crypto/cnxk: add flexi cipher encryption

Add flexi crypto cipher encrypt in enqueue API. Flexi crypto
opcode covers a broad set of ciphers including variants of AES.

Signed-off-by: Ankur Dwivedi <adwivedi@marvell.com>
Signed-off-by: Anoob Joseph <anoobj@marvell.com>
Signed-off-by: Archana Muniganti <marchana@marvell.com>
Signed-off-by: Tejasree Kondoj <ktejasree@marvell.com>
Acked-by: Akhil Goyal <gakhil@marvell.com>
This commit is contained in:
Archana Muniganti 2021-06-25 11:26:23 +05:30 committed by Akhil Goyal
parent be0fd62a68
commit 3de331795f
3 changed files with 833 additions and 13 deletions

View File

@ -46,13 +46,15 @@ cpt_sym_inst_fill(struct cnxk_cpt_qp *qp, struct rte_crypto_op *op,
struct cnxk_se_sess *sess, struct cpt_inflight_req *infl_req,
struct cpt_inst_s *inst)
{
RTE_SET_USED(qp);
RTE_SET_USED(op);
RTE_SET_USED(sess);
RTE_SET_USED(infl_req);
RTE_SET_USED(inst);
uint64_t cpt_op;
int ret = -1;
return -ENOTSUP;
cpt_op = sess->cpt_op;
if (cpt_op & ROC_SE_OP_CIPHER_MASK)
ret = fill_fc_params(op, sess, &qp->meta_info, infl_req, inst);
return ret;
}
static inline int

View File

@ -17,13 +17,15 @@ cn9k_cpt_sym_inst_fill(struct cnxk_cpt_qp *qp, struct rte_crypto_op *op,
struct cpt_inflight_req *infl_req,
struct cpt_inst_s *inst)
{
RTE_SET_USED(qp);
RTE_SET_USED(op);
RTE_SET_USED(sess);
RTE_SET_USED(infl_req);
RTE_SET_USED(inst);
uint64_t cpt_op;
int ret = -1;
return -ENOTSUP;
cpt_op = sess->cpt_op;
if (cpt_op & ROC_SE_OP_CIPHER_MASK)
ret = fill_fc_params(op, sess, &qp->meta_info, infl_req, inst);
return ret;
}
static inline struct cnxk_se_sess *

View File

@ -6,7 +6,15 @@
#define _CNXK_SE_H_
#include <stdbool.h>
#include "roc_se.h"
#include "cnxk_cryptodev.h"
#include "cnxk_cryptodev_ops.h"
#define SRC_IOV_SIZE \
(sizeof(struct roc_se_iov_ptr) + \
(sizeof(struct roc_se_buf_ptr) * ROC_SE_MAX_SG_CNT))
#define DST_IOV_SIZE \
(sizeof(struct roc_se_iov_ptr) + \
(sizeof(struct roc_se_buf_ptr) * ROC_SE_MAX_SG_CNT))
struct cnxk_se_sess {
uint16_t cpt_op : 4;
@ -69,6 +77,457 @@ cpt_mac_len_verify(struct rte_crypto_auth_xform *auth)
return ret;
}
static __rte_always_inline void
cpt_fc_salt_update(struct roc_se_ctx *se_ctx, uint8_t *salt)
{
struct roc_se_context *fctx = &se_ctx->se_ctx.fctx;
memcpy(fctx->enc.encr_iv, salt, 4);
}
static __rte_always_inline uint32_t
fill_sg_comp(struct roc_se_sglist_comp *list, uint32_t i, phys_addr_t dma_addr,
uint32_t size)
{
struct roc_se_sglist_comp *to = &list[i >> 2];
to->u.s.len[i % 4] = rte_cpu_to_be_16(size);
to->ptr[i % 4] = rte_cpu_to_be_64(dma_addr);
i++;
return i;
}
static __rte_always_inline uint32_t
fill_sg_comp_from_buf(struct roc_se_sglist_comp *list, uint32_t i,
struct roc_se_buf_ptr *from)
{
struct roc_se_sglist_comp *to = &list[i >> 2];
to->u.s.len[i % 4] = rte_cpu_to_be_16(from->size);
to->ptr[i % 4] = rte_cpu_to_be_64((uint64_t)from->vaddr);
i++;
return i;
}
static __rte_always_inline uint32_t
fill_sg_comp_from_buf_min(struct roc_se_sglist_comp *list, uint32_t i,
struct roc_se_buf_ptr *from, uint32_t *psize)
{
struct roc_se_sglist_comp *to = &list[i >> 2];
uint32_t size = *psize;
uint32_t e_len;
e_len = (size > from->size) ? from->size : size;
to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
to->ptr[i % 4] = rte_cpu_to_be_64((uint64_t)from->vaddr);
*psize -= e_len;
i++;
return i;
}
/*
* This fills the MC expected SGIO list
* from IOV given by user.
