baseband/acc200: support interrupt

Added support for capability and functions for
MSI/MSI-X interrupt and underlying information ring.

Signed-off-by: Nicolas Chautru <nicolas.chautru@intel.com>
Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com>
This commit is contained in:
Nicolas Chautru 2022-10-12 10:59:25 -07:00 committed by Akhil Goyal
parent 437e396414
commit 3cabc8eaf5

View File

@ -211,6 +211,149 @@ fetch_acc200_config(struct rte_bbdev *dev)
acc_conf->q_fft.aq_depth_log2);
}
/* Checks PF Info Ring to find the interrupt cause and handles it accordingly. */
static inline void
acc200_check_ir(struct acc_device *acc200_dev)
{
volatile union acc_info_ring_data *ring_data;
uint16_t info_ring_head = acc200_dev->info_ring_head;
if (unlikely(acc200_dev->info_ring == NULL))
return;
ring_data = acc200_dev->info_ring + (acc200_dev->info_ring_head & ACC_INFO_RING_MASK);
while (ring_data->valid) {
if ((ring_data->int_nb < ACC200_PF_INT_DMA_DL_DESC_IRQ) || (
ring_data->int_nb > ACC200_PF_INT_DMA_DL5G_DESC_IRQ)) {
rte_bbdev_log(WARNING, "InfoRing: ITR:%d Info:0x%x",
ring_data->int_nb, ring_data->detailed_info);
/* Initialize Info Ring entry and move forward. */
ring_data->val = 0;
}
info_ring_head++;
ring_data = acc200_dev->info_ring + (info_ring_head & ACC_INFO_RING_MASK);
}
}
/* Interrupt handler triggered by ACC200 dev for handling specific interrupt. */
static void
acc200_dev_interrupt_handler(void *cb_arg)
{
struct rte_bbdev *dev = cb_arg;
struct acc_device *acc200_dev = dev->data->dev_private;
volatile union acc_info_ring_data *ring_data;
struct acc_deq_intr_details deq_intr_det;
ring_data = acc200_dev->info_ring + (acc200_dev->info_ring_head & ACC_INFO_RING_MASK);
while (ring_data->valid) {
if (acc200_dev->pf_device) {
rte_bbdev_log_debug(
"ACC200 PF Interrupt received, Info Ring data: 0x%x -> %d",
ring_data->val, ring_data->int_nb);
switch (ring_data->int_nb) {
case ACC200_PF_INT_DMA_DL_DESC_IRQ:
case ACC200_PF_INT_DMA_UL_DESC_IRQ:
case ACC200_PF_INT_DMA_FFT_DESC_IRQ:
case ACC200_PF_INT_DMA_UL5G_DESC_IRQ:
case ACC200_PF_INT_DMA_DL5G_DESC_IRQ:
deq_intr_det.queue_id = get_queue_id_from_ring_info(
dev->data, *ring_data);
if (deq_intr_det.queue_id == UINT16_MAX) {
rte_bbdev_log(ERR,
"Couldn't find queue: aq_id: %u, qg_id: %u, vf_id: %u",
ring_data->aq_id,
ring_data->qg_id,
ring_data->vf_id);
return;
}
rte_bbdev_pmd_callback_process(dev,
RTE_BBDEV_EVENT_DEQUEUE, &deq_intr_det);
break;
default:
rte_bbdev_pmd_callback_process(dev, RTE_BBDEV_EVENT_ERROR, NULL);
break;
}
} else {
rte_bbdev_log_debug(
"ACC200 VF Interrupt received, Info Ring data: 0x%x\n",
ring_data->val);
switch (ring_data->int_nb) {
case ACC200_VF_INT_DMA_DL_DESC_IRQ:
case ACC200_VF_INT_DMA_UL_DESC_IRQ:
case ACC200_VF_INT_DMA_FFT_DESC_IRQ:
case ACC200_VF_INT_DMA_UL5G_DESC_IRQ:
