DPDK processes will default to being a primary instance,
@ -95,7 +95,7 @@ The process should start successfully and display a command prompt as follows:
.. code-block:: console
$ ./build/simple_mp -c 3 -n 4 --proc-type=primary
$ ./build/simple_mp -l 0-1 -n 4 --proc-type=primary
EAL: coremask set to 3
EAL: Detected lcore 0 on socket 0
EAL: Detected lcore 1 on socket 0
@ -119,11 +119,11 @@ The process should start successfully and display a command prompt as follows:
simple_mp >
To run the secondary process to communicate with the primary process,
again run the same binary setting at least two cores in the coremask:
again run the same binary setting at least two cores in the coremask/corelist:
.. code-block:: console
./build/simple_mp -c C -n 4 --proc-type=secondary
./build/simple_mp -l 2-3 -n 4 --proc-type=secondary
When running a secondary process such as that shown above, the proc-type parameter can again be specified as auto.
However, omitting the parameter altogether will cause the process to try and start as a primary rather than secondary process.
@ -229,10 +229,10 @@ the following commands can be used (assuming run as root):
.. code-block:: console
# ./build/symmetric_mp -c 2 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=0
# ./build/symmetric_mp -c 4 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=1
# ./build/symmetric_mp -c 8 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=2
# ./build/symmetric_mp -c 10 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=3
# ./build/symmetric_mp -l 1 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=0
# ./build/symmetric_mp -l 2 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=1
# ./build/symmetric_mp -l 3 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=2
# ./build/symmetric_mp -l 4 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=3
.. note::
@ -318,8 +318,8 @@ In addition to the EAL parameters, the application- specific parameters are:
.. note::
In the server process, a single thread, the master thread, that is, the lowest numbered lcore in the coremask, performs all packet I/O.
If a coremask is specified with more than a single lcore bit set in it,
In the server process, a single thread, the master thread, that is, the lowest numbered lcore in the coremask/corelist, performs all packet I/O.
If a coremask/corelist is specified with more than a single lcore bit set in it,
an additional lcore will be used for a thread to periodically print packet count statistics.
Since the server application stores configuration data in shared memory, including the network ports to be used,
@ -329,9 +329,9 @@ the following commands could be used:
.. code-block:: console
# ./mp_server/build/mp_server -c 6 -n 4 -- -p 3 -n 2
# ./mp_client/build/mp_client -c 8 -n 4 --proc-type=auto -- -n 0
# ./mp_client/build/mp_client -c 10 -n 4 --proc-type=auto -- -n 1
# ./mp_server/build/mp_server -l 1-2 -n 4 -- -p 3 -n 2
# ./mp_client/build/mp_client -l 3 -n 4 --proc-type=auto -- -n 0
# ./mp_client/build/mp_client -l 4 -n 4 --proc-type=auto -- -n 1
.. note::
@ -524,7 +524,7 @@ The command is as follows:
.. code-block:: console
#./build/l2fwd_fork -c 1c -n 4 -- -p 3 -f
#./build/l2fwd_fork -l 2-4 -n 4 -- -p 3 -f
This example provides another -f option to specify the use of floating process.
If not specified, the example will use a pinned process to perform the L2 forwarding task.