*/
static __rte_always_inline uint32_t
fill_sg_comp_from_iov(struct roc_se_sglist_comp *list, uint32_t i,
struct roc_se_iov_ptr *from, uint32_t from_offset,
uint32_t *psize, struct roc_se_buf_ptr *extra_buf,
uint32_t extra_offset)
{
int32_t j;
uint32_t extra_len = extra_buf ? extra_buf->size : 0;
uint32_t size = *psize;
struct roc_se_buf_ptr *bufs;
bufs = from->bufs;
for (j = 0; (j < from->buf_cnt) && size; j++) {
uint64_t e_vaddr;
uint32_t e_len;
struct roc_se_sglist_comp *to = &list[i >> 2];
if (unlikely(from_offset)) {
if (from_offset >= bufs[j].size) {
from_offset -= bufs[j].size;
continue;
}
e_vaddr = (uint64_t)bufs[j].vaddr + from_offset;
e_len = (size > (bufs[j].size - from_offset)) ?
(bufs[j].size - from_offset) :
size;
from_offset = 0;
} else {
e_vaddr = (uint64_t)bufs[j].vaddr;
e_len = (size > bufs[j].size) ? bufs[j].size : size;
}
to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
to->ptr[i % 4] = rte_cpu_to_be_64(e_vaddr);
if (extra_len && (e_len >= extra_offset)) {
/* Break the data at given offset */
uint32_t next_len = e_len - extra_offset;
uint64_t next_vaddr = e_vaddr + extra_offset;
if (!extra_offset) {
i--;
} else {
e_len = extra_offset;
size -= e_len;
to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
}
extra_len = RTE_MIN(extra_len, size);
/* Insert extra data ptr */
if (extra_len) {
i++;
to = &list[i >> 2];
to->u.s.len[i % 4] =
rte_cpu_to_be_16(extra_len);
to->ptr[i % 4] = rte_cpu_to_be_64(
(uint64_t)extra_buf->vaddr);
size -= extra_len;
}
next_len = RTE_MIN(next_len, size);
/* insert the rest of the data */
if (next_len) {
i++;
to = &list[i >> 2];
to->u.s.len[i % 4] = rte_cpu_to_be_16(next_len);
to->ptr[i % 4] = rte_cpu_to_be_64(next_vaddr);
size -= next_len;
}
extra_len = 0;
} else {
size -= e_len;
}
if (extra_offset)
extra_offset -= size;
i++;
}
*psize = size;
return (uint32_t)i;
}
static __rte_always_inline int
cpt_enc_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens,
struct roc_se_fc_params *fc_params, struct cpt_inst_s *inst)
{
uint32_t iv_offset = 0;
int32_t inputlen, outputlen, enc_dlen, auth_dlen;
struct roc_se_ctx *se_ctx;
uint32_t cipher_type, hash_type;
uint32_t mac_len, size;
uint8_t iv_len = 16;
struct roc_se_buf_ptr *aad_buf = NULL;
uint32_t encr_offset, auth_offset;
uint32_t encr_data_len, auth_data_len, aad_len = 0;
uint32_t passthrough_len = 0;
union cpt_inst_w4 cpt_inst_w4;
void *offset_vaddr;
uint8_t op_minor;
encr_offset = ROC_SE_ENCR_OFFSET(d_offs);
auth_offset = ROC_SE_AUTH_OFFSET(d_offs);
encr_data_len = ROC_SE_ENCR_DLEN(d_lens);
auth_data_len = ROC_SE_AUTH_DLEN(d_lens);
if (unlikely(flags & ROC_SE_VALID_AAD_BUF)) {
/* We don't support both AAD and auth data separately */
auth_data_len = 0;
auth_offset = 0;
aad_len = fc_params->aad_buf.size;
aad_buf = &fc_params->aad_buf;
}
se_ctx = fc_params->ctx_buf.vaddr;
cipher_type = se_ctx->enc_cipher;
hash_type = se_ctx->hash_type;
mac_len = se_ctx->mac_len;
op_minor = se_ctx->template_w4.s.opcode_minor;
if (unlikely(!(flags & ROC_SE_VALID_IV_BUF))) {
iv_len = 0;
iv_offset = ROC_SE_ENCR_IV_OFFSET(d_offs);
}
if (unlikely(flags & ROC_SE_VALID_AAD_BUF)) {
/*
* When AAD is given, data above encr_offset is pass through
* Since AAD is given as separate pointer and not as offset,
* this is a special case as we need to fragment input data
* into passthrough + encr_data and then insert AAD in between.