case ACC200_VF_INT_DMA_DL5G_DESC_IRQ:
/* VFs are not aware of their vf_id - it's set to 0. */
ring_data->vf_id = 0;
deq_intr_det.queue_id = get_queue_id_from_ring_info(
dev->data, *ring_data);
if (deq_intr_det.queue_id == UINT16_MAX) {
rte_bbdev_log(ERR,
"Couldn't find queue: aq_id: %u, qg_id: %u",
ring_data->aq_id,
ring_data->qg_id);
return;
}
rte_bbdev_pmd_callback_process(dev,
RTE_BBDEV_EVENT_DEQUEUE, &deq_intr_det);
break;
default:
rte_bbdev_pmd_callback_process(dev, RTE_BBDEV_EVENT_ERROR, NULL);
break;
}
}
/* Initialize Info Ring entry and move forward. */
ring_data->val = 0;
++acc200_dev->info_ring_head;
ring_data = acc200_dev->info_ring +
(acc200_dev->info_ring_head & ACC_INFO_RING_MASK);
}
}
/* Allocate and setup inforing. */
static int
allocate_info_ring(struct rte_bbdev *dev)
{
struct acc_device *d = dev->data->dev_private;
const struct acc200_registry_addr *reg_addr;
rte_iova_t info_ring_iova;
uint32_t phys_low, phys_high;
if (d->info_ring != NULL)
return 0; /* Already configured. */
/* Choose correct registry addresses for the device type. */
if (d->pf_device)
reg_addr = &pf_reg_addr;
else
reg_addr = &vf_reg_addr;
/* Allocate InfoRing */
d->info_ring = rte_zmalloc_socket("Info Ring", ACC_INFO_RING_NUM_ENTRIES *
sizeof(*d->info_ring), RTE_CACHE_LINE_SIZE, dev->data->socket_id);
if (d->info_ring == NULL) {
rte_bbdev_log(ERR,
"Failed to allocate Info Ring for %s:%u",
dev->device->driver->name,
dev->data->dev_id);
return -ENOMEM;
}
info_ring_iova = rte_malloc_virt2iova(d->info_ring);
/* Setup Info Ring. */
phys_high = (uint32_t)(info_ring_iova >> 32);
phys_low = (uint32_t)(info_ring_iova);
acc_reg_write(d, reg_addr->info_ring_hi, phys_high);
acc_reg_write(d, reg_addr->info_ring_lo, phys_low);
acc_reg_write(d, reg_addr->info_ring_en, ACC200_REG_IRQ_EN_ALL);
d->info_ring_head = (acc_reg_read(d, reg_addr->info_ring_ptr) &
0xFFF) / sizeof(union acc_info_ring_data);
return 0;
}
/* Allocate 64MB memory used for all software rings. */
static int
acc200_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
@ -319,6 +462,14 @@ acc200_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
acc_reg_write(d, reg_addr->tail_ptrs_fft_hi, phys_high);
acc_reg_write(d, reg_addr->tail_ptrs_fft_lo, phys_low);
ret = allocate_info_ring(dev);
if (ret < 0) {
rte_bbdev_log(ERR, "Failed to allocate info_ring for %s:%u",
dev->device->driver->name,
dev->data->dev_id);
/* Continue */
}
if (d->harq_layout == NULL)
d->harq_layout = rte_zmalloc_socket("HARQ Layout",
ACC_HARQ_LAYOUT * sizeof(*d->harq_layout),
@ -349,17 +500,120 @@ acc200_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
return ret;
}
static int
acc200_intr_enable(struct rte_bbdev *dev)
{
int ret;
struct acc_device *d = dev->data->dev_private;
/*
* MSI/MSI-X are supported.
* Option controlled by vfio-intr through EAL parameter.
