doc: add CUDA example in GPU guide

Add a pseudo-code example to show how to use gpudev API
with a CUDA application.

Signed-off-by: Elena Agostini <eagostini@nvidia.com>
This commit is contained in:
Elena Agostini 2021-11-08 18:58:05 +00:00 committed by Thomas Monjalon
parent c7ebd65c13
commit 3a99464456

View File

@ -102,3 +102,122 @@ the list of mbuf payload addresses where received packet have been stored.
The ``rte_gpu_comm_*()`` functions are responsible to create a list of packets
that can be populated with receive mbuf payload addresses
and communicated to the task running on the GPU.
CUDA Example
------------
In the example below, there is a pseudo-code to give an example
about how to use functions in this library in case of a CUDA application.
.. code-block:: c
//////////////////////////////////////////////////////////////////////////
///// gpudev library + CUDA functions
//////////////////////////////////////////////////////////////////////////
#define GPU_PAGE_SHIFT 16
#define GPU_PAGE_SIZE (1UL << GPU_PAGE_SHIFT)
int main()
{
struct rte_gpu_flag quit_flag;
struct rte_gpu_comm_list *comm_list;
int nb_rx = 0;
int comm_list_entry = 0;
struct rte_mbuf *rx_mbufs[max_rx_mbufs];
cudaStream_t cstream;
struct rte_mempool *mpool_payload, *mpool_header;
struct rte_pktmbuf_extmem ext_mem;
int16_t dev_id;
int16_t port_id = 0;
/* Initialize CUDA objects (cstream, context, etc..). */
/* Use gpudev library to register a new CUDA context if any. */
/* Let's assume the application wants to use the default context of the GPU device 0. */
dev_id = 0;
/* Create an external memory mempool using memory allocated on the GPU. */
ext_mem.elt_size = mbufs_headroom_size;
ext_mem.buf_len = RTE_ALIGN_CEIL(mbufs_num * ext_mem.elt_size, GPU_PAGE_SIZE);
ext_mem.buf_iova = RTE_BAD_IOVA;
ext_mem.buf_ptr = rte_gpu_mem_alloc(dev_id, ext_mem.buf_len, 0);
rte_extmem_register(ext_mem.buf_ptr, ext_mem.buf_len, NULL, ext_mem.buf_iova, GPU_PAGE_SIZE);
rte_dev_dma_map(rte_eth_devices[port_id].device,
ext_mem.buf_ptr, ext_mem.buf_iova, ext_mem.buf_len);
mpool_payload = rte_pktmbuf_pool_create_extbuf("gpu_mempool", mbufs_num,
0, 0, ext_mem.elt_size,
rte_socket_id(), &ext_mem, 1);
/*
* Create CPU - device communication flag.
* With this flag, the CPU can tell to the CUDA kernel to exit from the main loop.
*/
rte_gpu_comm_create_flag(dev_id, &quit_flag, RTE_GPU_COMM_FLAG_CPU);
rte_gpu_comm_set_flag(&quit_flag , 0);
/*
* Create CPU - device communication list.
* Each entry of this list will be populated by the CPU
* with a new set of received mbufs that the CUDA kernel has to process.
*/
comm_list = rte_gpu_comm_create_list(dev_id, num_entries);
/* A very simple CUDA kernel with just 1 CUDA block and RTE_GPU_COMM_LIST_PKTS_MAX CUDA threads. */
cuda_kernel_packet_processing<<<1, RTE_GPU_COMM_LIST_PKTS_MAX, 0, cstream>>>(quit_flag->ptr, comm_list, num_entries, ...);
/*
* For simplicity, the CPU here receives only 2 bursts of mbufs.
* In a real application, network activity and device processing should overlap.
*/
nb_rx = rte_eth_rx_burst(port_id, queue_id, &(rx_mbufs[0]), max_rx_mbufs);
rte_gpu_comm_populate_list_pkts(comm_list[0], rx_mbufs, nb_rx);
nb_rx = rte_eth_rx_burst(port_id, queue_id, &(rx_mbufs[0]), max_rx_mbufs);
rte_gpu_comm_populate_list_pkts(comm_list[1], rx_mbufs, nb_rx);
/*
* CPU waits for the completion of the packets' processing on the CUDA kernel
* and then it does a cleanup of the received mbufs.
*/
while (rte_gpu_comm_cleanup_list(comm_list[0]));
while (rte_gpu_comm_cleanup_list(comm_list[1]));
/* CPU notifies the CUDA kernel that it has to terminate. */
rte_gpu_comm_set_flag(&quit_flag, 1);
/* gpudev objects cleanup/destruction */
rte_gpu_mem_free(dev_id, ext_mem.buf_len);
return 0;
}
//////////////////////////////////////////////////////////////////////////
///// CUDA kernel
//////////////////////////////////////////////////////////////////////////
void cuda_kernel(uint32_t * quit_flag_ptr, struct rte_gpu_comm_list *comm_list, int comm_list_entries)
{
int comm_list_index = 0;
struct rte_gpu_comm_pkt *pkt_list = NULL;
/* Do some pre-processing operations. */
/* GPU kernel keeps checking this flag to know if it has to quit or wait for more packets. */
while (*quit_flag_ptr == 0) {
if (comm_list[comm_list_index]->status != RTE_GPU_COMM_LIST_READY)
continue;
if (threadIdx.x < comm_list[comm_list_index]->num_pkts)
{
/* Each CUDA thread processes a different packet. */
packet_processing(comm_list[comm_list_index]->addr, comm_list[comm_list_index]->size, ..);
}
__threadfence();
__syncthreads();
/* Wait for new packets on the next communication list entry. */
comm_list_index = (comm_list_index+1) % comm_list_entries;
}
/* Do some post-processing operations. */
}