*/
if (hash_type != ROC_SE_GMAC_TYPE) {
passthrough_len = encr_offset;
auth_offset = passthrough_len + iv_len;
encr_offset = passthrough_len + aad_len + iv_len;
auth_data_len = aad_len + encr_data_len;
} else {
passthrough_len = 16 + aad_len;
auth_offset = passthrough_len + iv_len;
auth_data_len = aad_len;
}
} else {
encr_offset += iv_len;
auth_offset += iv_len;
}
/* Encryption */
cpt_inst_w4.s.opcode_major = ROC_SE_MAJOR_OP_FC;
cpt_inst_w4.s.opcode_minor = ROC_SE_FC_MINOR_OP_ENCRYPT;
cpt_inst_w4.s.opcode_minor |= (uint64_t)op_minor;
if (hash_type == ROC_SE_GMAC_TYPE) {
encr_offset = 0;
encr_data_len = 0;
}
auth_dlen = auth_offset + auth_data_len;
enc_dlen = encr_data_len + encr_offset;
if (unlikely(encr_data_len & 0xf)) {
if ((cipher_type == ROC_SE_DES3_CBC) ||
(cipher_type == ROC_SE_DES3_ECB))
enc_dlen =
RTE_ALIGN_CEIL(encr_data_len, 8) + encr_offset;
else if (likely((cipher_type == ROC_SE_AES_CBC) ||
(cipher_type == ROC_SE_AES_ECB)))
enc_dlen =
RTE_ALIGN_CEIL(encr_data_len, 8) + encr_offset;
}
if (unlikely(auth_dlen > enc_dlen)) {
inputlen = auth_dlen;
outputlen = auth_dlen + mac_len;
} else {
inputlen = enc_dlen;
outputlen = enc_dlen + mac_len;
}
if (op_minor & ROC_SE_FC_MINOR_OP_HMAC_FIRST)
outputlen = enc_dlen;
/* GP op header */
cpt_inst_w4.s.param1 = encr_data_len;
cpt_inst_w4.s.param2 = auth_data_len;
/*
* In cn9k, cn10k since we have a limitation of
* IV & Offset control word not part of instruction
* and need to be part of Data Buffer, we check if
* head room is there and then only do the Direct mode processing
*/
if (likely((flags & ROC_SE_SINGLE_BUF_INPLACE) &&
(flags & ROC_SE_SINGLE_BUF_HEADROOM))) {
void *dm_vaddr = fc_params->bufs[0].vaddr;
/* Use Direct mode */
offset_vaddr =
(uint8_t *)dm_vaddr - ROC_SE_OFF_CTRL_LEN - iv_len;
/* DPTR */
inst->dptr = (uint64_t)offset_vaddr;
/* RPTR should just exclude offset control word */
inst->rptr = (uint64_t)dm_vaddr - iv_len;
cpt_inst_w4.s.dlen = inputlen + ROC_SE_OFF_CTRL_LEN;
if (likely(iv_len)) {
uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
ROC_SE_OFF_CTRL_LEN);
uint64_t *src = fc_params->iv_buf;
dest[0] = src[0];
dest[1] = src[1];
}
} else {
void *m_vaddr = fc_params->meta_buf.vaddr;
uint32_t i, g_size_bytes, s_size_bytes;
struct roc_se_sglist_comp *gather_comp;
struct roc_se_sglist_comp *scatter_comp;
uint8_t *in_buffer;
/* This falls under strict SG mode */
offset_vaddr = m_vaddr;
size = ROC_SE_OFF_CTRL_LEN + iv_len;
m_vaddr = (uint8_t *)m_vaddr + size;
cpt_inst_w4.s.opcode_major |= (uint64_t)ROC_SE_DMA_MODE;
if (likely(iv_len)) {
uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
ROC_SE_OFF_CTRL_LEN);
uint64_t *src = fc_params->iv_buf;
dest[0] = src[0];
dest[1] = src[1];
}
/* DPTR has SG list */
in_buffer = m_vaddr;
((uint16_t *)in_buffer)[0] = 0;
((uint16_t *)in_buffer)[1] = 0;
/* TODO Add error check if space will be sufficient */
gather_comp =