*/
if (rte_intr_type_get(dev->intr_handle) == RTE_INTR_HANDLE_VFIO_MSI) {
ret = allocate_info_ring(dev);
if (ret < 0) {
rte_bbdev_log(ERR,
"Couldn't allocate info ring for device: %s",
dev->data->name);
return ret;
}
ret = rte_intr_enable(dev->intr_handle);
if (ret < 0) {
rte_bbdev_log(ERR,
"Couldn't enable interrupts for device: %s",
dev->data->name);
rte_free(d->info_ring);
return ret;
}
ret = rte_intr_callback_register(dev->intr_handle,
acc200_dev_interrupt_handler, dev);
if (ret < 0) {
rte_bbdev_log(ERR,
"Couldn't register interrupt callback for device: %s",
dev->data->name);
rte_free(d->info_ring);
return ret;
}
return 0;
} else if (rte_intr_type_get(dev->intr_handle) == RTE_INTR_HANDLE_VFIO_MSIX) {
int i, max_queues;
struct acc_device *acc200_dev = dev->data->dev_private;
ret = allocate_info_ring(dev);
if (ret < 0) {
rte_bbdev_log(ERR,
"Couldn't allocate info ring for device: %s",
dev->data->name);
return ret;
}
if (acc200_dev->pf_device)
max_queues = ACC200_MAX_PF_MSIX;
else
max_queues = ACC200_MAX_VF_MSIX;
if (rte_intr_efd_enable(dev->intr_handle, max_queues)) {
rte_bbdev_log(ERR, "Failed to create fds for %u queues",
dev->data->num_queues);
return -1;
}
for (i = 0; i < max_queues; ++i) {
if (rte_intr_efds_index_set(dev->intr_handle, i,
rte_intr_fd_get(dev->intr_handle)))
return -rte_errno;
}
if (rte_intr_vec_list_alloc(dev->intr_handle, "intr_vec",
dev->data->num_queues)) {
rte_bbdev_log(ERR, "Failed to allocate %u vectors",
dev->data->num_queues);
return -ENOMEM;
}
ret = rte_intr_enable(dev->intr_handle);
if (ret < 0) {
rte_bbdev_log(ERR,
"Couldn't enable interrupts for device: %s",
dev->data->name);
rte_free(d->info_ring);
return ret;
}
ret = rte_intr_callback_register(dev->intr_handle,
acc200_dev_interrupt_handler, dev);
if (ret < 0) {
rte_bbdev_log(ERR,
"Couldn't register interrupt callback for device: %s",
dev->data->name);
rte_free(d->info_ring);
return ret;
}
return 0;
}
rte_bbdev_log(ERR, "ACC200 (%s) supports only VFIO MSI/MSI-X interrupts\n",
dev->data->name);
return -ENOTSUP;
}
/* Free memory used for software rings. */
static int
acc200_dev_close(struct rte_bbdev *dev)
{
struct acc_device *d = dev->data->dev_private;
acc200_check_ir(d);
if (d->sw_rings_base != NULL) {
rte_free(d->tail_ptrs);
rte_free(d->info_ring);
rte_free(d->sw_rings_base);
rte_free(d->harq_layout);
d->sw_rings_base = NULL;
d->tail_ptrs = NULL;
d->info_ring = NULL;
d->sw_rings_base = NULL;
d->harq_layout = NULL;
}
/* Ensure all in flight HW transactions are completed. */
@ -662,6 +916,7 @@ acc200_dev_info_get(struct rte_bbdev *dev,
RTE_BBDEV_TURBO_CONTINUE_CRC_MATCH |
RTE_BBDEV_TURBO_SOFT_OUTPUT |
RTE_BBDEV_TURBO_EARLY_TERMINATION |
RTE_BBDEV_TURBO_DEC_INTERRUPTS |
RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
RTE_BBDEV_TURBO_NEG_LLR_1_BIT_SOFT_OUT |
RTE_BBDEV_TURBO_MAP_DEC |
@ -683,6 +938,7 @@ acc200_dev_info_get(struct rte_bbdev *dev,
RTE_BBDEV_TURBO_CRC_24B_ATTACH |
RTE_BBDEV_TURBO_RV_INDEX_BYPASS |
RTE_BBDEV_TURBO_RATE_MATCH |
