crypto/scheduler: add fail-over scheduling mode

Fail-over mode works with 2 slaves, primary slave and secondary slave.
In this mode, the scheduler will enqueue the incoming crypto op burst
to the primary slave. When one or more crypto ops are failed to be
enqueued, they then will be enqueued to the secondary slave.

Signed-off-by: Fan Zhang <roy.fan.zhang@intel.com>
Acked-by: Declan Doherty <declan.doherty@intel.com>
This commit is contained in:
Fan Zhang 2017-03-29 17:31:32 +01:00 committed by Pablo de Lara
parent a783aa6344
commit 37f075dad1
6 changed files with 307 additions and 0 deletions

View File

@ -141,3 +141,11 @@ operation:
process additional crypto workload than what the QAT cryptodev can handle on
its own, by making use of the available CPU cycles to deal with smaller
crypto workloads.
* **CDEV_SCHED_MODE_FAILOVER:**
Fail-over mode, which works with 2 slaves, the primary slave and the
secondary slave. In this mode, the scheduler will enqueue the incoming
crypto operation burst to the primary slave. When one or more crypto
operations fail to be enqueued, then they will be enqueued to the secondary
slave.

View File

@ -241,6 +241,9 @@ New Features
* Added packet-size based distribution mode, which distributes the enqueued
crypto operations among two slaves, based on their data lengths.
* Added fail-over scheduling mode, which enqueues crypto operations to a
primary slave first. Then, any operation that cannot be enqueued is
enqueued to a secondary slave.
Resolved Issues
---------------

View File

@ -55,5 +55,6 @@ SRCS-$(CONFIG_RTE_LIBRTE_PMD_CRYPTO_SCHEDULER) += scheduler_pmd_ops.c
SRCS-$(CONFIG_RTE_LIBRTE_PMD_CRYPTO_SCHEDULER) += rte_cryptodev_scheduler.c
SRCS-$(CONFIG_RTE_LIBRTE_PMD_CRYPTO_SCHEDULER) += scheduler_roundrobin.c
SRCS-$(CONFIG_RTE_LIBRTE_PMD_CRYPTO_SCHEDULER) += scheduler_pkt_size_distr.c
SRCS-$(CONFIG_RTE_LIBRTE_PMD_CRYPTO_SCHEDULER) += scheduler_failover.c
include $(RTE_SDK)/mk/rte.lib.mk

View File

@ -343,6 +343,13 @@ rte_crpytodev_scheduler_mode_set(uint8_t scheduler_id,
return -1;
}
break;
case CDEV_SCHED_MODE_FAILOVER:
if (rte_cryptodev_scheduler_load_user_scheduler(scheduler_id,
failover_scheduler) < 0) {
CS_LOG_ERR("Failed to load scheduler");
return -1;
}
break;
default:
CS_LOG_ERR("Not yet supported");
return -ENOTSUP;

View File

@ -49,6 +49,8 @@ enum rte_cryptodev_scheduler_mode {
CDEV_SCHED_MODE_ROUNDROBIN,
/** packet-size based distribution mode */
CDEV_SCHED_MODE_PKT_SIZE_DISTR,
/** fail-over mode */
CDEV_SCHED_MODE_FAILOVER,
CDEV_SCHED_MODE_COUNT /* number of modes */
};
@ -161,6 +163,7 @@ struct rte_cryptodev_scheduler {
extern struct rte_cryptodev_scheduler *roundrobin_scheduler;
extern struct rte_cryptodev_scheduler *pkt_size_based_distr_scheduler;
extern struct rte_cryptodev_scheduler *failover_scheduler;
#ifdef __cplusplus
}