View File

@ -187,14 +187,14 @@ in ``--rx/--tx`` are used to affinitize threads to the selected scheduler.
For example, the following places every l-thread on different lcores::
l3fwd-thread -c ff -n 2 -- -P -p 3 \
l3fwd-thread -l 0-7 -n 2 -- -P -p 3 \
--rx="(0,0,0,0)(1,0,1,1)" \
--tx="(2,0)(3,1)"
The following places RX l-threads on lcore 0 and TX l-threads on lcore 1 and 2
and so on::
l3fwd-thread -c ff -n 2 -- -P -p 3 \
l3fwd-thread -l 0-7 -n 2 -- -P -p 3 \
--rx="(0,0,0,0)(1,0,0,1)" \
--tx="(1,0)(2,1)"
@ -210,7 +210,7 @@ place every RX and TX thread on different lcores.
For example, the following places every EAL thread on different lcores::
l3fwd-thread -c ff -n 2 -- -P -p 3 \
l3fwd-thread -l 0-7 -n 2 -- -P -p 3 \
--rx="(0,0,0,0)(1,0,1,1)" \
--tx="(2,0)(3,1)" \
--no-lthreads
@ -222,7 +222,7 @@ parameter is used.
The following places RX EAL threads on lcore 0 and TX EAL threads on lcore 1
and 2 and so on::
l3fwd-thread -c ff -n 2 --lcores="(0,1)@0,(2,3)@1" -- -P -p 3 \
l3fwd-thread -l 0-7 -n 2 --lcores="(0,1)@0,(2,3)@1" -- -P -p 3 \
--rx="(0,0,0,0)(1,0,1,1)" \
--tx="(2,0)(3,1)" \
--no-lthreads
@ -236,13 +236,13 @@ and its corresponding EAL threads command line can be realized as follows:
a) Start every thread on different scheduler (1:1)::
l3fwd-thread -c ff -n 2 -- -P -p 3 \
l3fwd-thread -l 0-7 -n 2 -- -P -p 3 \
--rx="(0,0,0,0)(1,0,1,1)" \
--tx="(2,0)(3,1)"
EAL thread equivalent::
l3fwd-thread -c ff -n 2 -- -P -p 3 \
l3fwd-thread -l 0-7 -n 2 -- -P -p 3 \
--rx="(0,0,0,0)(1,0,1,1)" \
--tx="(2,0)(3,1)" \
--no-lthreads
@ -251,13 +251,13 @@ b) Start all threads on one core (N:1).
Start 4 L-threads on lcore 0::
l3fwd-thread -c ff -n 2 -- -P -p 3 \
l3fwd-thread -l 0-7 -n 2 -- -P -p 3 \
--rx="(0,0,0,0)(1,0,0,1)" \
--tx="(0,0)(0,1)"
Start 4 EAL threads on cpu-set 0::
l3fwd-thread -c ff -n 2 --lcores="(0-3)@0" -- -P -p 3 \
l3fwd-thread -l 0-7 -n 2 --lcores="(0-3)@0" -- -P -p 3 \
--rx="(0,0,0,0)(1,0,0,1)" \
--tx="(2,0)(3,1)" \
--no-lthreads
@ -266,14 +266,14 @@ c) Start threads on different cores (N:M).
Start 2 L-threads for RX on lcore 0, and 2 L-threads for TX on lcore 1::
l3fwd-thread -c ff -n 2 -- -P -p 3 \
l3fwd-thread -l 0-7 -n 2 -- -P -p 3 \
--rx="(0,0,0,0)(1,0,0,1)" \
--tx="(1,0)(1,1)"
Start 2 EAL threads for RX on cpu-set 0, and 2 EAL threads for TX on
cpu-set 1::
l3fwd-thread -c ff -n 2 --lcores="(0-1)@0,(2-3)@1" -- -P -p 3 \
l3fwd-thread -l 0-7 -n 2 --lcores="(0-1)@0,(2-3)@1" -- -P -p 3 \
--rx="(0,0,0,0)(1,0,1,1)" \
--tx="(2,0)(3,1)" \
--no-lthreads

View File

@ -119,7 +119,7 @@ To run the example in a ``linuxapp`` environment:
.. code-block:: console
./build/ptpclient -c 2 -n 4 -- -p 0x1 -T 0
./build/ptpclient -l 1 -n 4 -- -p 0x1 -T 0
Refer to *DPDK Getting Started Guide* for general information on running
applications and the Environment Abstraction Layer (EAL) options.