RTE_BBDEV_TURBO_ENC_INTERRUPTS |
RTE_BBDEV_TURBO_ENC_SCATTER_GATHER,
.num_buffers_src =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
@ -696,7 +952,8 @@ acc200_dev_info_get(struct rte_bbdev *dev,
.capability_flags =
RTE_BBDEV_LDPC_RATE_MATCH |
RTE_BBDEV_LDPC_CRC_24B_ATTACH |
RTE_BBDEV_LDPC_INTERLEAVER_BYPASS,
RTE_BBDEV_LDPC_INTERLEAVER_BYPASS |
RTE_BBDEV_LDPC_ENC_INTERRUPTS,
.num_buffers_src =
RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
.num_buffers_dst =
@ -717,7 +974,8 @@ acc200_dev_info_get(struct rte_bbdev *dev,
RTE_BBDEV_LDPC_DEINTERLEAVER_BYPASS |
RTE_BBDEV_LDPC_DEC_SCATTER_GATHER |
RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION |
RTE_BBDEV_LDPC_LLR_COMPRESSION,
RTE_BBDEV_LDPC_LLR_COMPRESSION |
RTE_BBDEV_LDPC_DEC_INTERRUPTS,
.llr_size = 8,
.llr_decimals = 1,
.num_buffers_src =
@ -785,15 +1043,46 @@ acc200_dev_info_get(struct rte_bbdev *dev,
dev_info->min_alignment = 1;
dev_info->capabilities = bbdev_capabilities;
dev_info->harq_buffer_size = 0;
acc200_check_ir(d);
}
static int
acc200_queue_intr_enable(struct rte_bbdev *dev, uint16_t queue_id)
{
struct acc_queue *q = dev->data->queues[queue_id].queue_private;
if (rte_intr_type_get(dev->intr_handle) != RTE_INTR_HANDLE_VFIO_MSI &&
rte_intr_type_get(dev->intr_handle) != RTE_INTR_HANDLE_VFIO_MSIX)
return -ENOTSUP;
q->irq_enable = 1;
return 0;
}
static int
acc200_queue_intr_disable(struct rte_bbdev *dev, uint16_t queue_id)
{
struct acc_queue *q = dev->data->queues[queue_id].queue_private;
if (rte_intr_type_get(dev->intr_handle) != RTE_INTR_HANDLE_VFIO_MSI &&
rte_intr_type_get(dev->intr_handle) != RTE_INTR_HANDLE_VFIO_MSIX)
return -ENOTSUP;
q->irq_enable = 0;
return 0;
}
static const struct rte_bbdev_ops acc200_bbdev_ops = {
.setup_queues = acc200_setup_queues,
.intr_enable = acc200_intr_enable,
.close = acc200_dev_close,
.info_get = acc200_dev_info_get,
.queue_setup = acc200_queue_setup,
.queue_release = acc200_queue_release,
.queue_stop = acc200_queue_stop,
.queue_intr_enable = acc200_queue_intr_enable,
.queue_intr_disable = acc200_queue_intr_disable
};
/* ACC200 PCI PF address map. */
@ -2430,6 +2719,7 @@ dequeue_dec_one_op_cb(struct rte_bbdev_queue_data *q_data,
if (op->status != 0) {
/* These errors are not expected. */
q_data->queue_stats.dequeue_err_count++;
acc200_check_ir(q->d);
}
/* CRC invalid if error exists. */
@ -2494,6 +2784,9 @@ dequeue_ldpc_dec_one_op_cb(struct rte_bbdev_queue_data *q_data,
op->ldpc_dec.iter_count = (uint8_t) rsp.iter_cnt;
if (op->status & (1 << RTE_BBDEV_DRV_ERROR))
acc200_check_ir(q->d);
/* Check if this is the last desc in batch (Atomic Queue). */
if (desc->req.last_desc_in_batch) {
(*aq_dequeued)++;
@ -2927,6 +3220,9 @@ dequeue_fft_one_op(struct rte_bbdev_queue_data *q_data,
if (op->status != 0)
q_data->queue_stats.dequeue_err_count++;
if (op->status & (1 << RTE_BBDEV_DRV_ERROR))
acc200_check_ir(q->d);
/* Check if this is the last desc in batch (Atomic Queue). */
if (desc->req.last_desc_in_batch) {
(*aq_dequeued)++;