View File

@ -0,0 +1,285 @@
/*-
* BSD LICENSE
*
* Copyright(c) 2017 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_cryptodev.h>
#include <rte_malloc.h>
#include "rte_cryptodev_scheduler_operations.h"
#include "scheduler_pmd_private.h"
#define PRIMARY_SLAVE_IDX 0
#define SECONDARY_SLAVE_IDX 1
#define NB_FAILOVER_SLAVES 2
#define SLAVE_SWITCH_MASK (0x01)
struct fo_scheduler_qp_ctx {
struct scheduler_slave primary_slave;
struct scheduler_slave secondary_slave;
uint8_t deq_idx;
};
static inline uint16_t __attribute__((always_inline))
failover_slave_enqueue(struct scheduler_slave *slave, uint8_t slave_idx,
struct rte_crypto_op **ops, uint16_t nb_ops)
{
uint16_t i, processed_ops;
struct rte_cryptodev_sym_session *sessions[nb_ops];
struct scheduler_session *sess0, *sess1, *sess2, *sess3;
for (i = 0; i < nb_ops && i < 4; i++)
rte_prefetch0(ops[i]->sym->session);
for (i = 0; (i < (nb_ops - 8)) && (nb_ops > 8); i += 4) {
rte_prefetch0(ops[i + 4]->sym->session);
rte_prefetch0(ops[i + 5]->sym->session);
rte_prefetch0(ops[i + 6]->sym->session);
rte_prefetch0(ops[i + 7]->sym->session);
sess0 = (struct scheduler_session *)
ops[i]->sym->session->_private;
sess1 = (struct scheduler_session *)
ops[i+1]->sym->session->_private;
sess2 = (struct scheduler_session *)
ops[i+2]->sym->session->_private;
sess3 = (struct scheduler_session *)
ops[i+3]->sym->session->_private;
sessions[i] = ops[i]->sym->session;
sessions[i + 1] = ops[i + 1]->sym->session;
sessions[i + 2] = ops[i + 2]->sym->session;
sessions[i + 3] = ops[i + 3]->sym->session;
ops[i]->sym->session = sess0->sessions[slave_idx];
ops[i + 1]->sym->session = sess1->sessions[slave_idx];
ops[i + 2]->sym->session = sess2->sessions[slave_idx];
ops[i + 3]->sym->session = sess3->sessions[slave_idx];
}
for (; i < nb_ops; i++) {
sess0 = (struct scheduler_session *)
ops[i]->sym->session->_private;
sessions[i] = ops[i]->sym->session;
ops[i]->sym->session = sess0->sessions[slave_idx];
}
processed_ops = rte_cryptodev_enqueue_burst(slave->dev_id,
slave->qp_id, ops, nb_ops);
slave->nb_inflight_cops += processed_ops;
if (unlikely(processed_ops < nb_ops))
for (i = processed_ops; i < nb_ops; i++)
ops[i]->sym->session = sessions[i];
return processed_ops;
}
static uint16_t
schedule_enqueue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
{
struct fo_scheduler_qp_ctx *qp_ctx =
((struct scheduler_qp_ctx *)qp)->private_qp_ctx;
uint16_t enqueued_ops;
if (unlikely(nb_ops == 0))
return 0;
enqueued_ops = failover_slave_enqueue(&qp_ctx->primary_slave,
PRIMARY_SLAVE_IDX, ops, nb_ops);
if (enqueued_ops < nb_ops)
enqueued_ops += failover_slave_enqueue(&qp_ctx->secondary_slave,
SECONDARY_SLAVE_IDX, &ops[enqueued_ops],
nb_ops - enqueued_ops);
return enqueued_ops;
}
static uint16_t
schedule_enqueue_ordering(void *qp, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct rte_ring *order_ring =
((struct scheduler_qp_ctx *)qp)->order_ring;
uint16_t nb_ops_to_enq = get_max_enqueue_order_count(order_ring,
nb_ops);
uint16_t nb_ops_enqd = schedule_enqueue(qp, ops,
nb_ops_to_enq);
scheduler_order_insert(order_ring, ops, nb_ops_enqd);
return nb_ops_enqd;
}
static uint16_t
schedule_dequeue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
{
struct fo_scheduler_qp_ctx *qp_ctx =