View File

@ -289,7 +289,7 @@ The following is an example command with a single packet flow configuration:
.. code-block:: console
./qos_sched -c a2 -n 4 -- --pfc "3,2,5,7" --cfg ./profile.cfg
./qos_sched -l 1,5,7 -n 4 -- --pfc "3,2,5,7" --cfg ./profile.cfg
This example uses a single packet flow configuration which creates one RX thread on lcore 5 reading
from port 3 and a worker thread on lcore 7 writing to port 2.
@ -298,12 +298,12 @@ Another example with 2 packet flow configurations using different ports but shar
.. code-block:: console
./qos_sched -c c6 -n 4 -- --pfc "3,2,2,6,7" --pfc "1,0,2,6,7" --cfg ./profile.cfg
./qos_sched -l 1,2,6,7 -n 4 -- --pfc "3,2,2,6,7" --pfc "1,0,2,6,7" --cfg ./profile.cfg
Note that independent cores for the packet flow configurations for each of the RX, WT and TX thread are also supported,
providing flexibility to balance the work.
The EAL coremask is constrained to contain the default mastercore 1 and the RX, WT and TX cores only.
The EAL coremask/corelist is constrained to contain the default mastercore 1 and the RX, WT and TX cores only.
Explanation
-----------

View File

@ -136,7 +136,7 @@ issue the following command:
.. code-block:: console
./qw/build/qw -c f -n 4 -- -p 5
./qw/build/qw -l 0-3 -n 4 -- -p 5
Refer to the *DPDK Getting Started Guide* for general information on running applications and
the Environment Abstraction Layer (EAL) options.
@ -157,7 +157,7 @@ To run the application in a linuxapp environment on logical core 0, issue the fo
.. code-block:: console
./qwctl/build/qwctl -c 1 -n 4 --proc-type=secondary
./qwctl/build/qwctl -l 0 -n 4 --proc-type=secondary
Refer to the *DPDK Getting Started* Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

View File

@ -85,7 +85,7 @@ To run the example in a ``linuxapp`` environment:
.. code-block:: console
./build/rxtx_callbacks -c 2 -n 4
./build/rxtx_callbacks -l 1 -n 4
Refer to *DPDK Getting Started Guide* for general information on running
applications and the Environment Abstraction Layer (EAL) options.

View File

@ -74,7 +74,7 @@ To run the example in a ``linuxapp`` environment:
.. code-block:: console
./build/basicfwd -c 2 -n 4
./build/basicfwd -l 1 -n 4
Refer to *DPDK Getting Started Guide* for general information on running
applications and the Environment Abstraction Layer (EAL) options.

View File

@ -169,7 +169,7 @@ Running the Sample Code
.. code-block:: console
user@target:~$ ./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
user@target:~$ ./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
-p 0x1 --dev-basename tep-termination --nb-devices 4
--udp-port 4789 --filter-type 1
@ -191,7 +191,7 @@ The default value is 2.
.. code-block:: console
user@target:~$ ./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
user@target:~$ ./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
--nb-devices 2
**Tunneling UDP port.**
@ -201,7 +201,7 @@ The default value is 4789.
.. code-block:: console
user@target:~$ ./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
user@target:~$ ./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
--nb-devices 2 --udp-port 4789
**Filter Type.**
@ -212,7 +212,7 @@ The default value is 1, which means the filter type of inner MAC and tenant ID i
.. code-block:: console
user@target:~$ ./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
user@target:~$ ./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
--nb-devices 2 --udp-port 4789 --filter-type 1
**TX Checksum.**
@ -222,7 +222,7 @@ The default value is 0, which means the checksum offload is disabled.
.. code-block:: console
user@target:~$ ./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
user@target:~$ ./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
--nb-devices 2 --tx-checksum
**TCP segment size.**
@ -232,7 +232,7 @@ The default value is 0, which means TSO offload is disabled.
.. code-block:: console
user@target:~$ ./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
user@target:~$ ./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
--tx-checksum --tso-segsz 800
**Decapsulation option.**
@ -242,7 +242,7 @@ The default value is 1.
.. code-block:: console
user@target:~$ ./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
user@target:~$ ./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
--nb-devices 4 --udp-port 4789 --decap 1
**Encapsulation option.**
@ -252,7 +252,7 @@ The default value is 1.
.. code-block:: console
user@target:~$ ./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge --
user@target:~$ ./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
--nb-devices 4 --udp-port 4789 --encap 1

View File

@ -90,7 +90,7 @@ The application execution command line is:
./test-pipeline [EAL options] -- -p PORTMASK --TABLE_TYPE
The -c EAL CPU core mask option has to contain exactly 3 CPU cores.
The -c or -l EAL CPU coremask/corelist option has to contain exactly 3 CPU cores.
The first CPU core in the core mask is assigned for core A, the second for core B and the third for core C.
The PORTMASK parameter must contain 2 or 4 ports.