(struct roc_se_sglist_comp *)((uint8_t *)m_vaddr + 8);
/*
* Input Gather List
*/
i = 0;
/* Offset control word that includes iv */
i = fill_sg_comp(gather_comp, i, (uint64_t)offset_vaddr,
ROC_SE_OFF_CTRL_LEN + iv_len);
/* Add input data */
size = inputlen - iv_len;
if (likely(size)) {
uint32_t aad_offset = aad_len ? passthrough_len : 0;
if (unlikely(flags & ROC_SE_SINGLE_BUF_INPLACE)) {
i = fill_sg_comp_from_buf_min(
gather_comp, i, fc_params->bufs, &size);
} else {
i = fill_sg_comp_from_iov(
gather_comp, i, fc_params->src_iov, 0,
&size, aad_buf, aad_offset);
}
if (unlikely(size)) {
plt_dp_err("Insufficient buffer space,"
" size %d needed",
size);
return -1;
}
}
((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
g_size_bytes =
((i + 3) / 4) * sizeof(struct roc_se_sglist_comp);
/*
* Output Scatter list
*/
i = 0;
scatter_comp =
(struct roc_se_sglist_comp *)((uint8_t *)gather_comp +
g_size_bytes);
/* Add IV */
if (likely(iv_len)) {
i = fill_sg_comp(scatter_comp, i,
(uint64_t)offset_vaddr +
ROC_SE_OFF_CTRL_LEN,
iv_len);
}
/* output data or output data + digest*/
if (unlikely(flags & ROC_SE_VALID_MAC_BUF)) {
size = outputlen - iv_len - mac_len;
if (size) {
uint32_t aad_offset =
aad_len ? passthrough_len : 0;
if (unlikely(flags &
ROC_SE_SINGLE_BUF_INPLACE)) {
i = fill_sg_comp_from_buf_min(
scatter_comp, i,
fc_params->bufs, &size);
} else {
i = fill_sg_comp_from_iov(
scatter_comp, i,
fc_params->dst_iov, 0, &size,
aad_buf, aad_offset);
}
if (unlikely(size)) {
plt_dp_err("Insufficient buffer"
" space, size %d needed",
size);
return -1;
}
}
/* mac_data */
if (mac_len) {
i = fill_sg_comp_from_buf(scatter_comp, i,
&fc_params->mac_buf);
}
} else {
/* Output including mac */
size = outputlen - iv_len;
if (likely(size)) {
uint32_t aad_offset =
aad_len ? passthrough_len : 0;
if (unlikely(flags &
ROC_SE_SINGLE_BUF_INPLACE)) {
i = fill_sg_comp_from_buf_min(
scatter_comp, i,
fc_params->bufs, &size);
} else {
i = fill_sg_comp_from_iov(
scatter_comp, i,
fc_params->dst_iov, 0, &size,
aad_buf, aad_offset);
}
if (unlikely(size)) {
plt_dp_err("Insufficient buffer"
" space, size %d needed",
size);
return -1;
}
}
}
((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
s_size_bytes =
((i + 3) / 4) * sizeof(struct roc_se_sglist_comp);
size = g_size_bytes + s_size_bytes + ROC_SE_SG_LIST_HDR_SIZE;
/* This is DPTR len in case of SG mode */
cpt_inst_w4.s.dlen = size;
inst->dptr = (uint64_t)in_buffer;
}
if (unlikely((encr_offset >> 16) || (iv_offset >> 8) ||
(auth_offset >> 8))) {
plt_dp_err("Offset not supported");
plt_dp_err("enc_offset: %d", encr_offset);
plt_dp_err("iv_offset : %d", iv_offset);
plt_dp_err("auth_offset: %d", auth_offset);
return -1;
}
*(uint64_t *)offset_vaddr = rte_cpu_to_be_64(
((uint64_t)encr_offset << 16) | ((uint64_t)iv_offset << 8) |
((uint64_t)auth_offset));
inst->w4.u64 = cpt_inst_w4.u64;
return 0;
}
static __rte_always_inline int