((struct scheduler_qp_ctx *)qp)->private_qp_ctx;
struct scheduler_slave *slaves[NB_FAILOVER_SLAVES] = {
&qp_ctx->primary_slave, &qp_ctx->secondary_slave};
struct scheduler_slave *slave = slaves[qp_ctx->deq_idx];
uint16_t nb_deq_ops = 0, nb_deq_ops2 = 0;
if (slave->nb_inflight_cops) {
nb_deq_ops = rte_cryptodev_dequeue_burst(slave->dev_id,
slave->qp_id, ops, nb_ops);
slave->nb_inflight_cops -= nb_deq_ops;
}
qp_ctx->deq_idx = (~qp_ctx->deq_idx) & SLAVE_SWITCH_MASK;
if (nb_deq_ops == nb_ops)
return nb_deq_ops;
slave = slaves[qp_ctx->deq_idx];
if (slave->nb_inflight_cops) {
nb_deq_ops2 = rte_cryptodev_dequeue_burst(slave->dev_id,
slave->qp_id, &ops[nb_deq_ops], nb_ops - nb_deq_ops);
slave->nb_inflight_cops -= nb_deq_ops2;
}
return nb_deq_ops + nb_deq_ops2;
}
static uint16_t
schedule_dequeue_ordering(void *qp, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct rte_ring *order_ring =
((struct scheduler_qp_ctx *)qp)->order_ring;
schedule_dequeue(qp, ops, nb_ops);
return scheduler_order_drain(order_ring, ops, nb_ops);
}
static int
slave_attach(__rte_unused struct rte_cryptodev *dev,
__rte_unused uint8_t slave_id)
{
return 0;
}
static int
slave_detach(__rte_unused struct rte_cryptodev *dev,
__rte_unused uint8_t slave_id)
{
return 0;
}
static int
scheduler_start(struct rte_cryptodev *dev)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
uint16_t i;
if (sched_ctx->nb_slaves < 2) {
CS_LOG_ERR("Number of slaves shall no less than 2");
return -ENOMEM;
}
if (sched_ctx->reordering_enabled) {
dev->enqueue_burst = schedule_enqueue_ordering;
dev->dequeue_burst = schedule_dequeue_ordering;
} else {
dev->enqueue_burst = schedule_enqueue;
dev->dequeue_burst = schedule_dequeue;
}
for (i = 0; i < dev->data->nb_queue_pairs; i++) {
struct fo_scheduler_qp_ctx *qp_ctx =
((struct scheduler_qp_ctx *)
dev->data->queue_pairs[i])->private_qp_ctx;
rte_memcpy(&qp_ctx->primary_slave,
&sched_ctx->slaves[PRIMARY_SLAVE_IDX],
sizeof(struct scheduler_slave));
rte_memcpy(&qp_ctx->secondary_slave,
&sched_ctx->slaves[SECONDARY_SLAVE_IDX],
sizeof(struct scheduler_slave));
}
return 0;
}
static int
scheduler_stop(__rte_unused struct rte_cryptodev *dev)
{
return 0;
}
static int
scheduler_config_qp(struct rte_cryptodev *dev, uint16_t qp_id)
{
struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[qp_id];
struct fo_scheduler_qp_ctx *fo_qp_ctx;
fo_qp_ctx = rte_zmalloc_socket(NULL, sizeof(*fo_qp_ctx), 0,
rte_socket_id());
if (!fo_qp_ctx) {
CS_LOG_ERR("failed allocate memory for private queue pair");
return -ENOMEM;
}
qp_ctx->private_qp_ctx = (void *)fo_qp_ctx;
return 0;
}
static int
scheduler_create_private_ctx(__rte_unused struct rte_cryptodev *dev)
{
return 0;
}
struct rte_cryptodev_scheduler_ops scheduler_fo_ops = {
slave_attach,
slave_detach,
scheduler_start,
scheduler_stop,
scheduler_config_qp,
scheduler_create_private_ctx,
};
struct rte_cryptodev_scheduler fo_scheduler = {
.name = "failover-scheduler",
.description = "scheduler which enqueues to the primary slave, "
"and only then enqueues to the secondary slave "
"upon failing on enqueuing to primary",
.mode = CDEV_SCHED_MODE_FAILOVER,
.ops = &scheduler_fo_ops
};
struct rte_cryptodev_scheduler *failover_scheduler = &fo_scheduler;