View File

@ -65,7 +65,7 @@ To run the example in linuxapp environment:
.. code-block:: console
$ ./build/timer -c f -n 4
$ ./build/timer -l 0-3 -n 4
Refer to the *DPDK Getting Started Guide* for general information on running applications and
the Environment Abstraction Layer (EAL) options.

View File

@ -75,7 +75,7 @@ Start the vswitch example
.. code-block:: console
./vhost-switch -c f -n 4 --socket-mem 1024 \
./vhost-switch -l 0-3 -n 4 --socket-mem 1024 \
-- --socket-file /tmp/sock0 --client \
...
@ -121,7 +121,7 @@ Then start testpmd for packet forwarding testing.
.. code-block:: console
./x86_64-native-gcc/app/testpmd -c 0x3 -- -i
./x86_64-native-gcc/app/testpmd -l 0-1 -- -i
> start tx_first
Inject packets

View File

@ -220,7 +220,7 @@ on cores 0 & 1 on a system with 4 memory channels:
.. code-block:: console
./build/vm_power_mgr -c 0x3 -n 4
./build/vm_power_mgr -l 0-1 -n 4
After successful initialization the user is presented with VM Power Manager CLI:
@ -342,7 +342,7 @@ for example to run on cores 0,1,2,3 on a system with 4 memory channels:
.. code-block:: console
./build/guest_vm_power_mgr -c 0xf -n 4
./build/guest_vm_power_mgr -l 0-3 -n 4
After successful initialization the user is presented with VM Power Manager Guest CLI:

View File

@ -114,7 +114,7 @@ To run the example in a linuxapp environment:
.. code-block:: console
user@target:~$ ./build/vmdq_dcb -c f -n 4 -- -p 0x3 --nb-pools 32 --nb-tcs 4
user@target:~$ ./build/vmdq_dcb -l 0-3 -n 4 -- -p 0x3 --nb-pools 32 --nb-tcs 4
Refer to the *DPDK Getting Started Guide* for general information on running applications and
the Environment Abstraction Layer (EAL) options.

View File

@ -165,7 +165,7 @@ They must be separated from the EAL options, shown in the previous section, with
.. code-block:: console
sudo ./testpmd -c 0xF -n 4 -- -i --portmask=0x1 --nb-cores=2
sudo ./testpmd -l 0-3 -n 4 -- -i --portmask=0x1 --nb-cores=2
The commandline options are:

View File

@ -109,9 +109,10 @@ The following are the EAL command-line options that can be used in conjunction
with the ``dpdk-test-crypto-perf`` applcation.
See the DPDK Getting Started Guides for more information on these options.
* ``-c <COREMASK>``
* ``-c <COREMASK>`` or ``-l <CORELIST>``
Set the hexadecimal bitmask of the cores to run on.
Set the hexadecimal bitmask of the cores to run on. The corelist is a
list cores to use.
* ``-w <PCI>``
@ -350,7 +351,7 @@ Call application for performance throughput test of single Aesni MB PMD
for cipher encryption aes-cbc and auth generation sha1-hmac,
one milion operations, burst size 32, packet size 64::
dpdk-test-crypto-perf -c 0xc0 --vdev crypto_aesni_mb_pmd -w 0000:00:00.0 --
dpdk-test-crypto-perf -l 6-7 --vdev crypto_aesni_mb_pmd -w 0000:00:00.0 --
--ptest throughput --devtype crypto_aesni_mb --optype cipher-then-auth
--cipher-algo aes-cbc --cipher-op encrypt --cipher-key-sz 16 --auth-algo
sha1-hmac --auth-op generate --auth-key-sz 64 --auth-digest-sz 12
@ -359,7 +360,7 @@ one milion operations, burst size 32, packet size 64::
Call application for performance latency test of two Aesni MB PMD executed
on two cores for cipher encryption aes-cbc, ten operations in silent mode::
dpdk-test-crypto-perf -c 0xf0 --vdev crypto_aesni_mb_pmd1
dpdk-test-crypto-perf -l 4-7 --vdev crypto_aesni_mb_pmd1
--vdev crypto_aesni_mb_pmd2 -w 0000:00:00.0 -- --devtype crypto_aesni_mb
--cipher-algo aes-cbc --cipher-key-sz 16 --cipher-iv-sz 16
--cipher-op encrypt --optype cipher-only --silent
@ -370,7 +371,7 @@ for cipher encryption aes-gcm and auth generation aes-gcm,ten operations
in silent mode, test vector provide in file "test_aes_gcm.data"
with packet verification::
dpdk-test-crypto-perf -c 0xf0 --vdev crypto_openssl -w 0000:00:00.0 --
dpdk-test-crypto-perf -l 4-7 --vdev crypto_openssl -w 0000:00:00.0 --
--devtype crypto_openssl --cipher-algo aes-gcm --cipher-key-sz 16
--cipher-iv-sz 16 --cipher-op encrypt --auth-algo aes-gcm --auth-key-sz 16
--auth-digest-sz 16 --auth-aad-sz 16 --auth-op generate --optype aead

View File

@ -331,7 +331,7 @@ Building and Running the Switching Backend
.. code-block:: console
examples/vhost_xen/build/vhost-switch -c f -n 3 --xen-dom0 -- -p1
examples/vhost_xen/build/vhost-switch -l 0-3 -n 3 --xen-dom0 -- -p1
.. note::
@ -409,7 +409,7 @@ Building and Running the Front End
.. code-block:: console
./x86_64-native-linuxapp-gcc/app/testpmd -c f -n 4 --vdev="net_xenvirt0,mac=00:00:00:00:00:11"
./x86_64-native-linuxapp-gcc/app/testpmd -l 0-3 -n 4 --vdev="net_xenvirt0,mac=00:00:00:00:00:11"
testpmd>set fwd mac
testpmd>start
@ -430,7 +430,7 @@ Run TestPMD in a guest VM:
.. code-block:: console
./x86_64-native-linuxapp-gcc/app/testpmd -c f -n 4 --vdev="net_xenvirt0,mac=00:00:00:00:00:11" -- -i --eth-peer=0,00:00:00:00:00:22
./x86_64-native-linuxapp-gcc/app/testpmd -l 0-3 -n 4 --vdev="net_xenvirt0,mac=00:00:00:00:00:11" -- -i --eth-peer=0,00:00:00:00:00:22
testpmd> set fwd mac
testpmd> start
@ -453,13 +453,13 @@ Run TestPMD in guest VM1:
.. code-block:: console
./x86_64-native-linuxapp-gcc/app/testpmd -c f -n 4 --vdev="net_xenvirt0,mac=00:00:00:00:00:11" -- -i --eth-peer=0,00:00:00:00:00:22 -- -i
./x86_64-native-linuxapp-gcc/app/testpmd -l 0-3 -n 4 --vdev="net_xenvirt0,mac=00:00:00:00:00:11" -- -i --eth-peer=0,00:00:00:00:00:22 -- -i
Run TestPMD in guest VM2:
.. code-block:: console
./x86_64-native-linuxapp-gcc/app/testpmd -c f -n 4 --vdev="net_xenvirt0,mac=00:00:00:00:00:22" -- -i --eth-peer=0,00:00:00:00:00:33
./x86_64-native-linuxapp-gcc/app/testpmd -l 0-3 -n 4 --vdev="net_xenvirt0,mac=00:00:00:00:00:22" -- -i --eth-peer=0,00:00:00:00:00:33
Configure a packet stream in the packet generator, and set the destination MAC address to 00:00:00:00:00:11 and VLAN to 1000.
The packets received in Virtio in guest VM1 will be forwarded to Virtio in guest VM2 and