hash: remove duplicated code

rte_jhash is basically like __rte_jhash_2hashes but
it returns only 1 hash, instead of 2.
In order to remove duplicated code, rte_jhash calls __rte_jhash_2hashes,
passing 0 as the second seed and returning just the first hash value.
(performance penalty is negligible)

The same is done with rte_jhash2. Also, rte_jhash2 is just an specific case
where keys are multiple of 32 bits, and where no key alignment check is required.
So,to avoid duplicated code, the function calls __rte_jhash_2hashes
with check_align = 0 (to use the optimal path)

Signed-off-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
Acked-by: Bruce Richardson <bruce.richardson@intel.com>
This commit is contained in:
Pablo de Lara 2015-06-10 16:25:25 +01:00 committed by Thomas Monjalon
parent 8718219a87
commit 49361c3f3c

View File

@ -102,29 +102,20 @@ extern "C" {
#define LOWER16b_MASK rte_le_to_cpu_32(0xffff)
#define LOWER24b_MASK rte_le_to_cpu_32(0xffffff)
/**
* The most generic version, hashes an arbitrary sequence
* of bytes. No alignment or length assumptions are made about
* the input key.
*
* @param key
* Key to calculate hash of.
* @param length
* Length of key in bytes.
* @param initval
* Initialising value of hash.
* @return
* Calculated hash value.
*/
static inline uint32_t
rte_jhash(const void *key, uint32_t length, uint32_t initval)
static inline void
__rte_jhash_2hashes(const void *key, uint32_t length, uint32_t *pc,
uint32_t *pb, unsigned check_align)
{
uint32_t a, b, c;
/* Set up the internal state */
a = b = c = RTE_JHASH_GOLDEN_RATIO + ((uint32_t)length) + initval;
a = b = c = RTE_JHASH_GOLDEN_RATIO + ((uint32_t)length) + *pc;
c += *pb;
/* Check key alignment. For x86 architecture, first case is always optimal */
/*
* Check key alignment. For x86 architecture, first case is always optimal
* If check_align is not set, first case will be used
*/
#if defined(RTE_ARCH_X86_64) || defined(RTE_ARCH_I686) || defined(RTE_ARCH_X86_X32)
const uint32_t *k = key;
const uint32_t s = 0;
@ -132,8 +123,7 @@ rte_jhash(const void *key, uint32_t length, uint32_t initval)
const uint32_t *k = (uint32_t *)(uintptr_t)key & (uintptr_t)~3);
const uint32_t s = ((uintptr_t)key & 3) * CHAR_BIT;
#endif
if (s == 0) {
if (!check_align || s == 0) {
while (length > 12) {
a += k[0];
b += k[1];
@ -172,7 +162,9 @@ rte_jhash(const void *key, uint32_t length, uint32_t initval)
a += k[0] & LOWER8b_MASK; break;
/* zero length strings require no mixing */
case 0:
return c;
*pc = c;
*pb = b;
return;
};
} else {
/* all but the last block: affect some 32 bits of (a, b, c) */
@ -238,66 +230,16 @@ rte_jhash(const void *key, uint32_t length, uint32_t initval)
break;
/* zero length strings require no mixing */
case 0:
return c;
*pc = c;
*pb = b;
return;
}
}
__rte_jhash_final(a, b, c);
return c;
}
/**
* A special optimized version that handles 1 or more of uint32_ts.
* The length parameter here is the number of uint32_ts in the key.
*
* @param k
* Key to calculate hash of.
* @param length
* Length of key in units of 4 bytes.
* @param initval
* Initialising value of hash.
* @return
* Calculated hash value.
*/
static inline uint32_t
rte_jhash2(const uint32_t *k, uint32_t length, uint32_t initval)
{
uint32_t a, b, c;
/* Set up the internal state */
a = b = c = RTE_JHASH_GOLDEN_RATIO + (((uint32_t)length) << 2) + initval;
/* Handle most of the key */
while (length > 3) {
a += k[0];
b += k[1];
c += k[2];
__rte_jhash_mix(a, b, c);
k += 3;
length -= 3;
}
/* Handle the last 3 uint32_t's */
switch (length) {
case 3:
c += k[2];
/* Fallthrough */
case 2:
b += k[1];
/* Fallthrough */
case 1:
a += k[0];
__rte_jhash_final(a, b, c);
/* Fallthrough */
/* case 0: nothing left to add */
case 0:
break;
};
return c;
*pc = c;
*pb = b;
}
/**
@ -318,138 +260,7 @@ rte_jhash2(const uint32_t *k, uint32_t length, uint32_t initval)
static inline void
rte_jhash_2hashes(const void *key, uint32_t length, uint32_t *pc, uint32_t *pb)
{
uint32_t a, b, c;
/* Set up the internal state */
a = b = c = RTE_JHASH_GOLDEN_RATIO + ((uint32_t)length) + *pc;
c += *pb;
/* Check key alignment. For x86 architecture, first case is always optimal */
#if defined(RTE_ARCH_X86_64) || defined(RTE_ARCH_I686) || defined(RTE_ARCH_X86_X32)
const uint32_t *k = key;
const uint32_t s = 0;
#else