cpt_fc_enc_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens,
struct roc_se_fc_params *fc_params,
struct cpt_inst_s *inst)
{
struct roc_se_ctx *ctx = fc_params->ctx_buf.vaddr;
uint8_t fc_type;
int ret = -1;
fc_type = ctx->fc_type;
if (likely(fc_type == ROC_SE_FC_GEN))
ret = cpt_enc_hmac_prep(flags, d_offs, d_lens, fc_params, inst);
return ret;
}
static __rte_always_inline int
fill_sess_aead(struct rte_crypto_sym_xform *xform, struct cnxk_se_sess *sess)
{
@ -392,4 +851,361 @@ fill_sess_gmac(struct rte_crypto_sym_xform *xform, struct cnxk_se_sess *sess)
return 0;
}
static __rte_always_inline void *
alloc_op_meta(struct roc_se_buf_ptr *buf, int32_t len,
struct rte_mempool *cpt_meta_pool,
struct cpt_inflight_req *infl_req)
{
uint8_t *mdata;
if (unlikely(rte_mempool_get(cpt_meta_pool, (void **)&mdata) < 0))
return NULL;
buf->vaddr = mdata;
buf->size = len;
infl_req->mdata = mdata;
infl_req->op_flags |= CPT_OP_FLAGS_METABUF;
return mdata;
}
static __rte_always_inline uint32_t
prepare_iov_from_pkt(struct rte_mbuf *pkt, struct roc_se_iov_ptr *iovec,
uint32_t start_offset)
{
uint16_t index = 0;
void *seg_data = NULL;
int32_t seg_size = 0;
if (!pkt) {
iovec->buf_cnt = 0;
return 0;
}
if (!start_offset) {
seg_data = rte_pktmbuf_mtod(pkt, void *);
seg_size = pkt->data_len;
} else {
while (start_offset >= pkt->data_len) {
start_offset -= pkt->data_len;
pkt = pkt->next;
}
seg_data = rte_pktmbuf_mtod_offset(pkt, void *, start_offset);
seg_size = pkt->data_len - start_offset;
if (!seg_size)
return 1;
}
/* first seg */
iovec->bufs[index].vaddr = seg_data;
iovec->bufs[index].size = seg_size;
index++;
pkt = pkt->next;
while (unlikely(pkt != NULL)) {
seg_data = rte_pktmbuf_mtod(pkt, void *);
seg_size = pkt->data_len;
if (!seg_size)
break;
iovec->bufs[index].vaddr = seg_data;
iovec->bufs[index].size = seg_size;
index++;
pkt = pkt->next;
}
iovec->buf_cnt = index;
return 0;
}
static __rte_always_inline uint32_t
prepare_iov_from_pkt_inplace(struct rte_mbuf *pkt,
struct roc_se_fc_params *param, uint32_t *flags)
{
uint16_t index = 0;
void *seg_data = NULL;
uint32_t seg_size = 0;
struct roc_se_iov_ptr *iovec;
seg_data = rte_pktmbuf_mtod(pkt, void *);
seg_size = pkt->data_len;
/* first seg */
if (likely(!pkt->next)) {
uint32_t headroom;
*flags |= ROC_SE_SINGLE_BUF_INPLACE;
headroom = rte_pktmbuf_headroom(pkt);
if (likely(headroom >= 24))
*flags |= ROC_SE_SINGLE_BUF_HEADROOM;
param->bufs[0].vaddr = seg_data;
param->bufs[0].size = seg_size;
return 0;
}
iovec = param->src_iov;
iovec->bufs[index].vaddr = seg_data;
iovec->bufs[index].size = seg_size;
index++;
pkt = pkt->next;
while (unlikely(pkt != NULL)) {
seg_data = rte_pktmbuf_mtod(pkt, void *);
seg_size = pkt->data_len;
if (!seg_size)
break;
iovec->bufs[index].vaddr = seg_data;
iovec->bufs[index].size = seg_size;
index++;
pkt = pkt->next;
}
iovec->buf_cnt = index;
return 0;
}
static __rte_always_inline int
fill_fc_params(struct rte_crypto_op *cop, struct cnxk_se_sess *sess,
struct cpt_qp_meta_info *m_info,
struct cpt_inflight_req *infl_req, struct cpt_inst_s *inst)
{
struct roc_se_ctx *ctx = &sess->roc_se_ctx;
uint8_t op_minor = ctx->template_w4.s.opcode_minor;
struct rte_crypto_sym_op *sym_op = cop->sym;
void *mdata = NULL;
uint32_t mc_hash_off;
uint32_t flags = 0;
uint64_t d_offs, d_lens;
struct rte_mbuf *m_src, *m_dst;
uint8_t cpt_op = sess->cpt_op;
#ifdef CPT_ALWAYS_USE_SG_MODE
uint8_t inplace = 0;
#else
uint8_t inplace = 1;
#endif
struct roc_se_fc_params fc_params;
char src[SRC_IOV_SIZE];
char dst[SRC_IOV_SIZE];
uint32_t iv_buf[4];
int ret;
if (likely(sess->iv_length)) {
flags |= ROC_SE_VALID_IV_BUF;
fc_params.iv_buf = rte_crypto_op_ctod_offset(cop, uint8_t *,
sess->iv_offset);
if (sess->aes_ctr && unlikely(sess->iv_length != 16)) {
memcpy((uint8_t *)iv_buf,
rte_crypto_op_ctod_offset(cop, uint8_t *,
sess->iv_offset),
12);
iv_buf[3] = rte_cpu_to_be_32(0x1);
fc_params.iv_buf = iv_buf;
}
}
if (sess->zsk_flag) {
fc_params.auth_iv_buf = rte_crypto_op_ctod_offset(
cop, uint8_t *, sess->auth_iv_offset);
if (sess->zsk_flag != ROC_SE_ZS_EA)
inplace = 0;
}
m_src = sym_op->m_src;
m_dst = sym_op->m_dst;
if (sess->aes_gcm || sess->chacha_poly) {
uint8_t *salt;
uint8_t *aad_data;
uint16_t aad_len;
d_offs = sym_op->aead.data.offset;
d_lens = sym_op->aead.data.length;
mc_hash_off =
sym_op->aead.data.offset + sym_op->aead.data.length;
aad_data = sym_op->aead.aad.data;
aad_len = sess->aad_length;
if (likely((aad_data + aad_len) ==
rte_pktmbuf_mtod_offset(m_src, uint8_t *,
sym_op->aead.data.offset))) {
d_offs = (d_offs - aad_len) | (d_offs << 16);
d_lens = (d_lens + aad_len) | (d_lens << 32);
} else {
fc_params.aad_buf.vaddr = sym_op->aead.aad.data;
fc_params.aad_buf.size = aad_len;
flags |= ROC_SE_VALID_AAD_BUF;
inplace = 0;
d_offs = d_offs << 16;
d_lens = d_lens << 32;
}
salt = fc_params.iv_buf;
if (unlikely(*(uint32_t *)salt != sess->salt)) {
cpt_fc_salt_update(&sess->roc_se_ctx, salt);
sess->salt = *(uint32_t *)salt;
}
fc_params.iv_buf = salt + 4;
if (likely(sess->mac_len)) {
struct rte_mbuf *m =
(cpt_op & ROC_SE_OP_ENCODE) ? m_dst : m_src;
if (!m)
m = m_src;
/* hmac immediately following data is best case */
if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
mc_hash_off !=
(uint8_t *)sym_op->aead.digest.data)) {
flags |= ROC_SE_VALID_MAC_BUF;
fc_params.mac_buf.size = sess->mac_len;
fc_params.mac_buf.vaddr =
sym_op->aead.digest.data;
inplace = 0;
}
}
} else {
d_offs = sym_op->cipher.data.offset;
d_lens = sym_op->cipher.data.length;
mc_hash_off =
sym_op->cipher.data.offset + sym_op->cipher.data.length;
d_offs = (d_offs << 16) | sym_op->auth.data.offset;
d_lens = (d_lens << 32) | sym_op->auth.data.length;
if (mc_hash_off <
(sym_op->auth.data.offset + sym_op->auth.data.length)) {
mc_hash_off = (sym_op->auth.data.offset +
sym_op->auth.data.length);
}