const uint32_t *k = (uint32_t *)(uintptr_t)key & (uintptr_t)~3);
const uint32_t s = ((uintptr_t)key & 3) * CHAR_BIT;
#endif
if (s == 0) {
while (length > 12) {
a += k[0];
b += k[1];
c += k[2];
__rte_jhash_mix(a, b, c);
k += 3;
length -= 12;
}
switch (length) {
case 12:
c += k[2]; b += k[1]; a += k[0]; break;
case 11:
c += k[2] & LOWER24b_MASK; b += k[1]; a += k[0]; break;
case 10:
c += k[2] & LOWER16b_MASK; b += k[1]; a += k[0]; break;
case 9:
c += k[2] & LOWER8b_MASK; b += k[1]; a += k[0]; break;
case 8:
b += k[1]; a += k[0]; break;
case 7:
b += k[1] & LOWER24b_MASK; a += k[0]; break;
case 6:
b += k[1] & LOWER16b_MASK; a += k[0]; break;
case 5:
b += k[1] & LOWER8b_MASK; a += k[0]; break;
case 4:
a += k[0]; break;
case 3:
a += k[0] & LOWER24b_MASK; break;
case 2:
a += k[0] & LOWER16b_MASK; break;
case 1:
a += k[0] & LOWER8b_MASK; break;
/* zero length strings require no mixing */
case 0:
*pc = c;
*pb = b;
return;
};
} else {
/* all but the last block: affect some 32 bits of (a, b, c) */
while (length > 12) {
a += BIT_SHIFT(k[0], k[1], s);
b += BIT_SHIFT(k[1], k[2], s);
c += BIT_SHIFT(k[2], k[3], s);
__rte_jhash_mix(a, b, c);
k += 3;
length -= 12;
}
/* last block: affect all 32 bits of (c) */
switch (length) {
case 12:
a += BIT_SHIFT(k[0], k[1], s);
b += BIT_SHIFT(k[1], k[2], s);
c += BIT_SHIFT(k[2], k[3], s);
break;
case 11:
a += BIT_SHIFT(k[0], k[1], s);
b += BIT_SHIFT(k[1], k[2], s);
c += BIT_SHIFT(k[2], k[3], s) & LOWER24b_MASK;
break;
case 10:
a += BIT_SHIFT(k[0], k[1], s);
b += BIT_SHIFT(k[1], k[2], s);
c += BIT_SHIFT(k[2], k[3], s) & LOWER16b_MASK;
break;
case 9:
a += BIT_SHIFT(k[0], k[1], s);
b += BIT_SHIFT(k[1], k[2], s);
c += BIT_SHIFT(k[2], k[3], s) & LOWER8b_MASK;
break;
case 8:
a += BIT_SHIFT(k[0], k[1], s);
b += BIT_SHIFT(k[1], k[2], s);
break;
case 7:
a += BIT_SHIFT(k[0], k[1], s);
b += BIT_SHIFT(k[1], k[2], s) & LOWER24b_MASK;
break;
case 6:
a += BIT_SHIFT(k[0], k[1], s);
b += BIT_SHIFT(k[1], k[2], s) & LOWER16b_MASK;
break;
case 5:
a += BIT_SHIFT(k[0], k[1], s);
b += BIT_SHIFT(k[1], k[2], s) & LOWER8b_MASK;
break;
case 4:
a += BIT_SHIFT(k[0], k[1], s);
break;
case 3:
a += BIT_SHIFT(k[0], k[1], s) & LOWER24b_MASK;
break;
case 2:
a += BIT_SHIFT(k[0], k[1], s) & LOWER16b_MASK;
break;
case 1:
a += BIT_SHIFT(k[0], k[1], s) & LOWER8b_MASK;
break;
/* zero length strings require no mixing */
case 0:
*pc = c;
*pb = b;
return;
}
}
__rte_jhash_final(a, b, c);
*pc = c;
*pb = b;
__rte_jhash_2hashes(key, length, pc, pb, 1);
}
/**
@ -470,43 +281,54 @@ rte_jhash_2hashes(const void *key, uint32_t length, uint32_t *pc, uint32_t *pb)
static inline void
rte_jhash2_2hashes(const uint32_t *k, uint32_t length, uint32_t *pc, uint32_t *pb)
{
uint32_t a, b, c;
__rte_jhash_2hashes((const void *) k, (length << 2), pc, pb, 0);
}
/* Set up the internal state */
a = b = c = RTE_JHASH_GOLDEN_RATIO + (((uint32_t)length) << 2) + *pc;
c += *pb;
/**
* The most generic version, hashes an arbitrary sequence
* of bytes. No alignment or length assumptions are made about
* the input key.
*
* @param key
* Key to calculate hash of.
* @param length
* Length of key in bytes.
* @param initval
* Initialising value of hash.
* @return
* Calculated hash value.
*/
static inline uint32_t
rte_jhash(const void *key, uint32_t length, uint32_t initval)
{
uint32_t initval2 = 0;
/* Handle most of the key */
while (length > 3) {
a += k[0];
b += k[1];
c += k[2];
rte_jhash_2hashes(key, length, &initval, &initval2);
__rte_jhash_mix(a, b, c);
return initval;
}
k += 3;
length -= 3;
}
/**
* A special optimized version that handles 1 or more of uint32_ts.
* The length parameter here is the number of uint32_ts in the key.
*
* @param k
* Key to calculate hash of.
* @param length
* Length of key in units of 4 bytes.
* @param initval
* Initialising value of hash.
* @return
* Calculated hash value.
*/
static inline uint32_t
rte_jhash2(const uint32_t *k, uint32_t length, uint32_t initval)
{
uint32_t initval2 = 0;
/* Handle the last 3 uint32_t's */
switch (length) {
case 3:
c += k[2];
/* Fallthrough */
case 2:
b += k[1];
/* Fallthrough */
case 1:
a += k[0];
__rte_jhash_final(a, b, c);
/* Fallthrough */
/* case 0: nothing left to add */
case 0:
break;
};
rte_jhash2_2hashes(k, length, &initval, &initval2);
*pc = c;
*pb = b;
return initval;
}
static inline uint32_t