/* for gmac, salt should be updated like in gcm */
if (unlikely(sess->is_gmac)) {
uint8_t *salt;
salt = fc_params.iv_buf;
if (unlikely(*(uint32_t *)salt != sess->salt)) {
cpt_fc_salt_update(&sess->roc_se_ctx, salt);
sess->salt = *(uint32_t *)salt;
}
fc_params.iv_buf = salt + 4;
}
if (likely(sess->mac_len)) {
struct rte_mbuf *m;
m = (cpt_op & ROC_SE_OP_ENCODE) ? m_dst : m_src;
if (!m)
m = m_src;
/* hmac immediately following data is best case */
if (!(op_minor & ROC_SE_FC_MINOR_OP_HMAC_FIRST) &&
(unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
mc_hash_off !=
(uint8_t *)sym_op->auth.digest.data))) {
flags |= ROC_SE_VALID_MAC_BUF;
fc_params.mac_buf.size = sess->mac_len;
fc_params.mac_buf.vaddr =
sym_op->auth.digest.data;
inplace = 0;
}
}
}
fc_params.ctx_buf.vaddr = &sess->roc_se_ctx;
if (!(op_minor & ROC_SE_FC_MINOR_OP_HMAC_FIRST) &&
unlikely(sess->is_null || sess->cpt_op == ROC_SE_OP_DECODE))
inplace = 0;
if (likely(!m_dst && inplace)) {
/* Case of single buffer without AAD buf or
* separate mac buf in place and
* not air crypto
*/
fc_params.dst_iov = fc_params.src_iov = (void *)src;
if (unlikely(prepare_iov_from_pkt_inplace(m_src, &fc_params,
&flags))) {
plt_dp_err("Prepare inplace src iov failed");
ret = -EINVAL;
goto err_exit;
}
} else {
/* Out of place processing */
fc_params.src_iov = (void *)src;
fc_params.dst_iov = (void *)dst;
/* Store SG I/O in the api for reuse */
if (prepare_iov_from_pkt(m_src, fc_params.src_iov, 0)) {
plt_dp_err("Prepare src iov failed");
ret = -EINVAL;
goto err_exit;
}
if (unlikely(m_dst != NULL)) {
uint32_t pkt_len;
/* Try to make room as much as src has */
pkt_len = rte_pktmbuf_pkt_len(m_dst);
if (unlikely(pkt_len < rte_pktmbuf_pkt_len(m_src))) {
pkt_len = rte_pktmbuf_pkt_len(m_src) - pkt_len;
if (!rte_pktmbuf_append(m_dst, pkt_len)) {
plt_dp_err("Not enough space in "
"m_dst %p, need %u"
" more",
m_dst, pkt_len);
ret = -EINVAL;
goto err_exit;
}
}
if (prepare_iov_from_pkt(m_dst, fc_params.dst_iov, 0)) {
plt_dp_err("Prepare dst iov failed for "
"m_dst %p",
m_dst);
ret = -EINVAL;
goto err_exit;
}
} else {
fc_params.dst_iov = (void *)src;
}
}
if (unlikely(!((flags & ROC_SE_SINGLE_BUF_INPLACE) &&
(flags & ROC_SE_SINGLE_BUF_HEADROOM) &&
((ctx->fc_type == ROC_SE_FC_GEN) ||
(ctx->fc_type == ROC_SE_PDCP))))) {
mdata = alloc_op_meta(&fc_params.meta_buf, m_info->mlen,
m_info->pool, infl_req);
if (mdata == NULL) {
plt_dp_err("Error allocating meta buffer for request");
return -ENOMEM;
}
}
/* Finally prepare the instruction */
if (cpt_op & ROC_SE_OP_ENCODE)
ret = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens, &fc_params,
inst);
else
ret = ENOTSUP;
if (unlikely(ret)) {
plt_dp_err("Preparing request failed due to bad input arg");
goto free_mdata_and_exit;
}
return 0;
free_mdata_and_exit:
if (infl_req->op_flags & CPT_OP_FLAGS_METABUF)
rte_mempool_put(m_info->pool, infl_req->mdata);
err_exit:
return ret;
}
#endif /*_CNXK_SE_H_ */